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Lecture 1. Canonical formalism of dynamical systems and local gauge
invariance

� Canonical formalism and canonical quantization.

� From quantum mechanics (QM) to quantum �eld theory (QFT). Lorentz invariance, ghosts and gauge
invariance.

� Relativistic particle.

� Electromagnetic and Yang-Mills (YM) �elds.

1.1 Canonical formalism and canonical quantization

As is well known from quantum mechanics physical phenomena have quantum nature, and the same is expected
to be true for more complicated than mechanical physical systems described by �elds. So quantum �eld theory
is the extension of known principles of canonical quantization to �eld systems with in�nite number of degrees
of freedom. So let us start describing this extension by �rst giving the most general formulation of canonical
quantization for a generic dynamical system with a �nite number of degrees of freedom � generalized coordinates
𝑞𝑖, 𝑖 = 1, 2, ...𝑛. Let the action of this system with the Lagrangian 𝐿(𝑞, 𝑞) be

𝑆[𝑞] =

∫︁
𝑑𝑡𝐿(𝑞, 𝑞), 𝑞𝑖 ≡ 𝑑𝑞𝑖

𝑑𝑡
. (1.1)

Classically the evolution of these coordinates 𝑞𝑖(𝑡) is determined by Euler-Lagrange equations of motion which
can be converted to the form of �rst order di�erential equations in time by the transition to the canonical
formalism. This begins with the introduction of canonical momenta 𝑝𝑖 conjugated to coordinates

𝑝𝑖 =
𝜕𝐿

𝜕𝑞𝑖
, (1.2)

which are in one-to-one correspondence with the velocities 𝑞𝑖 = det 𝑞𝑖(𝑞, 𝑝) as functions of 𝑞 and 𝑝 provided the
invertibility of the Hessian matrix 𝜕2𝐿/𝜕𝑞𝑖𝜕𝑞𝑗 of 𝐿(𝑞, 𝑞) with respect to velocities,

det
𝜕2𝐿

𝜕𝑞𝑖𝜕𝑞𝑗
̸= 0 ⇒ 𝑞𝑖 = 𝑞𝑖(𝑞, 𝑝). (1.3)

Then the Legendre transform to the Hamiltonian 𝐻(𝑞, 𝑝) � the function on the phase space of coordinates and
momenta,

𝐿(𝑞, 𝑞)→ 𝐻(𝑞, 𝑝) =
[︀
𝑝𝑖𝑞

𝑖 − 𝐿(𝑞, 𝑞)
]︀
𝑞=𝑞(𝑞,𝑝)

, (1.4)
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allows one to rewrite the Lagrangian action (1.1) in the canonical form

𝑆[𝑞, 𝑝] =

∫︁
𝑑𝑡
(︀
𝑝𝑖𝑞

𝑖 −𝐻(𝑞, 𝑝)
)︀
. (1.5)

Its variation with respect to phase space coordinates and momenta treated as independent variables yields the
Hamiltonian equations of motion,

𝑞𝑖 =
𝜕𝐻

𝜕𝑝𝑖
= {𝑞𝑖, 𝐻}, �̇�𝑖 = −𝜕𝐻

𝜕𝑞𝑖
= {𝑝𝑖, 𝐻}, (1.6)

in terms of the Poisson bracket de�ned for any pair of phase space functions 𝐴 = 𝐴(𝑞, 𝑝) and 𝐵(𝑞, 𝑝)

{𝐴,𝐵} =
𝜕𝐴

𝜕𝑞𝑖
𝜕𝐵

𝜕𝑝𝑖
− 𝜕𝐴

𝜕𝑝𝑖

𝜕𝐵

𝜕𝑞𝑖
. (1.7)

Canonical quantization of such a system then consists in promoting the phase space variables and their
Hamiltonian to the level of operators 𝑞𝑖, 𝑝𝑖 and �̂�, which act in the Hilbert space of physical states |𝜓(𝑡)⟩ and
satisfy instead of the Poisson bracket relations the canonical commutation relations

𝑞, 𝑝 ↦→ 𝑞, 𝑝, 𝐻 ↦→ �̂�, {𝑞𝑖, 𝑝𝑗} = 𝛿𝑖𝑗 ↦→ [ 𝑞𝑖, 𝑝𝑗 ] = 𝑖~𝛿𝑖𝑗 . (1.8)

The physical state is supposed to evolve in time via the Schroedinger equation with the quantum Hamiltonian
�̂�,

𝑖~
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = �̂� |𝜓(𝑡)⟩ . (1.9)

Within such most general setup quantization consists in the solution of two major problems � the calculation
of the probability of transition between the initial state |𝜓1(𝑡1) ⟩ prescribed at some initial moment of time 𝑡1
and the �nal state |𝜓2(𝑡2) ⟩ at 𝑡2 or the calculation of the expectation value of some physical observable �̂� in
the evolving quantum state as a function of time⎧⎪⎨⎪⎩

| ⟨𝜓2(𝑡2) |𝜓1(𝑡1) ⟩ |2 = 𝑃1→2

⟨𝜓(𝑡) | �̂� |𝜓(𝑡) ⟩ = ⟨𝒪 ⟩ (𝑡).
(1.10)

1.2 From QM to QFT. Lorentz invariance, ghosts and gauge invariance

To simplify the formalism we will in what follows work in the universal system of units and also use the
(−+ ++)-signature of the �at spacetime Lorentzian metric 𝜂𝜇𝜈 ,

~ = 𝑐 = 1, 𝜂𝜇𝜈 = diag(−1, 1, 1, 1), (1.11)

where Greek indices will be the labels of spacetime coordinates 𝑥 = 𝑥𝜇, 𝜇 = 0, 1, 2, 3, 𝑥0 = 𝑡, while spatial
coordinates x = 𝑥𝑖 will be basically labeled by the letters from the second half of Latin alphabet. The transition
from QM with �nite number of degrees of freedom to QFT of a scalar 𝜑(𝑥), spinor 𝜓𝐴(𝑥) (𝐴 is the spinor index),
vector 𝐴𝜇(𝑥), metric 𝑔𝜇𝜈(𝑥), etc. �elds

𝑞𝑖(𝑡) ↦→ 𝜑(𝑡,x); 𝜓𝐴(𝑡,x), 𝐴𝜇(𝑡,x), 𝑔𝜇𝜈(𝑡,x), ... , (1.12)

implies that the index 𝑖 of 𝑞𝑖(𝑡) acquires an in�nite continuous range, 𝑖 ↦→ x, (x, 𝐴), (x, 𝜇), (x, 𝜇𝜈), ... associated
with the continuum of spatial points.

For Lorentz-invariant theories, which we will basically consider, all these �elds belong to the representation of
𝑂(3, 1) Lorentz group preserving the Lorentzian metric 𝜂𝜇𝜈 . Starting with spin one vector �eld this immediately
leads to the following problem. For the sake of Lorentz invariance the vector index of 𝐴𝛼 = (𝐴0,𝐴) in the
Lagrangian should be obviously contracted with the aid of the contravariant metric 𝜂𝛼𝛽 . For the kinetic term
of the action this means that �̇�2

0 enters the Lagrangian with the negative sign,

𝑆[𝐴𝜇(𝑥) ] =

∫︁
𝑑4𝑥

(︁
− 1

2
𝜂𝜇𝜈𝜕𝜇𝐴𝛼𝜕𝜈𝐴𝛽𝜂

𝛼𝛽 + . . .
)︁

=

∫︁
𝑑4𝑥

(︁1

2
�̇�

2 − 1

2
�̇�2

0⏟ ⏞ 
ghost

+ . . .
)︁
, (1.13)
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so that the energy of the zeroth component of the vector �eld is not positive de�nite. This implies instabilities
and leads to inconsistent theory both at the classical and quantum levels. The way to circumvent this di�culty
is to use the property of local gauge invariance which excludes the �bad� mode from the spectrum of all physical
modes. Let us demonstrate this property on the examples of mechanical relativistic particle and two �eld
systems � electromagnetic and Yang-Mills �elds.

1.3 Relativistic particle

The Lagrangian and the action of a relativistic particle moving in spacetime of 𝑞𝑖 ≡ 𝑥𝜇 along the trajectory
𝑥𝜇(𝑡) read

𝐿(𝑥, �̇�) = −𝑚
√︀
−𝜂𝜇𝜈 �̇�𝜇�̇�𝜈 ≡ −𝑚

√︀
−�̇�2, (1.14)

𝑆[𝑥(𝑡) ] = −𝑚
∫︁
𝑑𝑡
√︀
−�̇�2. (1.15)

The action is invariant under one-dimensional di�eomorphism 𝑡 ↦→ 𝑡′ = 𝑡′(𝑡), 𝑥(𝑡) ↦→ 𝑥′(𝑡′) = 𝑥(𝑡), which in the
in�nitesimal form can be written down as

𝑡′ = 𝑡+ 𝑓(𝑡), ∆𝑓𝑥𝜇(𝑡) ≡ 𝑥′𝜇(𝑡)− 𝑥𝜇(𝑡) = 𝑥′𝜇(𝑡′)− 𝑓(𝑡)�̇�𝜇(𝑡)− 𝑥𝜇(𝑡) +𝑂(𝑓2) = −𝑓(𝑡)�̇�𝜇(𝑡), (1.16)

where 𝑓(𝑡) is a small parameter of the transformation arbitrarily depending on time. This arbitrary time depen-
dence means that this transformation is local. Such transformations we will call local gauge transformations.
Note that in the de�nition of ∆𝑓𝑥𝜇(𝑡) we compare 𝑥𝜇(𝑡) and 𝑥′𝜇(𝑡) at one and the same value of the time
parameter. As we will see now this local gauge invariance leads to peculiar canonical formalism of the theory.

One can directly check that the condition of the invertibility (1.3) of the matrix 𝜕2𝐿/𝜕�̇�𝜇𝜕�̇�𝜈 is violated, so
that the original velocities �̇�𝜇 cannot be expressed as functions of the momenta

𝑝𝜇 = 𝜂𝜇𝜈
𝑚�̇�𝜈√
−�̇�2

, (1.17)

and the momenta themselves are not independent and satisfy the identity 𝑝2 +𝑚2 = 0, 𝑝2 ≡ 𝜂𝜇𝜈𝑝𝜇𝑝𝜈 . We will
call the left hand side of this identity the constraint function or simply the constraint,

𝑇 (𝑝) = 𝑝2 +𝑚2. (1.18)

Moreover, the Hamiltonian turns out to be numerically identcally vanishing, 𝑝𝜇�̇�
𝜇 − 𝐿 = 0, even though we

cannot a priori express it in terms of coordinates and momenta (because the velocities are not expressible as
functions of momenta). Therefore, the canonical action of the form (1.5) with 𝐻 = 0 is unlikely to lead to the
correct equations of motion. This is obvious because the momenta are subject to the constraint 𝑇 (𝑝) = 0 and
cannot be varied as independent variables. This di�culty can be circumvented by considering the conditional
variational principle by including into the action the constraint function with an arbitrary Lagrange multiplier
𝑁 ,

𝑆[𝑥, 𝑝,𝑁 ] =

∫︁
𝑑𝑡(𝑝𝜇�̇�

𝜇 −𝑁𝑇 (𝑝)), (1.19)

and varying the total action with respect to the full set of 𝑥𝜇, 𝑝𝜇 and 𝑁 . This gives the set of equations

�̇�𝜇 = 0, �̇�𝜇 − 2𝑁𝜂𝜇𝜈𝑝𝜈 = 0, 𝑇 (𝑝) = 0. (1.20)

Substitution of the solution of the second equation 𝑝𝜇 = �̇�𝜇/2𝑁 into the constraint allows one to �nd 𝑁 as
𝑁 = ±

√
−�̇�2 and recover from the �rst of these equations the original variational equations for the Lagrangian

action of the relativistic particle (1.15). On the other hand, the canonical action 𝑆[𝑥, 𝑝 ] with the Lagrangian
value of the momentum leads to another form of the Lagrangian action as a functional of 𝑥(𝑡) and 𝑁(𝑡),

𝑆𝐿[𝑥(𝑡), 𝑁(𝑡) ] ≡ 𝑆[𝑥, �̇�/2𝑁 ] =

∫︁
𝑑𝑡𝑁

(︂
1

4𝑁2
�̇�𝜇�̇�𝜈𝜂𝜇𝜈 −𝑚2

)︂
. (1.21)
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This action ia again invariant under the local one-dimensional di�eomorphism of time with 𝑥𝜇 ↦→ 𝑥′𝜇(𝑡′)
given above and the Lagrange multiplier transforming as

𝑥′𝜇(𝑡′) = 𝑥𝜇(𝑡), 𝑁 ′(𝑡′) =

(︂
𝑑𝑡′

𝑑𝑡

)︂−1
𝑁(𝑡). (1.22)

Note that with this de�nition one can interpret 𝑁𝑑𝑡 = 𝑁 ′𝑑𝑡′ as a di�erential of invariant (proper) time of the
relativistic particle and 𝑑/𝑁𝑑𝑡 = 𝑑/𝑁 ′𝑑𝑡′ as the relevant invariant proper-time derivative. Correspondingly, the
momentum 𝑝𝜇 = 𝑑𝑥𝜇/2𝑁𝑑𝑡 is just this proper-time derivative of the coordinate variable, which is invariant
under these transformations 𝑝𝜇 = 𝑝′𝜇. In the in�nitesimal form the transformation of 𝑁 and 𝑝𝜇 looks as

∆𝑓𝑁(𝑡) = 𝑁 ′(𝑡)−𝑁(𝑡) = − 𝑑

𝑑𝑡
(𝑁𝑓), ∆𝑓𝑝𝜇 = 0. (1.23)

Direct observation then shows that the Lagrangian gauge transformations of coordinates ∆𝑓𝑥𝜇 and Lagrange
multiplier 𝛿𝑓𝑁 can be imitated by the following set of transformations 𝛿ℱ𝑥𝜇, 𝛿ℱ𝑝𝜇 and 𝛿ℱ𝑁 in the canonical
formalism with the action (1.19)

𝛿ℱ𝑥𝜇 = {𝑥𝜇, 𝑇}ℱ = 2𝑁𝜂𝜇𝜈𝑝𝜈 , 𝛿ℱ𝑝𝜇 = {𝑝𝜇, 𝑇}ℱ = 0 (1.24)

𝛿ℱ𝑁 = ℱ̇ (1.25)

provided the Lagrangian parameter 𝑓 and the canonical parameter ℱ are related by the equation

ℱ = −𝑁𝑓. (1.26)

Then the Lagrangian transformations can be directly derived from the canonical ones on the equation of motion
for the canonical momentum (or on shell of the momentum 𝑝𝜇)

∆𝑓𝑥𝜇 = 𝛿ℱ𝑥𝜇
⃒⃒
𝑝=�̇�/2𝑁

, ∆𝑓𝑁 = 𝛿ℱ𝑁. (1.27)

Important di�erence between the transformations of the phase space variables (1.24) and those of the La-
grange multiplier (1.25) is that the �rst ones are the canonical transformations generated by the Poisson bracket
with the constraint, whereas the second one is not canonical and involves the time derivative of the gauge pa-
rameter ℱ . It is easy to show by integration by parts in time that the in�nitesimal transformations (1.24)-(1.25)
leave the canonical action (1.19) invariant up to possible total derivative terms at the upper and lower limits
of integration time range. So the presence of constraints in the canonical formalism is tightly related to local
gauge invariance of the theory.

1.4 Electromagnetic and Yang-Mills fields

The action of the electromagnetic (EM) �eld, 𝑞𝑖 ↦→ 𝐴𝜇(x), 𝑖 = 𝜇,x, 𝜇 = 0, 1, 2, 3, reads as

𝑆[𝐴𝜇(x)] = −1

4

∫︁
𝑑4𝑥𝐹 2

𝜇𝜈 , 𝐹 2
𝜇𝜈 = 𝐹𝜇𝜈𝐹

𝜇𝜈 , 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇. (1.28)

It is invariant under the gradient transformation with the scalar gauge parameter 𝑓(𝑥),

𝐴𝜇(𝑥)→ 𝐴′𝜇(𝑥) = 𝐴𝜇(𝑥) + 𝜕𝜇𝑓(𝑥), ∆𝑓𝐴𝜇(𝑥) = 𝜕𝜇𝑓(𝑥). (1.29)

For the Lagrangian given by the integral over 3-dimensional space,

𝐿 = −1

4

∫︁
𝑑3𝑥𝐹 2

𝜇𝜈 , (1.30)

the canonical momenta are de�ned by 3-dimensional variational derivatives with respect to time derivatives of
the vector potential, which also leads to the constraint � vanishing zeroth component of the momentum,

𝑝𝜇(x) =
𝛿𝐿

𝛿�̇�𝜇(x)
= 𝐹𝜇0, 𝑝0(x) = 0. (1.31)
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As 𝑝0 = 0 it is enough to disentangle from the Lagrangian the symplectic term for the nonvanishing components
of the momentum 𝑝𝑖�̇�𝑖 in order to convert the action to the canonical form

𝑆[𝐴𝜇(𝑥) ] =

∫︁
𝑑𝑡 𝑑3𝑥

(︂
−1

4
𝐹 2
𝑖𝑗 +

1

2
𝐹 2
𝑖0

)︂
=

∫︁
𝑑𝑡 𝑑3𝑥

(︂
𝑝𝑖�̇�𝑖 −

1

2
𝑝2𝑖 −

1

4
𝐹 2
𝑖𝑗 −𝐴0(−𝜕𝑖𝑝𝑖)

)︂
= 𝑆[𝐴,𝑝, 𝐴0].

(1.32)

Here the role of the Hamiltonian is now played by the integral of the energy density of electromagnetic �eld
1
2

∫︀
𝑑3𝑥 (𝐸2 + 𝐻2) in terms of electric 𝐸 = 𝐸𝑖 ≡ 𝑝𝑖 and magnetic 𝐻 = 𝐻𝑖 ≡ 1

2𝜖𝑖𝑗𝑘𝐹𝑗𝑘 �eld strengths, plus the
term linear in 𝐴0. The component 𝐴0 enters linearly and does not involve a time derivative, so it plays, similarly
to 𝑁 in the relativistic particle case, the role of the Lagrange multiplier for the constraint on the momentum
𝑝𝑖. This constraint follows from the variation of the action with respect to 𝐴0(𝑥),

𝛿𝑆[𝐴,𝑝, 𝐴0]

𝛿𝐴0
= −𝑇 (𝑝) = 0, 𝑇 (𝑝) ≡ 𝜕𝑖𝑝𝑖 = 0, (1.33)

and implies the nondynamical equation on the electric �eld strength in electrodynamics without electric charges
div𝐸 = 0.

Like for the relativistic particle case, these constraints generate by the Poisson brackets the gauge transfor-
mations of phase space variables, corresponding to the gradient transformations in the Lagrangian formalism
(1.29), whereas the transformation of the Lagrangian multiplier is given by the time derivative of the gauge
parameter ℱ = 𝑓 (in this model gauge parameters in both formalisms simply coincide),

𝛿ℱ𝐴𝑖(x) =

{︂
𝐴𝑖(x),

∫︁
𝑑3𝑦 𝑇 (y)ℱ(y)

}︂
=

{︂
𝐴𝑖(x),

∫︁
𝑑3𝑦 𝑝𝑘(y)𝜕𝑘ℱ𝑘(y)

}︂
=

∫︁
𝑑3𝑦

{︀
𝐴𝑖(x), 𝑝𝑘(y)

}︀
𝜕𝑘ℱ(y) = 𝜕𝑖ℱ(x) = ∆𝑓𝐴𝑖,

𝛿ℱ𝑝𝑖(x) =

{︂
𝑝𝑖(x),

∫︁
𝑑3𝑦 𝑇 (y)ℱ(y)

}︂
= 0,

𝛿ℱ𝐴0(x) = ℱ̇(x) = ∆𝑓𝐴0.

(1.34)

Here we took into account that in the �eld-theoretical model the Poisson bracket of Eq.(1.7)) should be gener-
alized to the expression

{𝒪1,𝒪2} =
𝜕𝒪1

𝜕𝑞𝑖
𝜕𝒪2

𝜕𝑝𝑖
− 𝜕𝒪1

𝜕𝑝𝑖

𝜕𝒪2

𝜕𝑞𝑖
↦→
∫︁
𝑑3𝑥

(︂
𝛿𝒪1

𝛿𝐴𝑖(x)

𝛿𝒪2

𝛿𝑝𝑖(x)
− 𝛿𝒪1

𝛿𝑝𝑖(x)

𝛿𝒪2

𝛿𝐴𝑖(x)

)︂
(1.35)

(in other words, if 𝑖 ↦→ (𝑖,x) then
∑︀

𝑖 ↦→
∑︀

𝑖

∫︀
𝑑3𝑥). Consequently{︀

𝑞𝑖, 𝑝𝑗
}︀

= 𝛿𝑖𝑗 ↦→
{︀
𝐴𝑖(x), 𝑝𝑘(y)

}︀
= 𝛿𝑘𝑖 𝛿(x,y), (1.36)

where the delta-function is de�ned by the following relation valid for any continuous test function 𝜙(x)∫︁
𝑑3𝑦 𝛿(x,y)𝜙(y) = 𝜙(x). (1.37)

The case of electromagnetic �eld can be directly generalized to the Yang-Mills theory with the vector
potential 𝐴𝑎

𝜇 carrying extra color index 𝑎 of the generating group algebra, say 𝑆𝑈(2) algebra with 𝑎 = 1, 2, 3

𝐴𝜇(𝑥) ↦→ 𝐴𝑎
𝜇(𝑥), 𝐹𝜇𝜈 ↦→ 𝐹 𝑎

𝜇𝜈 = 𝜕𝜇𝐴
𝑎
𝜈 − 𝜕𝜈𝐴𝑎

𝜇 + 𝑐𝑎𝑏𝑐𝐴
𝑏
𝜇𝐴

𝑐
𝜈 . (1.38)

Here 𝑐𝑎𝑏𝑐 = −𝑐𝑎𝑐𝑏 are structure constants of this algebra satisfying the cyclic Jacobi identity

𝑐𝑎𝑏𝑑𝑐
𝑑
𝑐𝑒 + cycle(𝑏, 𝑐, 𝑒) = 0, (1.39)
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which themselves can be considered as matrices of algebra generators 𝑐𝑑 in the adjoint representation, satisfying
the commutation relations,

𝑐𝑎𝑑𝑏 = (𝑐𝑑)
𝑎
𝑏 , [𝑐𝑎, 𝑐𝑏] = 𝑐𝑐𝑎𝑏𝑐𝑐. (1.40)

They determine symmetric Killing metric on the group algebra, 𝛾𝑎𝑏 = −tr(𝑐𝑎𝑐𝑏), and fully antisymmetric tensor
𝑐𝑑𝑎𝑏 = 𝛾𝑑𝑐𝑐

𝑐
𝑎𝑏, which allows one to construct the gauge invariant Yang-Mills action

𝑆YM[𝐴𝑎
𝜇(𝑥) ] = −1

4

∫︁
𝑑4𝑥 𝛾𝑎𝑏𝐹

𝑎
𝜇𝜈𝐹

𝑏 𝜇𝜈 . (1.41)

This action is invariant under the gauge transformations with the parameters 𝑓𝑎 of the form expressible in
terms of the covariant derivatives D𝜇 with respect to the Yang-Mills �bre bundle connection

∆𝑓𝐴𝑎
𝜇 = 𝜕𝜇𝑓

𝑎 +𝐴𝑏
𝜇𝑐

𝑎
𝑏𝑐𝑓

𝑐 ≡ D𝜇 𝑓
𝑎. (1.42)

The canonical action has the form similar to the electromagnetic case,

𝑆[𝐴𝑎
𝜇] =

∫︁
𝑑𝑡

∫︁
𝑑3𝑥

{︂
𝑝𝑖𝑎�̇�

𝑎
𝑖 −

1

2
(𝑝𝑖𝑎)2 − 1

4

(︀
𝐹 𝑎
𝑖𝑗

)︀2 −𝐴𝑎
0𝑇𝑎

}︂
, (1.43)

where for brevity we imply that the quadratic forms are determined with respect to the Killing metric 𝛾𝑎𝑏 or its

inverse 𝛾𝑎𝑏, (𝑝𝑖𝑎)2 ≡ 𝛾𝑎𝑏𝑝𝑖𝑎𝑝𝑖𝑏,
(︀
𝐹 𝑎
𝑖𝑗

)︀2
= 𝛾𝑎𝑏𝐹

𝑎
𝑖𝑗𝐹

𝑏
𝑖𝑗 , and 𝐴

𝑎
0 play the role of Lagrange multipliers of the constraints

on the canonical momenta
𝑇𝑎 = −D𝑖 𝑝

𝑖
𝑎 ≡ −

(︀
𝜕𝑖𝑝

𝑖
𝑎 −𝐴𝑑

𝑖 𝑐
𝑏
𝑑𝑎𝑝

𝑖
𝑏

)︀
. (1.44)

Problem 1.1. Show that the canonical gauge transformation 𝛿ℱ𝐴𝑎
𝑖 (x) =

{︀
𝐴𝑎

𝑖 (x),
∫︀
𝑑3𝑦 𝑇𝑎(y)ℱ𝑎(y)

}︀
with this generator gives

the Lagrangian gauge transformation (1.42) for ℱ𝑎 = 𝑓𝑎. Derive the relevant gauge transformation 𝛿ℱ𝑝𝑖𝑎.

There is essential di�erence of Yang-Mills gauge transformations from the gradient transformations in elec-
trodynamics. Due to Abelian nature of EM �eld, gradient transformations are commuting, [∆𝑓1 ,∆𝑓2 ] = 0,
so is the commutator of two canonical transformations determined by the Poisson bracket commutator of EM
constraints, {𝑇 (x), 𝑇 (y)} = 0. The last relation is obvious because for electromagnetism the constraint 𝑇 (x) is
𝐴𝑖-independent. For non-Abelian Yang-Mills theory both commutators are nonvanishing.

Problem 1.2. Derive the commutators [Δ𝑓1 ,Δ𝑓2 ] and {𝑇𝑎(x), 𝑇𝑏(y)} in Yang-Mills theory and show their compatibility.

Lecture 2. Canonical condensed notations and reminder on Einstein
gravity theory

� Canonical condensed DeWitt notations.

� Einstein gravity: a reminder

2.1 Canonical condensed DeWitt notations

Let us introduce condensed DeWitt notations. In transition from notations for a generic mechanical system to
concrete relativistic particle, scalar �eld, EM and YM �eld models and gravity theory we have

𝑞𝑖(𝑡) = 𝑥𝜇(𝑡)⏟  ⏞  
𝑖=𝜇

, 𝜑(𝑡,x)⏟  ⏞  
𝑖=x

, 𝐴𝜇(𝑡,x)⏟  ⏞  
𝑖=𝜇,x

, 𝐴𝑎
𝜇(𝑡,x)⏟  ⏞  

𝑖=𝜇,𝑎,x

𝑔𝜇𝜈(𝑥)⏟  ⏞  
𝑖=𝜇𝜈,x

, (2.1)

where the index 𝑖 absorbs now together with discrete labels also the continuous spatial coordinate x. Speci�cally
for YM we have the canonical coordinates and momenta

𝑞𝑖 = 𝐴𝑎
𝑖 (x), 𝑝𝑖 = 𝑝𝑖𝑎(x), 𝑖 ↦−→ 𝑎, 𝑖,x

𝑇𝜇 = 𝑇𝑎(x), 𝜇 ↦−→ 𝑎,x,
(2.2)
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along with the notation for the constraints labelled by the condensed index 𝜇 accumulating again the discrete
gauge transformations labels 𝑎 (color indices of generating YM group) and coordinates x.

Let us also extend these notations by the summation-integration rule � over contracted condensed indices
we will assume both summation over discrete labels and integration over space

𝑞𝑖𝑝𝑖 =

∫︁
𝑑3𝑥𝐴𝑎

𝑖 (x)𝑝𝑖𝑎(x),

ℱ𝜇𝑇𝜇 =

∫︁
𝑑3𝑥ℱ𝑎(x)𝑇𝑎(x).

(2.3)

Obviously this is the extension of the well-known Einstein rule of dropping the summation sign. We will call
these notations the canonical condensed ones, when the time coordinate stays outside of the condensed label.
This is of course the artifact of canonical formalism in which the time coordinate and the time derivative should
be kept explicitly. Later we will also need the covariant condensed notations when the time will be also included
into the condensed indices, the summation over them including the time integration.

The problems of the previous lecture are much easier to solve by using instead of the local constraints 𝑇𝑎(x)
their integrals with arbitrary test functions ℱ𝑎

1 (x) and ℱ𝑎
2 (x), which is much easier to operate with in terms of

condensed notations. This looks as the following sequence of identical transformatioms,

{𝑇𝑎(𝑥), 𝑇𝑏(𝑦)} →
∫︁
𝑑𝑥 𝑑𝑦ℱ𝑎

1 (x) {𝑇𝑎(x), 𝑇𝑏(y)}ℱ𝑏
2(y)

=

∫︁
𝑑𝑧𝑑𝑥𝑑𝑦

(︂
ℱ𝑎

1 (𝑥)
𝛿𝑇𝑎(x)

𝛿𝐴𝑐
𝑖 (z)

𝛿𝑇𝑏(y)

𝛿𝑝𝑖𝑐(z)
ℱ𝑏

2(𝑦)− (1↔ 2)

)︂
= ℱ𝜇

1

𝜕𝑇𝜇
𝜕𝑞𝑖

𝜕𝑇𝜈
𝜕𝑝𝑖
ℱ𝜈

2 − (1↔ 2) = 𝛿𝑞(ℱ𝜇
1 𝑇𝜇)

⃒⃒⃒
𝛿𝑞𝑖= 𝜕𝑇𝜈

𝜕𝑝𝑖
ℱ𝜈

2

− (1↔ 2).

(2.4)

ℱ𝜇𝑇𝜇 =

∫︁
𝑑𝑥ℱ𝑎

(︀
−D𝑖 𝑝

𝑖
𝑎

)︀
=

∫︁
𝑑𝑥 (D𝑖ℱ𝑎) 𝑝𝑖𝑎, (2.5)

𝛿𝑞𝑖 =
𝜕 (𝑇𝜈ℱ𝜈

2 )

𝜕𝑝𝑖
=

𝛿

𝛿𝑝𝑖𝑐(z)

∫︁
𝑑𝑦 (D𝑘ℱ𝑏

2) 𝑝𝑘𝑏 = D𝑖 ℱ𝑐
2(z), (2.6)

𝛿𝑞 (ℱ𝜇
1 𝑇𝜇) =

∫︁
𝑑𝑥 𝛿𝐴𝑐

𝑖 𝑐
𝑎
𝑐𝑏 ℱ𝑏

1 𝑝
𝑖
𝑎

⃒⃒⃒
𝛿𝐴=Dℱ2

=

∫︁
𝑑𝑥 (D𝑖ℱ𝑐

2) 𝑐𝑎𝑐𝑏 ℱ𝑏
1 𝑝

𝑖
𝑎 (2.7)

Hence ∫︁
𝑑𝑥 𝑑𝑦ℱ𝑎

1 (x) {𝑇𝑎(x), 𝑇𝑏(y)}ℱ𝑏
2(y) =

∫︁
𝑑𝑥 (D𝑖ℱ𝑐

2) 𝑐𝑎𝑐𝑏 ℱ𝑏
1 𝑝

𝑖
𝑎 − (1↔ 2)

=

∫︁
𝑑𝑥D𝑖(ℱ𝑐

2 𝑐
𝑎
𝑐𝑏 ℱ𝑏

1) 𝑝𝑖𝑎 = −
∫︁
𝑑𝑥ℱ𝑎

1 𝑐
𝑑
𝑎𝑏𝑇𝑑ℱ𝑏

2 ,

(2.8)

or
{𝑇𝑎(x), 𝑇𝑏(y)} = −𝑐𝑑𝑎𝑏𝑇𝑑(x)𝛿(x,y), (2.9)

which in condensed notations can be rewritten as

{𝑇𝜇, 𝑇𝜈} = 𝒰𝜆
𝜇𝜈𝑇𝜆, 𝒰𝜆

𝜇𝜈 = −𝑐𝑑𝑎𝑏𝛿(z,x) 𝛿(z,y),

𝜆 ↦→ 𝑑 z, 𝜇 ↦→ 𝑎x, 𝜈 ↦→ 𝑏y.
(2.10)

Thus, non-Abelian nature of the YM gauge transformation for spatial components of the vector potential,

(∆𝑓2∆𝑓1 −∆𝑓1∆𝑓2)𝐴𝑎
𝑖 = ∆𝑓3𝐴𝑎

𝑖 , 𝑓𝑎3 = 𝑐𝑎𝑏𝑐𝑓
𝑏
2𝑓

𝑐
1 (2.11)

fully matches with the non-Abelian canonical transformations in the canonical formalism, because

(𝛿ℱ2𝛿ℱ1 − 𝛿ℱ1𝛿ℱ2)𝐴𝑎
𝑖 (x) = {{𝐴𝑎

𝑖 (x), 𝑇𝜇}, 𝑇𝜈}ℱ𝜇
2 ℱ𝜈

1 − (1↔ 2)

= {𝐴𝑎
𝑖 (x), {𝑇𝜇, 𝑇𝜈}}ℱ𝜇

2 ℱ𝜈
1 = 𝛿ℱ3𝐴𝑎

𝑖 (x),

ℱ𝜆
3 = −𝒰𝜆

𝜇𝜈ℱ
𝜇
2 ℱ𝜈

1 ,

(2.12)
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where we used the Poisson bracket Jacobi identity {{𝐹1, 𝐹2}, 𝐹3}+ cycle(1, 2, 3) = 0 and the constraint algebra
(2.10).

The gauge transformation of the remaining zeroth component of the vector potential 𝛿ℱ𝐴𝑎
0(x) = ∆𝑓𝐴𝑎

0(x) ≡
D0 ℱ𝑎(x) = ℱ̇𝑎(x) + 𝑐𝑎𝑏𝑑𝐴

𝑏
0(x)ℱ𝑑(x), can be written down in the form

𝛿ℱ𝜆𝜇 = ℱ̇𝜇 − 𝒰𝜇
𝛼𝛽𝜆

𝛼ℱ𝛽 (2.13)

if we introduce the special notation for 𝐴𝑎
0(x) as the Lagrange multiplier 𝜆𝜇 ≡ 𝐴𝑎

0(x). The meaning and
generality of this representation we will see later after we consider the case of gravity theory.

2.2 Einstein gravity: a reminder

Einstein gravity theory with matter �elds has the action

𝑆[ 𝑔𝜇𝜈 , 𝜑 ] =
1

16𝜋𝐺

∫︁
𝑑4𝑥 𝑔1/2 (𝑅− 2𝛬) + surface term + 𝑆m[𝜑, 𝑔𝜇𝜈 ], (2.14)

where 𝑅 is the curvature scalar of the metric 𝑔𝜇𝜈(𝑥), 𝑔 = −det 𝑔𝜇𝜈 , 𝜑(𝑥) is the set of matter �elds, 𝐺 and 𝛬
are the gravitational and cosmological constants and for a time beiong we do not specify the surface term of
the gravitational action. The action is invariant under local di�eomorphisms

𝑥𝜇 → 𝑥𝜇
′

= 𝑥𝜇
′
(𝑥), (2.15)

under which the metric tensor and matter �eld tensor 𝜑(𝑥) transform as

𝑔𝜇′𝜈′(𝑥′) =
𝜕𝑥𝛼

𝜕𝑥𝜇′

𝜕𝑥𝛽

𝜕𝑥𝜈′ 𝑔𝛼𝛽(𝑥), (2.16)

𝜑(𝑥) ↦→ 𝜑′(𝑥′) = �̂�

(︂
𝜕𝑥′

𝜕𝑥

)︂
𝜑(𝑥). (2.17)

Here �̂� (𝜕𝑥′/𝜕𝑥) = 𝐷𝐴
𝐵 (𝜕𝑥′/𝜕𝑥) is the matrix of the representation of the general linear group GL(4) to which

belongs the �eld 𝜑 = 𝜑𝐴. 𝐴 and 𝐵 here are generic spin-tensor indices, and the matrices acting in the vector
space of these indices will be denoted by hat.

This matrix �̂� (𝜕𝑥′/𝜕𝑥) is parameterized by the elements of the Jacobi matrix of transition to new coor-
dinates 𝜕𝑥′/𝜕𝑥. For example, in case of contravariant vector �eld 𝜑(𝑥) = 𝐴𝜇(𝑥), 𝐴𝜇′

(𝑥′) = (𝜕𝑥𝜇
′
/𝜕𝑥𝜈)𝐴𝜈(𝑥),

�̂� (𝜕𝑥′/𝜕𝑥) = (𝜕𝑥𝜇
′
/𝜕𝑥𝜈). For in�nitesimal di�eomorphism 𝑥𝜇

′
= 𝑥𝜇 + 𝑓𝜇(𝑥) these transformations express in

terms of the Lie derivative along the vector �eld 𝑓𝜇,

∆𝑓𝑔𝜇𝜈(𝑥) = 𝑔′𝜇𝜈(𝑥)− 𝑔𝜇𝜈(𝑥) = −$𝑓𝑔𝜇𝜈

= −𝑓𝛼𝜕𝛼𝑔𝜇𝜈 − 𝜕𝜇𝑓𝛼𝑔𝛼𝜈 − 𝜕𝜈𝑓𝛼𝑔𝛼𝜇 = −∇𝜇𝑓𝜈 −∇𝜈𝑓𝜇,

∆𝑓𝜑(𝑥) = 𝜑′(𝑥)− 𝜑(𝑥) = −$𝑓𝜑

= −𝑓𝜇𝜕𝜇𝜑+ 𝜕𝜇𝑓
𝜈�̂�𝜇

𝜈𝜑 = −𝑓𝜇∇𝜇𝜑+∇𝜇𝑓
𝜈�̂�𝜇

𝜈𝜑.

(2.18)

Here �̂�𝜇
𝜈 are the generators of the GL(4)-representation parameterizing the group matrix in the vicinity of the

identical transformation

�̂�

(︂
1 +

𝜕𝑓

𝜕𝑥

)︂
= 1̂ + 𝜕𝜇𝑓

𝜈�̂�𝜇
𝜈 , (2.19)

and ∇𝜇 denotes the covariant derivative with respect to the Christo�el connection

∇𝜇𝜑 = 𝜕𝜇𝜑+ 𝛤𝛼
𝜇𝛽�̂�

𝛽
𝛼𝜑, ∇𝜇𝐴

𝜈 = 𝜕𝜇𝐴
𝜈 + 𝛤 𝜈

𝜇𝛼𝐴
𝛼, (2.20)

𝛤𝜇
𝛼𝛽 =

1

2
𝑔𝜇𝜆 (𝜕𝛼𝑔𝜆𝛽 + 𝜕𝛽𝑔𝜆𝛼 − 𝜕𝜆𝑔𝛼𝛽) , ∇𝜇𝑔𝛼𝛽 = 0. (2.21)

The Riemann and Ricci tensors are de�ned as

(∇𝜇∇𝜈 −∇𝜈∇𝜇)𝜑𝛼 = 𝑅𝛼
𝛽𝜇𝜈𝜑

𝛽 , 𝑅𝜇𝜈 = 𝑅𝛼
𝜇𝛼𝜈 . (2.22)
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In what follows we will need to perform metric variations. They can be done via the solution of the following
problem

Problem 2.1. Derive the following variations under the infinitesimal variation of the metric tensor 𝛿𝑔𝜇𝜈 ≡ ℎ𝜇𝜈 , assuming that
by definition ℎ𝜇𝜈 ≡ 𝑔𝜇𝛼ℎ𝛼𝜈 , ℎ𝜇𝜈 ≡ 𝑔𝜇𝛼𝑔𝜈𝛽ℎ𝛼𝛽 ,

𝛿(𝑔𝜇𝜈) = −ℎ𝜇𝜈 , 𝛿𝑔1/2 =
1

2
𝑔1/2𝑔𝜇𝜈ℎ𝜇𝜈 ≡

1

2
𝑔1/2ℎ,

𝛿𝛤𝛼
𝜇𝜈 =

1

2

(︀
∇𝜇ℎ

𝛼
𝜈 +∇𝜈ℎ

𝛼
𝜇 −∇𝛼ℎ𝜇𝜈

)︀
,

𝛿𝑅𝛼
𝛽𝜇𝜈 = ∇𝜇(𝛿𝛤

𝛼
𝜈𝛽)−∇𝜈(𝛿𝛤

𝛼
𝜇𝛽).

The metric variation of the gravitational part of the full action � Einstein-Hilbert action 𝑆EH[ 𝑔𝜇𝜈 ] equals
up to a contribution of the surface term

𝛿𝑔𝑆EH[ 𝑔𝜇𝜈 ] =
1

16𝜋𝐺

∫︁
4ℳ

𝑑4𝑥 𝑔1/2
(︂

1

2
𝑔𝜇𝜈ℎ𝜇𝜈 (𝑅− 2𝛬) + (𝛿𝑔𝜇𝜈)𝑅𝜇𝜈 + 𝑔𝜇𝜈𝛿𝑅𝛼

𝜇𝛼𝜈

)︂
= − 1

16𝜋𝐺

∫︁
𝑑4𝑥 𝑔1/2 (𝐺𝜇𝜈 + 𝛬𝑔𝜇𝜈) 𝛿𝑔𝜇𝜈 ,

(2.23)

where 𝐺𝜇𝜈 is the Einstein tensor which satis�es a well-known contracted Bianchi identity

𝐺𝜇𝜈 ≡ 𝑅𝜇𝜈 − 1

2
𝑔𝜇𝜈𝑅, ∇𝜇𝐺

𝜇𝜈 ≡ 0. (2.24)

This identity is obviously compatible with the invariance of the action under di�eomorpisms, because by inte-
grating by parts and using the compact support of 𝑓𝜇 one has

∆𝑓𝑆EH =
1

16𝜋𝐺

∫︁
𝑑4𝑥 𝑔1/2 (𝐺𝜇𝜈 + 𝛬𝑔𝜇𝜈) (∇𝜇𝑓𝜈 +∇𝜈𝑓𝜇) = − 1

16𝜋𝐺

∫︁
𝑑4𝑥 𝑔1/22 (∇𝜇𝐺

𝜇𝜈) 𝑓𝜈 = 0. (2.25)

For minimally interacting with gravity matter �elds their action in curved spacetime follows from the �at
space one by the replacement of the metric by the curved metric, the replacement of integration measure by
the Riemanninan measure and trading the partial spacetime derivatives for covariant derivatives

𝜂𝜇𝜈 ↦→ 𝑔𝜇𝜈 , 𝜕𝜇 ↦→ ∇𝜇,

∫︁
𝑑4𝑥 ↦→

∫︁
𝑑4𝑥 𝑔1/2. (2.26)

In view of di�eomorphism invariance of matter action its metric stress tensor

𝑇𝜇𝜈 =
2

𝑔1/2
𝛿𝑆m

𝛿𝑔𝜇𝜈
(2.27)

is covariantly conserved on the solution of equations of motion for matter �elds

0 = ∆𝑓𝑆m

⃒⃒⃒
𝛿𝑆m
𝛿𝛷 =0

=

∫︁
𝑑4𝑥 𝑔1/2𝑇𝜇𝜈∇𝜇𝑓𝜈 = −

∫︁
𝑑4𝑥 𝑔1/2∇𝜇𝑇

𝜇𝜈𝑓𝜈 , ∇𝜇𝑇
𝜇𝜈 = 0. (2.28)

Problem 2.2. Write down the action of relativistic particle in curved spacetime, derive the equations of motion of the particle,
its metric stress tensor and prove that this tensor is conserved on equations of motion,

Lecture 3. Geometry of (3+1) spacetime foliation

� (3+1) spacetime foliation

� Time evolution of the spacetime hypersurface 𝜎(𝑡)

� Projections of Riemann tensor.
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Figure 1: Spacetime foliation by hypersurfaces of constant time 𝑡.

3.1 (3+1) spacetime foliation

Canonical formalism of the gravitational �eld requires disentangling time from the full set of spacetime co-
ordinates 𝑥𝜇 = (𝑥0, 𝑥𝑖). This can be done in a way preserving the initial 4-dimensional general coordinate
invariance and the 3-dimensional one. The idea is to foliate the 4-dimensional spacetime 4ℳ = [𝑡−, 𝑡+] × 3ℳ
by spacelike hypersurfaces 𝜎(𝑡) = 3ℳ of constant time 𝑡. This foliation can be described as embedding into the
4-dimensional spacetime 4ℳ of coordinates 𝑥𝛼 = (𝑥0, 𝑥𝑖) of the one-parameter family of surfaces parameterized
by intrinsic coordinates x = 𝑥𝑎, 𝑎 = 1, 2, 3, and labelled by time 𝑡,

𝜎(𝑡) : 𝑥𝛼 = 𝑒𝛼(𝑥𝑎, 𝑡). (3.1)

Here we will use Greek letters to label 4-dimensional spacetime objects and letters from the �rst part of Latin
alphabet for 3-dimensional objects on 𝜎(𝑡). In this way we retain the covariance under both 4-dimensional
di�eomorphisms and 3-dimensional di�eomorphisms explicitly depending on time 𝑡,

4ℳ : 𝑥𝜇 → 𝑥𝜇
′

= 𝑥𝜇
′
(𝑥𝜈)

3ℳ : 𝑥𝑎 → 𝑥𝑎
′

= 𝑥𝑎
′
(𝑥𝑏, 𝑡).

(3.2)

The basis of three vectors tangential to 𝜎(𝑡) can be written down as partial derivatives of embedding functions
𝑒𝛼(x, 𝑡) with respect to 𝑥𝑎. Together with the vector 𝑛𝛼 normal to the surface they form the normal basis

𝑒𝛼𝑎 =
𝜕𝑒𝛼(x, 𝑡)

𝜕𝑥𝑎
, 𝑛𝛼𝑒

𝛼
𝑎 = 0, 𝑛𝛼 = 𝑔𝛼𝛽𝑛

𝛽 , (3.3)

while the metric interval along the surface with 𝑑𝑥𝛼 = 𝑒𝛼𝑎𝑑𝑥
𝑎

𝑑𝑠2 = 𝑔𝛼𝛽𝑑𝑥
𝛼𝑑𝑥𝛽 = 𝑒𝛼𝑎𝑔𝛼𝛽𝑒

𝛽
𝑏⏟  ⏞  

𝛾𝑎𝑏

𝑑𝑥𝑎𝑑𝑥𝑏 (3.4)

suggests the notion of induced metric
𝛾𝑎𝑏 = 𝑒𝛼𝑎𝑔𝛼𝛽𝑒

𝛽
𝑏 . (3.5)

The vector 𝑛𝛼 normal to spacelike hypersurfaces is normalized to −1, but for generality we will use the notation
𝜖 = ±1 for its norm to indicate whether it is timelike or spacelike

𝑔𝛼𝛽𝑛
𝛼𝑛𝛽 = 𝜖 = ±1. (3.6)

Every spacetime vector can be decomposed in the normal basis into its normal and tangential components
labelled as it is shown here

𝜑𝛼(𝑥)
⃒⃒⃒
𝑥=𝑒(x,𝑡)

= 𝜑⊥𝑛
𝛼 + 𝜑𝑎𝑒𝛼𝑎 . (3.7)

10



Figure 2: Normal basis {𝑛𝛼, 𝑒𝛼𝑎}

Conversely its components read as projections on the vectors of the normal basis

𝜑⊥ = 𝜖𝑛𝛼𝜑
𝛼, 𝜑𝑎 = 𝑒𝑎𝛼𝜑

𝛼, (3.8)

where we use the contravariant induced metric 𝛾𝑎𝑏, 𝛾𝑎𝑏𝛾𝑏𝑐 = 𝛿𝑎𝑏 , to raise 3-dimensional indices,

𝑒𝑎𝛼 ≡ 𝛾𝑎𝑏𝑒
𝛽
𝑏 𝑔𝛽𝛼. (3.9)

From this de�nition it immediately follows the following contraction of indices

𝑒𝛼𝑎𝑒
𝑏
𝛼 = 𝛿𝑏𝑎. (3.10)

The decomposition of the spacetime metric in the normal basis leads in view of 𝑔⊥⊥ = 𝜖 and 𝑔⊥𝑎 = 0 to the
following relation

𝑔𝛼𝛽 = 𝜖𝑛𝛼𝑛𝛽 + 𝛾𝑎𝑏𝑒
𝑎
𝛼𝑒

𝑏
𝛽 , (3.11)

whence it follows the de�nition of the tensor 𝛾𝛼𝛽 of projection onto the hypersurface

𝑒𝛼𝑎𝑒
𝑎
𝛽 = 𝛿𝛼𝛽 − 𝜖𝑛𝛼𝑛𝛽 ≡ 𝛾𝛼𝛽 , (3.12)

which satis�es the orthogonality relations
𝛾𝛼𝛽𝑛𝛼 = 𝑛𝛽𝛾𝛼𝛽 = 0. (3.13)

The triad of vectors 𝑒𝛼𝑎 obviously transforms under the both di�eomorphisms (3.2) as

𝑒𝛼𝑎 ↦→ 𝑒𝛼
′

𝑎′ =
𝜕𝑥𝛼

′

𝜕𝑥𝛼
𝑒𝛼𝑎
𝜕𝑥𝑎

𝜕𝑥𝑎′ . (3.14)

To introduce the spatial covariant derivative on the hypersurface, induced from the 4-dimensional space, which
would have a correct transformation law under 3-dimensional di�eomorphisms, consider a 3-dimensional vector
𝜑𝑏 and raise it to the level of the 4-dimensional vector �eld de�ned on the hypersurface

𝜑𝑏 ↦→ 𝜑𝛽 ≡ 𝑒𝛽𝑏 𝜑
𝑏. (3.15)

Then calculate its 4-dimensional covariant derivative along the hypersurface ∇𝑎 ≡ 𝑒𝛼𝑎∇𝛼 and project the result
back to the hypersurface. One obtains

D𝑎 𝜑
𝑏 = 𝑒𝛼𝑎∇𝛼(𝑒𝛽𝑐 𝜑

𝑐)𝑒𝑏𝛽 = 𝜕𝑎⏟ ⏞ 
𝑒𝛼𝑎𝜕𝛼

𝜑𝑏 +
(︀
∇𝑎𝑒

𝛽
𝑐

)︀
𝑒𝑏𝛽⏟  ⏞  

𝛾𝑏
𝑎𝑐

𝜑𝑐,
(3.16)

where the last term should be interpreted in terms of the 3-dimensional connection

𝛾𝑏𝑎𝑐 = (∇𝑎𝑒
𝛼
𝑐 )𝑒𝑏𝛼 = (3)𝛤 𝑏

𝑎𝑐, ∇𝑎 ≡ 𝑒𝛼𝑎∇𝛼, (3.17)
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Figure 3: Lapse and shift functions 𝑁 and 𝑁𝑎

which turns out to be the Christo�el symbol of 𝛾𝑎𝑏.

Problem 3.1. Prove that 𝛾𝑐𝑎𝑏 = (∇𝑎𝑒𝛼𝑏 ) 𝑒
𝑐
𝛼 is the the Christoffel symbol of 𝛾𝑎𝑏, because D𝑎𝛾𝑏𝑐 = 0.

Extrinsic curvature is determined by the covariant derivative of the normal vector taken along the hyper-
surface. It is a symmetric tensor given by the following several equivalent expressions

𝐾𝑎𝑏 ≡ −∇𝛼𝑛𝛽𝑒
𝛼
𝑎𝑒

𝛽
𝑏 = − (∇𝑎𝑛𝛽) 𝑒𝛽𝑏 = +𝑛𝛽

(︁
∇𝑎𝑒

𝛽
𝑏

)︁
. (3.18)

Eqs.(3.17) and (3.18) imply that they represent respectively the normal and tangential projections of ∇𝑎𝑒
𝛼
𝑏

with respect to index 𝛼. Thus they give rise to Gauss-Weingarten formula

∇𝑎𝑒
𝛼
𝑏 = 𝜖𝑛𝛼𝐾𝑎𝑏 + 𝛾𝑐𝑎𝑏𝑒

𝛼
𝑐 . (3.19)

3.2 Time evolution of the spacetime hypersurface 𝜎(𝑡)

Time �evolution� of the hypersurface in 𝜎(𝑡) can be described by its �velocity�

𝑁𝛼 =
𝜕𝑒𝛼(x, 𝑡)

𝜕𝑡
(3.20)

with which it evolves in spacetime. Its decomposition in the normal basis

𝑁𝛼 = 𝑛𝛼𝑁 + 𝑒𝛼𝑎𝑁
𝑎 (3.21)

determines the lapse function 𝑁 and shift functions 𝑁𝑎 which in Fig.3 illustrate the movement of the point of
�xed spatial coordinates x at the transition from the hypersurface 𝜎(𝑡) to 𝜎(𝑡+ 𝑑𝑡).

The tensor �elds at the point of spacetime belonging to the hypersurface is obviously a functional of the
embedding functions 𝜑[ 𝑒(x ], and one can de�ne the covariant derivative in the direction of the vector 𝑁𝛼 in
terms of the variation of the embedding 𝛿𝑒𝛼 = 𝜕𝑡𝑒

𝛼(x, 𝑡)𝑑𝑡

𝐷𝑁𝜑 ≡ 𝛿𝑒𝜑/𝑑𝑡+𝑁𝛼 𝛤 𝛽
𝛼𝜆�̂�

𝜆
𝛽𝜑, (3.22)

where

𝛿𝑒𝜑[ 𝑒 ]/𝑑𝑡 =

∫︁
𝑑3𝑦

𝛿𝜑[ 𝑒(x) ]

𝛿𝑒𝛼(y)
𝑁𝛼(y, 𝑡) = 𝜕𝑡𝜑[ 𝑒(x, 𝑡) ] (3.23)
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is a partial derivative written in terms of the variation of 𝜑[ 𝑒(x ] with respect to the embedding variation
𝛿𝑒𝛼 = 𝑁𝛼 𝑑𝑡. Apply this covariant derivative to 𝑒𝛼𝑎 and make a sequence of transformations

𝐷𝑁𝑒
𝛼
𝑎 = 𝜕𝑡 (𝑒𝛼𝑎 ) + 𝛤𝛼

𝛽𝜆𝑒
𝜆
𝑎 𝑁

𝛽 = 𝜕𝑎 (𝜕𝑡𝑒
𝛼
𝑎 ) + 𝛤𝛼

𝛽𝜆𝑒
𝜆
𝑎 𝑁

𝛽

= 𝜕𝑎(𝑛𝛼𝑁 + 𝑒𝛼𝑏𝑁
𝑏) + (𝑛𝛽𝑁 + 𝑒𝛽𝑏𝑁

𝑏)𝛤𝛼
𝛽𝜆𝑒

𝜆
𝑎

= ∇𝑎𝑛
𝛼𝑁 + 𝑛𝛼𝜕𝑎𝑁 + (∇𝑎𝑒

𝛼
𝑏 )𝑁 𝑏 + 𝑒𝛼𝑏 𝜕𝑎𝑁

𝑏

= −𝐾𝑎𝑏𝑒
𝛼𝑏𝑁 + 𝑒𝛼𝑏 D𝑎𝑁

𝑏 + 𝑛𝛼(D𝑎𝑁 + 𝜖𝐾𝑎𝑏𝑁
𝑏),

(3.24)

where we used the fact that from the de�nition of the extrinsic curvature (3.18) ∇𝑎𝑛
𝛼 = −𝐾𝑎𝑏𝑒

𝛼𝑏 (remember
that ∇𝛽𝑛

𝛼𝑛𝛼 = 0 in view of 𝑛𝛼𝑛𝛼 = 𝜖) and also collected partial derivative terms with Christo�el symbol terms
to form the covariant derivative ∇𝑎𝑒

𝛼
𝑏 for which we used the Gauss-Wengarten equation (3.19). The �nal result

for the time evolution of the tangential basis 𝑒𝛼𝑎 reads

𝐷𝑁𝑒
𝛼
𝑎 = 𝑒𝛼𝑏

(︀
D𝑎𝑁

𝑏 −𝐾𝑏
𝑎𝑁
)︀

+ 𝑛𝛼
(︀
D𝑎𝑁 + 𝜖𝐾𝑎𝑏𝑁

𝑏
)︀
, (3.25)

which allows one to express the time derivative of induced metric via extrinsic curvature

𝜕𝛾𝑎𝑏
𝜕𝑡

= 𝜕𝑡

(︁
𝑒𝛼𝑎𝑔𝛼𝛽𝑒

𝛽
𝑏

)︁
= 𝐷𝑁

(︀
𝑒𝛼𝑎𝑒𝛼𝑏

)︀
= 2𝐷𝑁𝑒

𝛼
(𝑎𝑒𝛼𝑏) = D𝑎𝑁𝑏 + D𝑏𝑁𝑎 − 2𝐾𝑎𝑏𝑁. (3.26)

As a result there is another hypostasis of the extrinsic curvature tensor in terms of the time derivative of the
induced metric

𝐾𝑎𝑏 =
1

2𝑁
(D𝑎𝑁𝑏 + D𝑏𝑁𝑎 − �̇�𝑎𝑏) . (3.27)

Problem 3.2. Derive the equation for the evolution of the normal vector

𝐷𝑁𝑛𝛼 = −𝜖𝑒𝑎𝛼𝜕𝑎𝑁 − 𝑒𝑎𝛼𝐾𝑎𝑏𝑁
𝑏. (3.28)

3.3 Projections of the Riemann tensor

It is useful to promote the 3-dimensional 𝐾𝑎𝑏 to the level of the 4-dimensiona 4ℳ-tensor by the following
equation

𝐾𝜇𝜈 ≡ 𝑒𝑎𝜇𝑒𝑏𝜈𝐾𝑎𝑏 = − 𝑒𝑎𝜇𝑒𝛼𝑎⏟ ⏞ 
𝛾𝛼
𝜇

𝑒𝑏𝜈𝑒
𝛽
𝑏⏟ ⏞ 

𝛾𝛽
𝜈

∇𝛼𝑛𝛽 = −𝛾𝛼𝜇𝛾𝛽𝜈∇𝛼𝑛𝛽 = −𝛾𝛼𝜇∇𝛼𝑛𝜈 .
(3.29)

This tensor is obviously orthogonal to the normal vector with respect to both of its symmetric indices

𝐾𝜇𝜈𝑛
𝜈 = 0, (3.30)

Let us use this tensor for the derivation of various projections of the 4-dimensional curvature onto the normal
basis. For this purpose consider a generic 3-dimensional vector �eld 𝜑𝑎 and again lift it to the level of the
4-dimensional vector �eld having a zero normal component,

𝜑𝑎 → 𝜑𝜇 ≡ 𝑒𝜇𝑎𝜑𝑎, 𝜑𝜇𝑛𝜇 = 0. (3.31)

Then by de�nition its covariant spatial derivative can be lifted to the level of 4-dimensional tensor by covariantly
di�erentiating it and projecting the result with respect to both indices onto the hyoersurface

D𝜇 𝜑
𝜈 = 𝛾𝛼𝜇𝛾

𝜈
𝛽∇𝛼𝜑

𝛽 . (3.32)

Similar construction holds for the covariant derivative of higher rank tensors having vanishing normal compo-
nents.
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Consider the commutator of two covariant derivatives acting on the normal vector and project the result
onto the surface. This can be transformed as

2𝛾𝛼[𝜇𝛾
𝛽
𝜈]∇𝛼∇𝛽𝑛

𝜆𝛾𝜎𝜆 = 2𝛾𝛼[𝜇∇𝛼

(︁
𝛾𝛽𝜈]∇𝛽𝑛

𝜆𝛾𝜎𝜆

)︁
− 2

(︁
𝛾𝛼[𝜇∇𝛼𝛾

𝛽
𝜈]

)︁
∇𝛽𝑛

𝜆𝛾𝜎𝜆 + 2
(︁
𝛾𝛼[𝜇∇𝛼𝛾

𝜎
𝜆

)︁
𝐾𝜆

𝜈]

= −2D[𝜇𝐾
𝜎
𝜈] + 2𝜖𝑛[𝜈𝐾

𝛽
𝜇]𝐾

𝜎
𝛽 ,

(3.33)

where square brackets denote antisymmetrization of two indices (with the 1/2 coe�cient, 𝐴[𝜇𝜈] ≡ 1
2 (𝐴𝜇𝜈 +𝐴𝜈𝜇))

and we used simple relations for the derivatives of the projection operators

𝛾𝛼𝜇∇𝛼𝛾
𝜎
𝜆 = 𝜖(𝐾𝜎

𝜇𝑛𝜆 + 𝑛𝜎𝐾𝜇𝜆), 𝛾𝛼𝜇𝛾
𝛽
𝜈∇𝛼𝛾

𝜎
𝛽 = 𝜖𝑛𝜎𝐾𝜇𝜈 . (3.34)

On the other hand the left hand side of (3.33), being the commutator of two covariant derivatives, equals
𝛾𝛼𝜇𝛾

𝛽
𝜈𝑅

𝜆
𝛿𝛼𝛽 𝑛

𝛿𝛾𝜎𝜆 , so that

𝛾𝜎𝜆𝑅
𝜆
𝛿𝛼𝛽 𝑛

𝛿𝛾𝛼𝜇𝛾
𝛽
𝜈 = −D𝜇𝐾

𝜎
𝜈 + D𝜈 𝐾

𝜎
𝜇 + 2𝜖𝑛[𝜈𝐾

𝛽
𝜇]𝐾

𝜎
𝛽 . (3.35)

Therefore, the following projection of the 4-dimensional Riemann tensor reads

(4)𝑅⊥𝑎𝑏𝑐 = 2𝜖D[𝑏𝐾𝑐]𝑎. (3.36)

Analogous projection of the commutator of two covariant derivatives acting on a generic vector �els tangential
to the surface yields the Gauss-Codazzi equation

(4)𝑅𝑎𝑏𝑐𝑑 = (3)𝑅𝑎𝑏𝑐𝑑 − 2𝜖𝐾𝑎[𝑐𝐾𝑑]𝑏. (3.37)

Problem 3.3. Prove Eq.(3.34) and the Gauss-Codazzi equation.

For the calculation of (4)𝑅 = 𝑔𝜇𝜈𝑔𝛼𝛽𝑅𝜇𝛼𝜈𝛽 = 2𝛾𝑎𝑏𝑅𝑎⊥𝑏⊥ + (4)𝑅𝑎𝑏
𝑎𝑏 one would need a projection 𝑅𝑎⊥𝑏⊥

which is rather complicated because it contains second order time derivatives of 𝛾𝑎𝑏. This di�culty can be
circumvented by using the following transformations. From Gauss-Codazzi equation it follows that

(4)𝑅𝑎𝑏
𝑎𝑏 = (3)𝑅− 𝜖(𝐾2 −𝐾2

𝑎𝑏), (3.38)

where 𝐾 = 𝛾𝑎𝑏𝐾𝑎𝑏 is the trace of the extrinsic curvature, and we used the abbreviation 𝐾2
𝑎𝑏 = 𝐾𝑎𝑏𝐾𝑎𝑏. On the

other hand
(4)𝑅𝑎𝑏𝑐𝑑𝛾

𝑎𝑐𝛾𝑏𝑑 = (4)𝑅𝜇𝜈𝛼𝛽𝛾
𝜇𝛼𝛾𝜈𝛽

= (4)𝑅𝜇𝜈𝛼𝛽(𝑔𝜇𝛼 − 𝜖𝑛𝜇𝑛𝜈)(𝑔𝜈𝛽 − 𝜖𝑛𝜈𝑛𝛽)

= (4)𝑅− 2𝜖𝑅𝜇𝜈𝑛
𝜇𝑛𝜈 = −2𝜖𝐺𝜇𝜈𝑛

𝜇𝑛𝜈 = −2𝜖𝐺⊥⊥,

(3.39)

so that the normal-normal projection of the Einstein tensor equals the expression

𝐺⊥⊥ =
1

2
(𝐾2 −𝐾2

𝑎𝑏 − 𝜖3𝑅), (3.40)

which does not at all involve second order time derivatives of 𝛾𝑎𝑏 (see Eq.(3.18). Consequently, for the 4-
dimensional scalar curvature one can write the following sequence of relations using the fact that Ricci tensor
is expressible with the aid of the commutator of two covariant derivatives,

(4)𝑅 = 2𝜖(𝑅𝜇𝜈 −𝐺𝜇𝜈)𝑛𝜇𝑛𝜈 = 2𝜖𝑅𝜇𝜈𝑛
𝜇𝑛𝜈 − 2𝜖𝐺⊥⊥

= 2𝜖𝑛𝜈(∇𝛼∇𝜈 −∇𝜈∇𝛼)𝑛𝛼 + (3)𝑅+ 𝜖𝐾2
𝑎𝑏 − 𝜖𝐾2

= 2𝜖∇𝛼(𝑛𝜈∇𝜈𝑛
𝛼 − 𝑛𝛼∇𝜈𝑛

𝜈)− 2𝜖 (∇𝛼𝑛
𝜈)(∇𝜈𝑛

𝛼)⏟  ⏞  
𝐾2

𝑎𝑏

+2𝜖 (∇𝛼𝑛
𝛼)2⏟  ⏞  

𝐾2

+(3)𝑅+ 𝜖(𝐾2
𝑎𝑏 −𝐾2),

(3.41)

whence the 4-dimensional scalar curvature takes the form

(4)𝑅 = (3)𝑅− 𝜖(𝐾2
𝑎𝑏 −𝐾2) + 2𝜖∇𝜇(𝑛𝜈∇𝜈𝑛

𝜇 − 𝑛𝜇∇𝜈𝑛
𝜈). (3.42)

Thus, up to the contribution of the total derivative term the scalar curvature is expressible as a combination of
the 3-dimensional scalar curvature and the form quadratic in the extrinsic curvature.
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Figure 4: Spacetime domain in the canonical formalism of gravity theory.

Lecture 4. Canonical formalism of Einstein general relativity

� Arnowitt-Deser-Misner (ADM) varables and ADM action of GR.

� Canonical action and Hamiltonian and momenta constraints.

� Canonical gauge transformations.

4.1 Arnowitt-Deser-Misner (ADM) varables and ADM action of GR

Let us integrate the scalar curvature over the spacetime domain 4ℳ depicted on Fig.4, whose total boundary,

𝜕 4ℳ = 3ℳ(𝑡+) ∪ 3ℳ(𝑡−) ∪
(︂

[𝑡−, 𝑡+]× 𝜕 3ℳ
)︂
, (4.1)

consists of initial and �nal hypersurfaces 3ℳ(𝑡∓) and the �side� boundary [𝑡−, 𝑡+]× 𝜕 3ℳ. Using the value of
the signature parameter 𝜖 = −1 and the change of integration variables from 𝑥𝜇 to (𝑡, 𝑥𝑎) we obtain∫︁

𝑑4𝑥 𝑔1/2𝑅 =

∫︁ 𝑡+

𝑡−

𝑑𝑡

∫︁
3ℳ(𝑡)

𝑑3𝑥𝑁𝛾1/2
(︀
𝐾2

𝑎𝑏 −𝐾2 + 3𝑅
)︀

−2

∫︁
3ℳ(𝑡)

𝑑3𝑥 𝛾1/2𝐾
⃒⃒⃒ 𝑡+
𝑡−

+

∫︁ 𝑡+

𝑡−

𝑑𝑡

∫︁
𝜕 3ℳ(𝑡)

𝑑2𝜎𝑎(. . . )𝑎. (4.2)

Here we used the relations between the integration measures in the two coordinate systems and the Gauss
theorem for the total derivative term, which comprise the material of the next problem.

Problem 4.1. Derive the relation between the integration measures in the original spacetime coordinates 𝑥𝜇 and the coordinates
of (3+1)-foliated spacetime (𝑡, 𝑥𝑎)

𝑑4𝑥 𝑔1/2 = 𝑑𝑡 𝑑3𝑥𝑁 𝛾1/2, 𝛾1/2 =
(︀
det 𝛾𝑎𝑏

)︀1/2
.

Check the covariant form of the Gauss theorem∫︁
ℳ4

𝑑4𝑥 𝑔1/2∇𝜇𝜑
𝜇 =

∫︁
𝜕ℳ4

𝑑3𝑥 𝛾1/2𝜑⊥, 𝜑⊥ = 𝜖 𝑛𝜇𝜑
𝜇,

where 𝑛𝜇 is an outward pointing normal to the spacetime boundary 𝜕ℳ4. Hint: Use the Stokes theorem in terms of exterior
forms,

∫︀
ℳ4 𝑑𝜔

(3) =
∫︀
𝜕ℳ4 𝜔

(3), applied to the 3-form 𝜔(3) = 𝜑𝜇𝜀𝜇𝛼𝛽𝛾𝑑𝑥
𝛼
⋀︀
𝑑𝑥𝛽

⋀︀
𝑑𝑥𝛾 .
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At the bottom and top hypersurfaces 3ℳ(𝑡∓) the vector 𝜑𝜇 = 2𝜖(𝑛𝜈∇𝜈𝑛
𝜇−𝑛𝜇∇𝜈𝑛

𝜈), 𝜑⊥ = −2𝜖(∇𝜈𝑛
𝜈) = −2𝐾,

gives the contribution of the surface term with the trace of extrinsic curvature, whereas at the side boundary
it gives the last term of (4.2) which we do not specify exactly because it explicitly depends on its own normal
vector di�erent from 𝑛𝜇. Below we will specify this term for the case of asymptotically �at spacetime.

Now we apply the above formalism for the conversion of the GR action to the canonical form. The Lagrangian
action consists of the volume (Einstein-Hilbert) and surface (Gibbons-Hawking) terms and reads

𝑆G[ 𝑔𝜇𝜈 ] =

∫︁
ℳ4

𝑑4𝑥 𝑔1/2 (𝑅− 2𝛬)

⏟  ⏞  
EH action

−2

∫︁
𝜕ℳ4

𝑑3𝑥
√
𝛾 𝜖𝐾

⏟  ⏞  
GH action

. (4.3)

First of all, to simplify notations, we will work in this section in the system of units 𝑐4/16𝜋𝐺 = 𝑀2
𝑃 /2 = 1,

which explains the normalization of the volume term. The surface term in the covariant form was suggested by
Gibbons and Hawking and represents the surface integral over entire boundary of the spacetime domain (4.1)
built in terms of the induced metric 𝛾 and the extrinsic curvature 𝐾 of this boundary. On top and bottom
spacelike surfaces 3ℳ(𝑡±) they obviously coincide respectively with 𝛾𝑎𝑏 and 𝐾𝑎𝑏 and 𝜖 = −1, whereas on the
side boundary [𝑡−, 𝑡+]×𝜕3ℳ they are given by its own induced 3-metric, the normal vector and 𝜖 = 1. The role
of the Gibbons-Hawking term is to guarantee consistency of the variational procedure for the action under the
Dirichlet boundary conditions for the induced 3-metric on the total boundary of 4ℳ. Simply this means that
integration by parts in the spacetime volume allows one to get rid of the second-order derivatives transversal to
the boundary and simultaneously avoid such derivatives of the induced metric on the boundary (if any surface
terms survive at all).

Such a cancellation of time derivatives takes place when we use (4.2) in (4.3) and thus obtain what is called
Arnowitt-Deser-Misner action

𝑆ADM[ 𝛾𝑎𝑏, 𝑁,𝑁
𝑎 ] =

∫︁ 𝑡+

𝑡−

𝑑𝑡

{︂∫︁
𝑑3𝑥 𝛾1/2𝑁

(︁
𝐾2

𝑎𝑏 −𝐾2 + (3)𝑅− 2𝛬
)︁

+

∫︁
𝜕3ℳ

𝑑2𝜎𝑎 (. . .)
𝑎

}︂
, (4.4)

where 𝐾-terms get completely cancelled at 3ℳ(𝑡±) and the ADM Lagrangian involves only �rst order time
derivatives of 𝛾𝑎𝑏 (cf. Eq.(3.27) for 𝐾𝑎𝑏 in terms of �̇�𝑎𝑏). At the side boundary a similar cancellation would also
take place in the foliation of spacetime by timelike surfaces �parallel� to this boundary, but in the 𝑡-foliation this
is not explicit � the remaining surface integral

∫︀
𝑑𝑡
∫︀
𝑑2𝜎𝑎 (. . .)

𝑎
still survives in order to cancel by integration

by parts the second order spatial derivatives contained in 𝑁 (3)𝑅 spacetime integrand. The remnant of this
cancellation we will consider later in the case of asymptotically �at spacetime, where it will form the expression
for the ADM energy of the gravitational system.

The ADM variables � spatial metric and lapse and shift variables � are most easily related to the original
spacetime metric in a special foliation when the time 𝑡 is identi�ed with 𝑥0 and the intrinsic hypersurface
coordinates are identi�ed with spatial coordinates 𝑥0 = 𝑡, 𝑥𝑖 = 𝑥𝑎 and 𝑒𝜇𝑎 = 𝛿𝜇𝑖 . This relation is given by the
solution of the following problem.

Problem 4.2. Prove that in this foliation

𝛾𝑖𝑗 = 𝑔𝑖𝑗 , 𝑁𝑖 = 𝑔0𝑖, 𝑁 𝑖 = 𝛾𝑖𝑗𝑁𝑗 , 𝑁 =
(︀
−𝑔00

)︀−1/2
,

𝑔𝑖0 =
𝑁 𝑖

𝑁2
, 𝑔𝑖𝑗 = 𝛾𝑖𝑗 −

𝑁 𝑖𝑁𝑗

𝑁2
, 𝑔00 = 𝑁𝑖𝑁

𝑖 −𝑁2, 𝑛𝜇 =

(︂
1

𝑁
,−

𝑁 𝑖

𝑁

)︂
, 𝑛𝜇 = −𝛿0𝜇𝑁,

(4.5)

and

𝐾𝑖𝑗 = 𝑛𝜇∇𝑖𝑒
𝜇
𝑗 = −𝑁(4)𝛤 0

𝑖𝑗 =
1

2𝑁
(𝐷𝑖𝑁𝑗 +𝐷𝑗𝑁𝑖 − �̇�𝑖𝑗) (4.6)

4.2 Canonical action and Hamiltonian and momenta constraints

The ADM action

𝑆ADM[ 𝛾𝑖𝑗 , 𝑁,𝑁
𝑖 ] =

∫︁ 𝑡+

𝑡−

𝑑𝑡𝐿ADM( 𝛾𝑖𝑗 , �̇�𝑖𝑗 , 𝑁,𝑁
𝑖 ) (4.7)

16



has the Lagrangian, given by the expression in the curly brackets of (4.4). It contains time derivatives of only
the spatial metric coe�cients, so that the transition to canonical formalism runs via the Legendre transform
with respect to �̇�𝑖𝑗 . We get canonical momenta conjugated to 𝛾𝑖𝑗(x),

𝜋𝑖𝑗 =
𝛿𝐿ADM

𝛿�̇�𝑖𝑗
= −𝐺𝑖𝑗,𝑘𝑙𝐾𝑘𝑙, (4.8)

𝐺𝑖𝑗,𝑘𝑙 ≡ 1

2
𝛾1/2

(︀
𝛾𝑖𝑘𝛾𝑗𝑙 + 𝛾𝑖𝑙𝛾𝑗𝑘 − 2𝛾𝑖𝑗𝛾𝑘𝑙

)︀
, (4.9)

where 𝐺𝑖𝑗,𝑘𝑙 is the so-called DeWitt metric, and its inverse 𝐺𝑖𝑗,𝑘𝑙, 𝐺
𝑖𝑗,𝑘𝑙𝐺𝑘𝑙,𝑚𝑛 = 𝛿𝑖𝑗𝑚𝑛, allows one to express �̇�𝑖𝑗

as functions of momenta 𝜋𝑖𝑗 and other variables, �̇�𝑖𝑗 = �̇�𝑖𝑗(𝜋
𝑖𝑗),

𝐾𝑖𝑗 ≡
1

2𝑁

(︀
D𝑖𝑁𝑗 + D𝑗𝑁𝑖 − �̇�𝑖𝑗

)︀
= −𝐺𝑖𝑗,𝑘𝑙𝜋

𝑘𝑙, 𝐺𝑖𝑗,𝑘𝑙 =
1

2𝛾1/2
(︀
2𝛾𝑖(𝑘𝛾𝑗𝑙) − 𝛾𝑖𝑗𝛾𝑘𝑙

)︀
. (4.10)

The total Hamiltonian becomes after integration by parts the following expression linear in lapse and shift
functions, [︂∫︁

𝑑3𝑥𝜋𝑖𝑗 �̇�𝑖𝑗 − 𝐿ADM

]︂
�̇�𝑖𝑗=�̇�𝑖𝑗(𝜋𝑘𝑙)

=

∫︁
3ℳ

𝑑3𝑥
(︀
𝑁𝐻⊥ +𝑁 𝑖𝐻𝑖

)︀
+

∫︁
𝜕3ℳ

𝑑2𝜎𝑎 (. . .)
𝑎
, (4.11)

playing the role of Lagrange multipliers of the Hamiltonian 𝐻⊥ and mpmenta 𝐻𝑖 constraint functions,

𝐻⊥ = 𝐺𝑖𝑗,𝑘𝑙𝜋
𝑖𝑗𝜋𝑘𝑙 − 𝛾1/2

(︀
(3)𝑅− 2𝛬

)︀
, (4.12)

𝐻𝑖 = −2𝛾𝑖𝑗D𝑘𝜋
𝑘𝑗 . (4.13)

Thus the canonical ADM action takes the form

𝑆ADM[ 𝛾𝑖𝑗 , 𝜋
𝑖𝑗 , 𝑁,𝑁 𝑖 ] =

∫︁ 𝑡+

𝑡−

{︂∫︁
3ℳ

𝑑3𝑥
(︀
𝜋𝑖𝑗 �̇�𝑖𝑗 −𝑁𝐻⊥ −𝑁 𝑖𝐻𝑖

)︀
−𝐻0

}︂
, (4.14)

𝐻0 =

∫︁
𝜕3ℳ

𝑑2𝜎𝑎 (. . .)
𝑎
, (4.15)

where the part of the total Hamiltonian di�erent from constraints reduces to the surface term denoted by 𝐻0.
To simplify the formalism we again use DeWitt notations and condense spatial coordinates into the gauge

condensed index 𝜇 ↦→ (⊥ x; 𝑖x), 𝐻𝜇 ↦→ (𝐻⊥(x), 𝐻𝑖(x)), 𝑁𝜇 =
(︀
𝑁⊥(x), 𝑁 𝑖(x)

)︀
, so that the constraint part of

the Hamiltonian takes the form of a simple contraction of indices

𝑁𝜇𝐻𝜇 ≡
∫︁
𝑑3𝑥

(︀
𝑁⊥(x)𝐻⊥(x) +𝑁 𝑖(x)𝐻𝑖(x)

)︀
(4.16)

Then equations of motion for the phase space variables read[︂
�̇�𝑖𝑗
�̇�𝑖𝑗

]︂
=

{︂[︂
𝛾𝑖𝑗
𝜋𝑖𝑗

]︂
, 𝐻𝜇

}︂
𝑁𝜇 (4.17)

in terms of the Poisson brackets

{𝐴,𝐵} =

∫︁
𝑑3𝑥

𝛿𝐴

𝛿𝛾𝑖𝑗(x)

𝛿𝐵

𝛿𝜋𝑖𝑗(x)
− (𝐴↔ 𝐵) . (4.18)

Note that 𝐻0 being a surface term does not explicitly contribute to the equations of motion, but as one can
check this term provides consistency of the functional variational procedure of deriving these equations in the
course of integrations by parts. The equation for �̇�𝑖𝑗 relating it to 𝜋𝑖𝑗 is obviously equivalent to the expression
for the extrinsic curvature

�̇�𝑖𝑗 = 2𝑁 𝐺𝑖𝑗,𝑘𝑙𝜋
𝑘𝑙 + 2D(𝑖𝑁𝑗) = 2D(𝑖𝑁𝑗) − 2𝑁𝐾𝑖𝑗 , (4.19)
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whereas the equation for �̇�𝑖𝑗 after the substitution of 𝜋𝑖𝑗 in terms of �̇�𝑖𝑗 becomes a dynamical equation of second
order in time derivatives.

On the contrary the variational equations of motion for the Lagrange multipliers yield the nondynamical
constraints on phase space variables

𝛿𝑆ADM

𝛿𝑁𝜇
= −𝐻𝜇 = 0. (4.20)

With the substitution of the Lagrangian values of the canonical momenta these constraints become the equations
containing at most �rst order time derivatives of 𝛾𝑖𝑗 and coincide with the following projections of the left hand
sides of Einstein equations

𝐻⊥

⃒⃒⃒
𝜋𝑖𝑗=−𝛾1/2(𝐾𝑖𝑗−𝛾𝑖𝑗𝐾)

= −2𝛾1/2 (𝐺⊥⊥ − 𝛬)

𝐻𝑖

⃒⃒⃒
𝜋𝑖𝑗=−𝛾1/2(𝐾𝑖𝑗−𝛾𝑖𝑗𝐾)

= 2𝛾1/2𝐺⊥𝑖.
(4.21)

The Poisson bracket algebra of the Hamiltonian and momenta constraints turns out to be closed just like the
algebra of constraints in the Yang-Mills theory � the right hand sides of these relations are linear in constraint
functions,

{𝐻𝑖(x), 𝐻𝑗(x
′)} = 𝐻𝑗(x)𝜕𝑖𝛿(x,x

′)− (𝑖x↔ 𝑗x′)

{𝐻⊥(x), 𝐻𝑖(x
′)} = −𝐻⊥(x′)𝜕𝑖𝛿(x,x

′)

{𝐻⊥(x), 𝐻⊥(x′)} = 𝛾𝑖𝑗(x)𝐻𝑖(x)𝜕𝑗𝛿(x,x
′)− (x↔ x′) .

(4.22)

These relations can be relatively easily proven by considering the constraints smeared by contraction with
the test functions, 𝐻𝑖(x) → 𝐻𝜉 ≡

∫︀
𝑑3𝑥𝐻𝑖(x)𝜉𝑖(x), 𝐻⊥(x) → 𝐻𝜙 ≡

∫︀
𝑑3𝑥𝐻⊥(x)𝜙(x), and calculating their

Poisson brackets. Again, the constraint algebra very compactly reads in terms of DeWitt notations

{𝐻𝜇, 𝐻𝜈} = 𝒰𝜆
𝜇𝜈𝐻𝜆, (4.23)

where the structure functions (note that 𝒰 𝑖z
⊥x ⊥x′ depends on 𝛾𝑖𝑗) can be read o� the relations

𝒰⊥x𝜇𝜈 ℱ
𝜇
1 ℱ𝜈

2 = −ℱ 𝑖
1(x) 𝜕𝑖ℱ⊥2 (x) + ℱ 𝑖

2(x) 𝜕𝑖ℱ⊥1 (x), (4.24)

𝒰 𝑖x
𝜇𝜈ℱ

𝜇
1 ℱ𝜈

2 = −ℱ 𝑗
1 (x) 𝜕𝑗ℱ 𝑖

2(x) + ℱ 𝑗
2 (x) 𝜕𝑗ℱ 𝑖

1(x) + ℱ⊥1 (x) D 𝑖ℱ⊥2 (x)−ℱ⊥2 (x) D 𝑖ℱ⊥1 (x) (4.25)

In complete analogy with the Yang-Mills theory let us de�ne gauge transformations of the canonical action,
𝛿ℱ𝑆ADM[ 𝛾𝑖𝑗 , 𝜋

𝑖𝑗 , 𝑁,𝑁 𝑖 ] = 0,

𝛿ℱ
[︂
𝛾𝑖𝑗
𝜋𝑖𝑗

]︂
=

{︂[︂
𝛾𝑖𝑗
𝜋𝑖𝑗

]︂
, 𝐻𝜇

}︂
ℱ𝜇, 𝛿ℱ𝑁𝜇 = ℱ̇𝜇 − 𝒰𝜇

𝛼𝛽𝑁
𝛼ℱ𝛽 , (4.26)

and show that these transformations are compatible with di�eomorphism invariance of the Lagrangian action
∆𝑓𝑆G[ 𝑔𝛼𝛽 ] = 0, ∆𝑓𝑔𝛼𝛽 = −∇𝛼𝑓𝛽−∇𝛽𝑓𝛼, under a proper relation between the gauge transformation parameters
ℱ and 𝑓 . We have 𝛿ℱ𝛾𝑖𝑗 = 2𝐺𝑖𝑗,𝑘𝑙𝜋

𝑘𝑙ℱ⊥ + 2D(𝑖 ℱ𝑗), so that at the Lagrangian values of the momenta

𝛿ℱ𝛾𝑖𝑗

⃒⃒⃒
𝜋𝑖𝑗=−𝐺𝑖𝑗,𝑘𝑙𝐾𝑘𝑙

= 2D(𝑖 ℱ𝑗) − 2𝐾𝑖𝑗ℱ⊥. (4.27)

On the other hand, the di�eomorphism transformation of the spatial metric with �xed embedding functions
𝑒𝛼(x, 𝑡) (note that these functions are not �eld variables and play inert role under spacetime di�eomorphisms)
reads

∆𝑓𝛾𝑖𝑗 = 𝑒𝛼𝑖 𝑒
𝛽
𝑗 ∆𝑓𝑔𝛼𝛽 = −2∇(𝑖𝑓𝑗) = −2𝑒𝛼(𝑖∇𝛼

(︀
𝑒𝛽𝑗)𝑓𝛽

)︀
+ 2
(︀
∇(𝑖𝑒

𝛽
𝑗)

)︀
𝑓𝛽

= −2𝑒𝛼(𝑖𝜕𝛼𝑓𝑗) + 2𝛾𝑙𝑖𝑗𝑓𝑙 + 2𝐾𝑖𝑗𝑓
⊥ = −2D(𝑖 𝑓𝑗) + 2𝐾𝑖𝑗𝑓

⊥,
(4.28)

where we �rst used the Leibnitz rule for covariant derivatives and then the Gauss-Weingarten equation (3.19)

for ∇(𝑖𝑒
𝛽
𝑗). Therefore,

𝛿ℱ𝛾𝑖𝑗 = ∆𝑓𝛾𝑖𝑗 , (4.29)
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provided ℱ⊥ = −𝑓⊥ and ℱ 𝑖 = −𝑓 𝑖. Thus ℱ⊥ and ℱ 𝑖 up to a sign are just normal and tangential projections
of the di�eomorphism vector �eld 𝑓𝜇 onto a normal basis,

𝑓𝜇 = −𝑛𝜇ℱ⊥ − 𝑒𝜇𝑖 ℱ
𝑖. (4.30)

In the same way for the di�eomorphism of the lapse function we have a chain of relations

∆𝑓𝑁 = −∆𝑓𝑛𝛼
𝜕𝑒𝛼

𝜕𝑡
= ∇⊥𝑓⊥𝑁 = 𝑁𝑛𝜇𝑛𝜈∇𝜇𝑓𝜈 = 𝑁𝑛𝜇∇𝜇 (𝑛𝜈𝑓𝜈)−𝑁(𝑛𝜇∇𝜇𝑛

𝜈)𝑓𝜈

= − (�̇�𝜇𝜕𝜇 −𝑁𝑎𝜕𝑎) 𝑓⊥ − 𝑓𝑎𝜕𝑎𝑁 = −𝑓⊥ +𝑁𝑎𝜕𝑎𝑓⊥ − 𝑓𝑎𝜕𝑎𝑁 = ℱ̇⊥ − 𝒰⊥𝜇𝜈𝑁𝜇ℱ𝜈 = 𝛿ℱ𝑁.

(4.31)

Here, from the solution of the Problem 3.2, it was used that 𝑛𝜇∇𝜇𝑛
𝜈 = −𝜖𝑒𝜈𝑎D𝑎𝑁/𝑁 , the di�eomorphism of

the normal vector follows from the solution of the Problem 4.3 below and the last two equalities are based on
the relation (4.24). Similar proof holds for the shift functions ∆𝑓𝑁 𝑖 = 𝛿ℱ𝑁 𝑖.

Problem 4.3. Derive the variation of the normal vector 𝛿𝑔𝑛𝛼 under an arbitrary infinitesimal variation of the metric 𝛿𝑔𝜇𝜈 and
show that the diffeomorphism transformation of this vector equals Δ𝑓𝑛𝛼 = −𝜖𝑛𝛼𝑛𝜇𝑛𝜈∇𝜇𝑓𝜈 .

Lecture 5. Generic systems subject to first class constraints

� Gauge invariance in generic system subject to �rst class constraints

� Canonical gauge �xing procedure

� Reduction to the physical sector

� Integration measure on the physical phase space

� Physical sector in time-dependent gauges: relativistic particle and linearized GR

Examples of canonical formalism for gauge invariant models considered above � those of relativitic particle, YM
theory and GR � can be universally described within condensed DeWitt notations along the following lines.

5.1 Gauge invariance in generic system subject to first class constraints

Consider a general dynamical system of variables (𝑞𝑖, 𝜆𝜇) labelled by condensed indices 𝑖 and 𝜇 have the formal
range

𝑖 = 1, 2, ...𝑛, 𝑛 = range 𝑖, (5.1)

𝜇 = 1, 2, ...𝑚, 𝑚 = range𝜇, (5.2)

with some 𝑛 > 𝑚 which in local �eld models can be formally in�nite. Let the Lagrangian of the model
𝐿 = 𝐿(𝑞, 𝑞, 𝜆) be independent of the time derivatives of the variables 𝜆𝜇 and such that it gives rise to the
canonical formalism of the theory with the action

𝑆[ 𝑞, 𝑝, 𝜆 ] =

∫︁ 𝑡+

𝑡−

𝑑𝑡
(︀
𝑝𝑖𝑞

𝑖 −𝐻0(𝑞, 𝑝)− 𝜆𝜇𝑇𝜇(𝑞, 𝑝)
)︀
, (5.3)

where 𝐻0(𝑞, 𝑝) is the Hamiltonian, 𝜆𝜇 play the role of Lagrange multipliers of constraints 𝑇𝜇(𝑞, 𝑝) which satisfy
the commutation relations

{𝑇𝜇, 𝑇𝜈} = 𝒰𝜆
𝜇𝜈𝑇𝜆, {𝐻0, 𝑇𝜇} = 𝒱𝜈

𝜇𝑇𝜈 (5.4)

with some coe�cient functions 𝒰𝜆
𝜇𝜈 and 𝒱𝜈

𝜇 on phase space of the model. Within the terminology of Dirac
constrained systems the constraints having this property are called first class constraints. Let us show now that
this canonical action is invariant,

𝛿ℱ𝑆[ 𝑞, 𝑝, 𝜆 ] = 0, (5.5)
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under the local gauge transformation with the parameters ℱ𝜈 = ℱ𝜈(𝑡) arbitrarily depending on time and
vanishing at 𝑡±,

𝛿ℱ𝑞𝑖 =
{︀
𝑞𝑖, 𝑇𝜇

}︀
ℱ𝜇, 𝛿ℱ𝑝𝑖 = {𝑝𝑖, 𝑇𝜇}ℱ𝜇

𝛿ℱ𝜆𝜇 = ℱ̇𝜇 − 𝒰𝜇
𝜈𝜆𝜆

𝜈ℱ𝜆 − 𝒱𝜇
𝜈 ℱ𝜈 .

(5.6)

As in examples above the �rst two transformations are canonical with the generating function 𝐹 = 𝑇𝜇ℱ𝜇. For

time independent ℱ𝜇, ℱ̇𝜇 = 0, these transformations shift the symplectic term by the total derivative term, as
it should be for a canonical transformation

𝛿ℱ (𝑝𝑑𝑞) = {𝑝, 𝐹} 𝑑𝑞 + 𝑝𝑑 {𝑞, 𝐹} = −𝜕𝐹
𝜕𝑞

𝑑𝑞 + 𝑝𝑑

(︂
𝜕𝐹

𝜕𝑝

)︂
= −𝜕𝐹

𝜕𝑞
𝑑𝑞 − 𝜕𝐹

𝜕𝑝
𝑑𝑝+ 𝑑

(︂
𝑝
𝜕𝐹

𝜕𝑝

)︂
= 𝑑

(︂
𝑝
𝜕𝐹

𝜕𝑝
− 𝐹

)︂ (5.7)

For time dependent ℱ𝜇(𝑡) this transformation however brings into the integrand extra term obtained from
−�̇�𝜇ℱ𝜇 = −𝑑(𝑇𝜇ℱ𝜇)/𝑑𝑡+ 𝑇𝜇ℱ̇𝜇. We have

𝛿ℱ
∫︁ 𝑡+

𝑡−

𝑑𝑡
(︀
𝑝𝑖𝑞

𝑖 −𝐻0 − 𝜆𝜇𝑇𝜇
)︀

=

∫︁ 𝑡+

𝑡−

𝑑𝑡

[︂
−𝜕𝑇𝜇
𝜕𝑞𝑖
ℱ𝜇𝑞𝑖 + 𝑝𝑖

𝑑

𝑑𝑡

(︂
𝜕𝑇𝜇
𝜕𝑝𝑖
ℱ𝜇

)︂
− {𝐻0, 𝑇𝜇}ℱ𝑎 − (𝛿ℱ𝜆𝜇)𝑇𝜇 − 𝜆𝜇{𝑇𝜇, 𝑇𝜈}ℱ𝜈

]︂
= 𝑝

𝜕𝑇𝜇
𝜕𝑝
ℱ𝜇
⃒⃒⃒ 𝑡+
𝑡−

+

∫︁ 𝑡+

𝑡−

𝑑𝑡
[︁
−�̇�𝜇 ℱ𝜇 − 𝒱𝜈

𝜇 𝑇𝜈ℱ𝜇 − (𝛿ℱ𝜆𝜇)𝑇𝜇 − 𝜆𝜇 𝒰𝜆
𝜇𝜈 𝑇𝜆 ℱ𝜈

]︁
=

(︂
𝑝𝑖
𝜕𝑇𝜇
𝜕𝑝𝑖
− 𝑇𝜇

)︂
ℱ𝜇
⃒⃒⃒ 𝑡+
𝑡−

+

∫︁ 𝑡+

𝑡−

𝑑𝑡 𝑇𝜇

(︁
ℱ̇𝜇 − 𝑉 𝜇

𝜈 ℱ𝜈 − 𝒰𝜇
𝜈𝜆𝜆

𝜈ℱ𝜆 − 𝛿ℱ𝜆𝜇
)︁

= 0,

(5.8)

where we took into account that ℱ𝜇(𝑡±) = 0. This derivation explains the origin of the structure constants (or
functions) term in the transformation (2.13) for YM theory and GR. The second set of structure functions 𝒱𝜇

𝜈

in the Poisson brackets commutator of constraints with the Hamiltonian 𝐻0 in all the examples above turns
out to be absent? but generically it is nonzero and provides extra contribution to 𝛿ℱ𝜆.

5.2 Canonical gauge fixing procedure

As in all models considered above the variational equations for the canonical action lead to Hamiltonian (evo-
lutionary) equations for phase space variables and the set of constraints imposed on the latter at any moment
of time

𝛿𝑆

𝛿

(︂
𝑞
𝑝

)︂ = 0 → 𝑑

𝑑𝑡

(︂
𝑞
𝑝

)︂
=

{︂(︂
𝑞
𝑝

)︂
, 𝐻0

}︂
+

{︂(︂
𝑞
𝑝

)︂
, 𝑇𝜇

}︂
𝜆𝜇, (5.9)

𝛿𝑆

𝛿𝜆𝜇
= 0 → 𝑇𝜇 = 0. (5.10)

The Lagrange multipliers 𝜆𝜇 stay completely arbitrary, which obviously corresponds to the fact that the action
is invariant under gauge transformations with the parameters ℱ𝜇 whose number (the range of index 𝜇) coincides
with the number of 𝜆𝜇.

The consistency of the constraints 𝑇𝜇 = 0 with canonical equations for (𝑞𝑖, 𝑝𝑖) is fully satis�ed because their
conservation in time is enforced due to the Poisson bracket algebra of constraints

𝑑𝑇𝜇
𝑑𝑡

⃒⃒⃒⃒
𝑇=0

= {𝑇𝜇, 𝐻0}+ {𝑇𝜇, 𝑇𝜈}𝜆𝜈 =
(︀
−𝒱𝜆

𝜇 + 𝒰𝜆
𝜇𝜈𝜆

𝜈
)︀
𝑇𝜆

⃒⃒⃒⃒
𝑇=0

= 0. (5.11)

Thus it is enough to enforce the constraints at the initial moment of time and they will hold all the time.
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Figure 5: Selection of the representative of the class of physically equivalent con�gurations as a choice of the
single crossing point of the orbit of the gauge group and the surface of gauge conditions.

Arbitrariness of the solution of equations of motion parameterized by 𝑚 generic functions of time ℱ𝜇(𝑡)
implies that the physical state of the system is characterized not by a concrete history in the con�guration
space of

(︀
𝑞𝑖(𝑡), 𝑝𝑖(𝑡), 𝜆

𝜇(𝑡)
)︀
but by the class of equivalence of histories joined by the transformations (5.6). To

label di�erent physical states we, therefore, have to select a single representative of every equivalence class, so
that the full set of these representatives will form a physical sector of the theory. The procedure of selecting this
representative is shown on Fig.5. The transformations 𝛿ℱ (𝑞, 𝑝, 𝜆) form the 𝑚-dimensional surface in (2𝑛+𝑚)-
dimensional space of (𝑞, 𝑝, 𝜆) � the orbit of the gauge group. The physical representative can be chosen as a single
crossing point of this orbit with the transversal surface of the complementary dimensionality (2𝑛+𝑚)−𝑚 = 2𝑛.
This transversal surface can be chosen by imposing 𝑚 gauge conditions 𝜒𝜇 (𝑞, 𝑝, 𝜆) = 0 on (2𝑛 + 𝑚) variables
of the full con�guration space, and the requirement that this crossing point is at least locally unique is that
the transformation 𝛿ℱ (𝑞, 𝑝, 𝜆) with any nonzero ℱ𝜇 will shift the point from the surface of gauge conditions
𝜒𝜇((𝑞, 𝑝, 𝜆) = 0. This admissibility condition for the choice of gauge can be written down as the requirement
that the equation 𝛿ℱ𝜒𝜇 (𝑞, 𝑝, 𝜆) = 0 holds if and only if all ℱ𝜇 are identically zero, or the requirement that the
following equation has only identically vanishing solution for ℱ𝜇(𝑡)

𝛿ℱ𝜒𝜇 (𝑞, 𝑝,𝑁) = {𝜒𝜇, 𝑇𝜈}ℱ𝜈 +
𝜕𝜒𝜇

𝜕𝜆𝜈

(︂
𝑑

𝑑𝑡
ℱ𝜈 + ...

)︂
= 0 ⇔ ℱ𝜇 = 0. (5.12)

For gauge functions 𝜒𝜇 (𝑞, 𝑝, 𝜆) depending on Lagrange multipliers this is impossible because the system of �rst
order di�erential equations in time derivatives for generic initial conditions always has a nontrivial solution.
This means that gauge conditions which uniquely select the physical sector of the theory should be imposed
only on phase space variables, 𝜒𝜇 (𝑞, 𝑝) = 0, and their admissibility requirement reduces to the invertibility of
a special ultralocal in time matrix 𝐽𝜇

𝜈 ,
𝐽𝜇
𝜈 = {𝜒𝜇, 𝑇𝜈} . (5.13)

Indeed,
𝜒𝜇 = 0 ⇒ 𝛿ℱ𝜒𝜇 = {𝜒𝜇, 𝑇𝜈}ℱ𝜈 = 0 ⇔ ℱ𝜈 = 0 ⇒ det {𝜒𝜇, 𝑇𝜈} ≠ 0. (5.14)

Such gauge �xing procedure simultaneously �xes the choice of Lagrange multipliers. This choice uniquely
follows from the requirement of gauge conditions conservation in time

𝑑

𝑑𝑡
𝜒𝜇 = {𝜒𝜇, 𝐻0}+ {𝜒𝜇, 𝑇𝜈}𝜆𝜈 = 0, (5.15)

and the invertibility of (5.13),
𝜆𝜈 = −𝐽−1 𝜈

𝜇 {𝜒𝜇, 𝐻0} . (5.16)

With these values of Lagrange multipliers equations of motion in phase space can be rewritten in terms of the
so-called Dirac bracket. To de�ne it introduce the full set of constraints arising after gauge �xing 𝐶𝑎 = (𝑇𝜇, 𝜒

𝜈).
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In contrast to 𝑇𝜇 they form the set of second class constraints, because their Poisson brackets on the subspace
of �rst class constraints 𝑇𝜇 = 0 form the matrix 𝐷𝑎𝑏 ≡ {𝐶𝑎, 𝐶𝑏} which is nondegenerate and invertible

𝐷𝑎𝑏

⃒⃒⃒
𝑇=0

=

[︂
{𝑇, 𝑇} {𝑇, 𝜒}
{𝜒, 𝑇} {𝜒, 𝜒}

]︂ ⃒⃒⃒⃒
𝑇=0

=

[︂
0 −𝐽
𝐽 {𝜒, 𝜒}

]︂
. (5.17)

Gauge conditions on equal footing with the �rst class constraints can be included into the canonical action with
the full set of Lagrange multipliers 𝛬𝑎 = (𝜆𝜇, 𝜋𝜈), 𝑆[ 𝑞, 𝑝, 𝛬 ] =

∫︀
𝑑𝑡
(︀
𝑝𝑞 −𝐻0 − 𝛬𝑎𝐶𝑎

)︀
. Similarly to (5.16) the

constraints conservation leads to 𝛬𝑎 = −𝐷−1 𝑎𝑏{𝐶𝑏, 𝐻0}, and the canonical equations of motion take the form

𝑑

𝑑𝑡

(︂
𝑞
𝑝

)︂
=

{︂(︂
𝑞
𝑝

)︂
, 𝐻0

}︂
D

, (5.18)

where the Dirac bracket on phase space is de�ned as

{𝐴,𝐵}D = {𝐴,𝐵} − {𝐴,𝐶𝑎}𝐷−1 𝑎𝑏{𝐶𝑏, 𝐵}. (5.19)

Problem 5.1. Prove that for any observable 𝜑 on phase space

�̇� = {𝜑,𝐻0}𝐷
⃒⃒
𝐶𝑎=0

= {𝜑,𝐻0} − {𝜑, 𝑇𝜇} 𝐽−1𝜇
𝜈{𝜒𝜈 , 𝐻0}.

5.3 Reduction to the physical sector

Thus on equations of motion after imposing canonical gauge conditions Lagrange multipliers 𝜆 become functions
of (𝑞, 𝑝). Do 𝑞 and 𝑝 remain dynamically independent? The answer is of course �no�, because these 2𝑛 variables
are subject to the full set of 2𝑚 �rst class 𝑇𝜇(𝑞, 𝑝) = 0 and second class 𝜒𝜇(𝑞, 𝑝) = 0 constraints. Therefore, there
is only 2(𝑛−𝑚) independent degrees of freedom which can somehow be chosen to parameterize the phase space
of the physical sector of the theory. Let us denote them as the coordinates 𝜉𝐴 and the canonically conjugated
momenta 𝜋𝐴, labelled by a condensed index 𝐴,

𝐴 = 1, 2, ...𝑛−𝑚, (5.20)

with the range (𝑛−𝑚) � the number of physical degrees of freedom.
Constructively, these variables can be most easily built within the class of coordinate gauge conditions,

𝜒𝜇(𝑞) = 0, (5.21)

imposed only on coordinates 𝑞𝑖 of the full phase space. These 𝑚 gauge conditions determine the (𝑛 − 𝑚)-
dimensional subspace𝛴 in the 𝑛-dimensional coordinate space. The embedding of this subspace can be described
by embedding functions of the internal coordinates on 𝛴,

𝛴 : 𝑞𝑖 = 𝑒𝑖(𝜉𝐴), (5.22)

which identically satisfy the equation
𝜒𝜇
(︀
𝑒𝑖(𝜉𝐴)

)︀
= 0. (5.23)

The geometry of embedding the physical subspace 𝛴 into the 𝑞-space is very similar to the geometry of (3+1)-
foliation of spacetime considered above, except that 𝛴 is not a hypersurface and has a nontrivial codimension,

codim𝛴 = 𝑚, dim𝛴 = 𝑛−𝑚. (5.24)

Correspondingly it has not one but𝑚 covariant normal vectors given by the gradient of the constraints functions,

𝜒𝜇
𝑖 =

𝜕𝜒𝜇

𝜕𝑞𝑖
, (5.25)
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and labelled by the index 𝜇. Di�erentiation of the identity (5.23) con�rms that they are indeed normal to the
vectors 𝑒𝑖𝐴 tangential to 𝛴,

𝑒𝑖𝐴 ≡
𝜕𝑒𝑖(𝜉)

𝜕𝜉𝐴
, 𝑒𝑖𝐴𝜒

𝜇
𝑖 = 0. (5.26)

Thus, the set (𝜒𝜇
𝑖 , 𝑒

𝑖
𝑎) forms the complete basis of covariant normal and contravariant tangential vectors.

To proceed further one should introduce the metric 𝐺𝑖𝑘 on the 𝑞-manifold with 𝐺𝑖𝑘 = (𝐺𝑖𝑘)−1.1 Then one
can de�ne the induced metric 𝐺𝐴𝐵 on 𝛴 and get the possibility of raising and lowering the indices 𝑖 and 𝐴,

𝐺𝐴𝐵 ≡ 𝐺𝑖𝑘𝑒
𝑖
𝐴𝑒

𝑘
𝐵 , 𝐺𝐴𝐵 = (𝐺𝐴𝐵)−1, 𝑒𝐴𝑖 = 𝐺𝐴𝐵𝑒𝑘𝐵𝐺𝑘𝑖, 𝜒𝜇𝑖 = 𝐺𝑖𝑘𝜒𝜇

𝑘 . (5.27)

Similarly one introduces the analogue of the contravariant metric in gauge directions orthogonal to 𝛴,

𝐺𝜇𝜈 ≡ 𝜒𝜇
𝑖 𝐺

𝑖𝑘𝜒𝜈
𝑘, 𝐺𝜇𝜈 = (𝐺𝜇𝜈)−1, (5.28)

which allows one also to raise and lower the gauge indices. All this gives the possibility to expand every vector
or covector in the normal basis of (𝜒𝜇

𝑖 , 𝑒
𝑖
𝑎), 𝑣𝑖 = 𝑣𝐴𝑒

𝐴
𝑖 + 𝑣𝜇𝜒

𝜇
𝑖 , with the projections

𝑣𝐴 = 𝑒𝑖𝐴𝑣𝑖, 𝑣𝜇 = 𝐺𝜇𝜈𝜒
𝜈
𝑖𝐺

𝑖𝑘𝑣𝑘. (5.29)

The symplectic term of the canonical action reduced to the physical subspace takes the form∫︁
𝑑𝑡 𝑝𝑖𝑞

𝑖
⃒⃒⃒
𝜒𝜇=0

=

∫︁
𝑑𝑡 𝑝𝑖

𝜕𝑒𝑖(𝜉)

𝜕𝜉𝐴
𝜉𝐴, (5.30)

which allows one to identify the tangential projections of the momentum covector 𝑝𝑖 with the physical momenta
conjugated to 𝜉𝐴,

𝜋𝐴 = 𝑒𝑖𝐴𝑝𝑖. (5.31)

In order to �nd the normal projections of 𝑝𝑖 one should substitute the decomposition (5.29) for the momentum
into the �rst class constraints

𝑇𝜇
(︀
𝑞𝑖, 𝜋𝐴𝑒

𝑖
𝐴 + 𝑝𝜈𝜒

𝜈
𝑖

)︀ ⃒⃒⃒
𝑞𝑖=𝑒𝑖(𝜉)

= 0. (5.32)

The necessary condition for local solvability of this equation with respect to 𝑝𝜈 is guaranteed by the nondegen-
eracy of the matrix (5.13) because

𝜕

𝜕𝑝𝜈
𝑇𝜇
(︀
𝑞𝑖, 𝜋𝐴𝑒

𝐴
𝑖 + 𝑝𝜈𝜒

𝜈
𝑖

)︀
=
𝜕𝑇𝜇
𝜕𝑝𝑖

𝜒𝜈
𝑖 = {𝜒𝜈 , 𝑇𝜇}, (5.33)

so that the solution gives a locally unique 𝑝𝜇 = 𝑃𝜇(𝜉, 𝜋) as a function of physical canonical variables, and the
full momentum 𝑝𝑖 in the physical sector of the theory becomes 𝑝𝑖(𝜉, 𝜋) = 𝜋𝐴𝑒

𝐴
𝑖 + 𝑃𝜇(𝜉, 𝜋)𝜒𝜇

𝑖 . Substituting this
together with (5.22) into the original canonical action (5.3) we obtain the canonical action in this sector as a
functional of physical phase space variables

𝑆phys[ 𝜉, 𝜋 ] = 𝑆[ 𝑞, 𝑝, 𝜆 ]
⃒⃒⃒
𝑇𝜇=0, 𝜒𝜇=0

=

𝑡+∫︁
𝑡−

𝑑𝑡
(︁
𝜋𝐴𝜉

𝐴 −𝐻0

(︀
𝑒(𝜉), 𝑝(𝜉, 𝜋)

)︀)︁
. (5.34)

5.4 Integration measure on the physical phase space

Below we will need to make the change of functional integration variables from the path integral over physical
phase space to the path integral over the original phase space of (𝑞, 𝑝). Let us �rst do this for the coordinates
𝜉𝐴 and 𝑞𝑖. Introduce in the vicinity of 𝛴 (that is at 𝜒𝜇(𝑞) = 0) the variables 𝜃𝜇 = 𝜒𝜇(𝑞) which obviously equal

1Such a metric always exists in concrete models. In GR this is just the DeWitt metric on the space of 3-metrics 𝛾𝑖𝑗 , 𝐺𝑖𝑘 ↦→
𝐺𝑖𝑗,𝑘𝑙(x)𝛿(x,y), 𝑖 ↦→ (𝑖𝑗,x), 𝑘 ↦→ (𝑘𝑙,y), whereas in YM theory with 𝑞𝑖 ↦→ 𝐴𝑎

𝑖 (x), this is just the Killing metric of the generating
YM group, 𝐺𝑖𝑘 ↦→ 𝛾𝑎𝑏𝛿

𝑖𝑗(x)𝛿(x,y), 𝑖 ↦→ (𝑖𝑎,x), 𝑘 ↦→ (𝑗𝑏,y), etc.
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zero on 𝛴, 𝜃𝜇 |𝛴=0. Then one can write the chain of relations for the measures of integration over 𝛴 and over
full 𝑞-space, 𝑑(𝑛−𝑚)𝜉 ≡

∏︀𝑛−𝑚
𝐴=1 𝑑𝜉

𝐴 and 𝑑(𝑛)𝑞 ≡
∏︀𝑛

𝑖=1 𝑑𝑞
𝑖

𝑑(𝑛−𝑚)𝜉 = 𝑑(𝑛−𝑚)𝜉 𝑑(𝑚)𝜃𝛿(𝜃) = 𝑑(𝑛)𝑞 𝛿(𝜒)

⃒⃒⃒⃒
𝜕(𝜉, 𝜃)

𝜕𝑞

⃒⃒⃒⃒
, (5.35)

where 𝛿(𝜃) ≡
∏︀𝑚

𝜇=1 𝛿(𝜃
𝜇) and, obviously, 𝛿(𝜒) ≡

∏︀𝑚
𝜇=1 𝛿(𝜒

𝜇(𝑞)). To calculate the Jacobian of transition

(𝜉𝐴, 𝜃𝜇)→ 𝑞𝑖 = 𝑒𝑖(𝜉𝐴, 𝜃𝜇) we use the identities

𝑒𝑖(𝜉, 0) = 𝑒𝑖(𝜉), 𝜒𝜇
(︀
𝑒𝑖(𝜉, 𝜃)

)︀
≡ 𝜃𝜇, (5.36)

where 𝑒𝑖(𝜉) are the embedding functions (5.22). As a corollary of the second identity we have the relation

𝜒𝜇
𝑖

𝜕𝑒𝑖

𝜕𝜃𝜈
= 𝛿𝜇𝜈 , (5.37)

so that the decomposition of 𝜕𝑒𝑖/𝜕𝜃𝜈 in the normal basis takes the form

𝜕𝑒𝑖

𝜕𝜃𝜈
= 𝜒𝑖

𝜈 + 𝑒𝑖𝐴(...)𝐴𝜈 , (5.38)

with some tangential projection (...)𝐴𝜈 . Then the Jacobian of transformation equals⃒⃒⃒⃒
𝜕(𝜉, 𝜃)

𝜕𝑞

⃒⃒⃒⃒−1
= det

[︀
𝑒𝑖𝐴 𝜒𝑖

𝜈 + 𝑒𝑖𝐴(...)𝐴𝜈
]︀

= det
[︀
𝑒𝑖𝐴 𝜒𝑖

𝜈

]︀
, (5.39)

where the tangential projection (...)𝐴𝜈 does not contribute because addition of a column to the matrix does not
change the value of its determinant. To calculate the last determinant consider the matrix equation which holds
in view of the orthogonality property 𝑒𝑖𝐴𝜒

𝜇
𝑖 = 0,

[︀
𝑒𝑖𝐴 𝜒𝑖

𝜇

]︀
𝐺𝑖𝑘

[︂
𝑒𝑘𝐵
𝜒𝑘
𝜈

]︂
=

[︂
𝐺𝐴𝐵 0

0 𝐺𝜇𝜈

]︂
(5.40)

Taking the determinant of both sides of this relation we get

[︀
𝑒𝑖𝐴 𝜒𝑖

𝜇

]︀
=

1

ℳ
, ℳ≡

(︂
det𝐺𝑖𝑘

det𝐺𝐴𝐵 det𝐺𝜇𝜈

)︂1/2

, (5.41)

so that from (5.35) the relation between the integration measures on the 𝑞-space and 𝛴 reads

𝑑(𝑛−𝑚)𝜉 = 𝑑(𝑛)𝑞 𝛿(𝜒)ℳ. (5.42)

Note that the metric 𝐺𝑖𝑘 on the 𝑞-space plays auxiliary role, so that the measure factor should be 𝐺𝑖𝑘-
independent, which can be shown by solving the next problem:

Problem 5.2. Prove 𝐺𝑖𝑘-metric independence of the integration measureℳ = (det𝐺𝑖𝑘/ det𝐺𝐴𝐵 det𝐺𝜇𝜈)1/2

𝜕ℳ
𝜕𝐺𝑖𝑘

= 0

and the application of this measure in the case of (3+1)-foliation of spacetime, 𝑁
√
𝛾 𝑑3𝑥 =

√
𝑔 𝑑4𝑥 𝛿(𝑥0 − 𝑡).

The transformation of the integration measure factor on the space of momenta gives in view of 𝑝𝑖 = 𝜋𝐴𝑒
𝐴
𝑖 +

𝑝𝜈𝜒
𝜈
𝑖

𝑑(𝑛)𝑝 =

⃒⃒⃒⃒
𝜕𝑝𝑖

𝜕(𝜋𝐴, 𝑝𝜇)

⃒⃒⃒⃒
𝑑(𝑚)𝑝 𝑑(𝑛−𝑚)𝜋 = det

[︀
𝑒𝐴𝑖 𝜒𝜇

𝑖

]︀
𝑑(𝑚)𝑝 𝑑(𝑛−𝑚)𝜋 =ℳ 𝑑(𝑚)𝑝 𝑑(𝑛−𝑚)𝜋, (5.43)
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because the matrix
[︀
𝑒𝐴𝑖 𝜒𝜇

𝑖

]︀
is obviously inverse to

[︀
𝑒𝑖𝐴 𝜒𝑖

𝜇

]︀
. Therefore,

𝑑(𝑛−𝑚)𝜋 = 𝑑(𝑛−𝑚)𝜋

𝑚∏︁
𝜇=1

𝑑𝑝𝜇 𝛿
(︀
𝑝𝜇 − 𝑃𝜇(𝜉, 𝜋)

)︀
= 𝑑(𝑛)𝑝

1

ℳ
det

𝜕𝑇𝜇(𝑞, 𝑝)

𝜕𝑝𝜈

𝑚∏︁
𝜇=1

𝛿(𝑇𝜇) = 𝑑(𝑛)𝑝
1

ℳ
𝛿(𝑇 ) det 𝐽𝜇

𝜈 , (5.44)

so that �nally we obtain the fundamental relation between the Liouville integration measures on the original
full and physical (reduced) phase space in the set of canonical gauge conditions 𝜒 = 𝜒𝜇(𝑞, 𝑝)

𝑑(𝑛−𝑚)𝜉 𝑑(𝑛−𝑚)𝜋 = 𝑑(𝑛)𝑞 𝑑(𝑛)𝑝 𝛿(𝑇 ) 𝛿(𝜒) det{𝜒𝜇, 𝑇𝜈}. (5.45)

The integration measure is restricted to the subspace of the full set of �rst-class constraints and gauge �xing
conditions and contains a nontrivial factor � the Faddeev-Popov determinant which will play important role in
the canonical quantization of gauge theories.

5.5 Physical sector in time-dependent gauges: relativistic particle and linearized
GR

If we apply the above reduction algorithm to the relativistic particle model or general relativity we imme-
diately run into trouble. Since the Hamiltonian 𝐻0 is identically vanishing, in any canonical gauge of the above
type the Lagrangian multipliers 𝜆𝜇 ∼ {𝜒,𝐻0} = 0. This is obviously contradictory both in relativistic particle
case with 𝜆𝜇 = 𝑁 and the GR case with 𝜆𝜇 =

(︀
𝑁⊥(x), 𝑁 𝑖(x)

)︀
, because this is geometrically absurd. In GR,

in particular, this would mean that the �velociity� 𝑁𝜇 with which the spacial slice is moving in spacetime is
vanishing � spacetime (3+1)-foliation degenerates to just one �xed space hypersurface which no longer spans
the whole of spacetime.

To circumvent this di�culty we generalize the above reduction procedure to the class of canonical gauges
explicitly depending on time 𝑡,

𝜒𝜇(𝑞) = 0 ⇒ 𝜒𝜇(𝑞, 𝑡) = 0 ⇒ 𝑞𝑖 = 𝑒𝑖(𝜉𝐴, 𝑡), (5.46)

so that the physical space embedding functions also become explicitly 𝑡-dependent. Correspondingly the con-
dition of conservation of the gauge conditions in time becomes

𝑑

𝑑𝑡
𝜒𝜇(𝑞, 𝑡) = {𝜒𝜇, 𝐻0}+ {𝜒𝜇, 𝑇𝜈}𝜆𝜈 +

𝜕𝜒𝜇

𝜕𝑡
= 0 (5.47)

and results in nonvanishing Lagrange multipliers even for zero Hamiltonian 𝐻0 = 0,

𝜆𝜇 = −𝐽−1𝜇
𝜈{𝜒𝜇, 𝐻0} − 𝐽−1𝜇

𝜈

𝜕𝜒𝜈

𝜕𝑡
̸= 0. (5.48)

The reduction of the canonical action to the physical sector for 𝐻0 = 0 goes obviously as follows

𝑆[ 𝑞, 𝑝, 𝜆 ]
⃒⃒
𝑇=𝜒=0

=

∫︁
𝑑𝑡 𝑝𝑖𝑞

𝑖
⃒⃒
𝑇=𝜒=0

=

∫︁
𝑑𝑡

(︂
𝜋𝐴𝜉

𝐴 + 𝑝𝑖
𝜕𝑒𝑖(𝜉, 𝑡)

𝜕𝑡

)︂
=

∫︁
𝑑𝑡
(︁
𝜋𝐴𝜉

𝐴 −𝐻phys(𝜉, 𝜋, 𝑡)
)︁
,(5.49)

the physical Hamiltonian being generated by explicit time derivative of the embedding functions.
For the relativistic particle in a special gauge we have

𝑞𝑖 = 𝑥𝛼, 𝑝𝑖 = 𝑝𝛼, 𝛼 = 0, 1, ...3; 𝑇𝜇 = 𝑇 (𝑝) = 𝑝2 +𝑚2, (5.50)

𝜒(𝑥𝛼, 𝑡) = 𝑥0 − 𝑡, 𝐽 = {𝜒, 𝑇} = −2𝑝0, (5.51)

𝑒𝑖(𝜉, 𝑡) : 𝑥0 = 𝑡, 𝑥𝑖 = 𝜉𝑖 ≡ x, 𝑝𝑖 = 𝜋𝑖 ≡ p, (5.52)

along with the solution of the constraint 𝑝0 = ∓
√︀

p2 +𝑚2 and the resulting physical action

𝑆[x,p ] =

∫︁
𝑑𝑡
(︀
pẋ∓

√︀
p2 +𝑚2

)︀
. (5.53)
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Double-fold solution corresponds to the degeneration of the Faddeev-Popov operator at 𝑝0 = 0 where 𝐽 = 0.
This separates positive and negative energy solutions and indicates the presence of Gribov copies � several (two)
representatives of the equivalence class of phase space con�gurations in the used gauge. This problem is being
solved only within secondary quantization framework which corresponds to raising quantum mechanics to the
level of QFT.

In Einstein GR we have 𝑞𝑖 = 𝛾𝑖𝑗(x), 𝑝𝑖 = 𝜋𝑖𝑗(x), and condensed indices read

𝑖 ↦→ (𝑖𝑗,x), 𝑛 = 6×∞3, (5.54)

𝜇 ↦→ (𝜇,x), 𝑚 = 4×∞3 (5.55)

Number of physical degrees of freedom 𝑛−𝑚 = 2×∞3 � two degrees of freedom per spatial point � formal
dimensionality of the physical subspace 𝛴. This subspace is selected by some 𝑚 gauge conditions 𝜒𝜇(ℎ𝑖𝑗 , 𝑡) = 0.
For spatially closed cosmology with 𝐻0 = 0 the only way to make the model evolving in time with nonvanishing
lapse and shift functions is to have explicit time dependence in these gauge conditions functions. The physical
subspace 𝛴 = 𝛴(𝑡) evolves with changing time in the superspace of 3-metrics and induces the evolution of the
3-dimensional spacelike slice 𝜎(𝑡) in 4-dimensional spacetime,

𝛴(𝑡),
𝜕𝛴(𝑡)

𝜕𝑡
̸= 0 ⇒ 𝜎(𝑡),

𝜕𝜎(𝑡)

𝜕𝑡
̸= 0,

𝜕𝑒𝛼(x, 𝑡)

𝜕𝑡
= 𝑁𝛼(x, 𝑡) ∼ 𝑁𝜇 = −𝐽−1𝜇

𝜈

𝜕𝜒𝜈

𝜕𝑡
̸= 0. (5.56)

This is the case of quantum cosmology [see A.Barvinsky, Unitarity approach to quantum cosmology, Phys. Rept.
230 (1993) 237-367, DOI: 10.1016/0370-1573(93)9003], which goes beyond this lecture course. Instead of it,
consider the case of linearized GR in asymptotically-�at spacetime with 𝐻0 ̸= 0, where the mechanism of this
evolution is quite di�erent.

We have linearized GR on �at spacetime background with the metric and conjugated momenta perturbations

𝛾𝑖𝑗 = 𝛿𝑖𝑗 + ℎ𝑖𝑗 , 𝜋𝑖𝑗 = 𝑝𝑖𝑗 , 𝜀 ≡ (𝛾𝑖𝑗 , 𝑝
𝑖𝑗)≪ 1, (5.57)

𝑁 = 1 + 𝑛, 𝑁 𝑖 = 𝑛𝑖, (𝑛, 𝑛𝑖)≪ 1, (5.58)

and the linearized Hamiltonian and momenta constraints 𝐻𝜇 = 𝐻
(1)
𝜇 +𝑂(𝜀2):

𝐻
(1)
⊥ = ∆ℎ𝑖𝑖 − 𝜕𝑖𝜕𝑗ℎ𝑖𝑗 , 𝜕𝑖 ≡ 𝛿𝑖𝑗𝜕𝑗 (5.59)

𝐻
(1)
𝑖 = −2𝜕𝑗𝑝𝑖𝑗 . (5.60)

Problem 5.3. Derive these expressions

Problem with the coordinate gauge conditions 𝜒𝜇(ℎ𝑖𝑗): the Faddeev-Popov operator in the linearized theory is

degenerate, 𝐽
(1)𝜇
⊥ = {𝜒𝜇, 𝐻

(1)
⊥ } = 0 because 𝐻

(1)
⊥ is independent of canonical momenta. Solution � replacement

by phase-space gauge conditions depending on both momenta and coordinates of the GR phase space,

𝜒𝜇(ℎ𝑖𝑗)⇒ 𝜒𝜇(ℎ𝑖𝑗 , 𝑝
𝑖𝑗), (5.61)

𝜒⊥ = 𝛿𝑖𝑗𝑝
𝑖𝑗 , 𝜒𝑖 = 𝜕𝑗ℎ

𝑖𝑗 . (5.62)

The Faddeev-Popov operator is now invertible

𝐽𝜇
𝜈 = {𝜒𝜇, 𝐻(1)

𝜈 } =

[︂
−2∆ 0

0 ∆𝛿𝑖𝑗 + 𝜕𝑖𝜕𝑗

]︂
𝛿(x,y), 𝜇 ↦→ (⊥,x; 𝑖,x), 𝜈 ↦→ (⊥,y; 𝑗,y), (5.63)

where the entries of the block two-by-two matrix correspond to ⊥ and 𝑖 discrete indices within the condensed
indices 𝜇.

Constraints and gauge conditions 𝜒𝜇 = 0, 𝐻
(1)
𝜈 = 0 or ∆ℎ = 0, 𝜕𝑗𝑝𝑖𝑗 = 0 imply that metric and momentum

perturbations are transverse-traceless tensors (uniqueness of the solution ℎ = 0 of ∆ℎ = 0 is guaranteed by zero
boundary condition at spatial in�nity ℎ |∞ = 0,

ℎ𝑖𝑗 = ℎ𝑇𝑇
𝑖𝑗 , 𝑝𝑖𝑗 = 𝑝𝑖𝑗𝑇𝑇 . (5.64)
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Equations for perturbations of lapse and shift functions 𝐽𝜇
𝜈 𝑛

𝜈 = 0 (or ∆𝑛𝜇(x) = 0) also have zero solution
in view of the same Dirichlet boundary conditions 𝑛𝜈 |∞ = 0. Thus, boundary conditions 𝑁𝜇|∞ = 𝛿𝜇⊥ enforce
nonzero lapse function � the gravitational Lagrange multiplier � even despite time-independent gauge conditions.

The same guarantees nonzero physical Hamiltonian 𝐻0 in asymptotically-�at spacetime. As it was discussed
in previous lectures, the Gibbons-Hawking surface term in GR action, which plays the role of nonvanishing
Hamiltonian 𝐻0, should guarantee cancellation of the second-order derivatives normal to the timelike (side)
boundary in the 3-curvature scalatr (3)𝑅 = 𝜕𝑖𝜕𝑗ℎ𝑖𝑗 − ∆ℎ + ... of the total ADM Lagrangian of the theory.
Bearing in mind that in asymptotically �at spacetime 𝑁 ||x|→∞ → 1 one has by integrating by parts

𝐿𝐴𝐷𝑀 =

∫︁
𝑑3x
√
𝛾 𝑁((3)𝑅+ ...)−𝐻0 =

∫︁
𝑑3x (no second−order derivatives)

+

∫︁
|x|→∞

𝑑2𝜎𝑖(𝜕𝑗ℎ𝑖𝑗 − 𝜕𝑖ℎ)−𝐻0. (5.65)

This means that 𝐻0 should coincide with the surface term here, which is equivalent to the following expression,

𝐻0 =

∫︁
|x|→∞

𝑑2𝜎𝑖(𝜕𝑗ℎ𝑖𝑗 − 𝜕𝑖ℎ) =

∫︁
𝑑3x (𝜕𝑖𝜕𝑗ℎ𝑖𝑗 −∆ℎ) =

∫︁
𝑑3x

(︁
𝐻

(2)
⊥ +𝑂(𝜀2)

)︁
. (5.66)

In the last equality 𝐻
(2)
⊥ is the part of the the full Hamiltonian constraint quadratic in 𝜀 = (𝛾𝑖𝑗 , 𝑝

𝑖𝑗), and we
used the fact that

𝐻⊥ = 𝐻
(1)
⊥ +𝐻

(2)
⊥ +𝑂(𝜀2) = −𝜕𝑖𝜕𝑗ℎ𝑖𝑗 + ∆ℎ+𝐻

(2)
⊥ +𝑂(𝜀2) = 0.

Thus the total action of the linearized GR (quadratic in perturbations of two physical polarizations of the
gravitational �eld) is

𝑆(2)[ℎ𝑇𝑇 , 𝑝𝑇𝑇 ] =

∫︁
𝑑𝑡

∫︁
𝑑3x

[︀
𝑝𝑖𝑗𝑇𝑇 ℎ̇

𝑇𝑇
𝑖𝑗 −𝐻

(2)
⊥ (ℎ𝑇𝑇 , 𝑝𝑇𝑇 )

]︀
. (5.67)

Problem 5.4. Prove:
∫︀
𝑑3x𝐻

(2)
⊥ (ℎ𝑇𝑇 , 𝑝𝑇𝑇 ) =

∫︀
𝑑3x

[︀
(𝑝𝑖𝑗𝑇𝑇 )2 + (𝜕𝑘ℎ

𝑇𝑇
𝑖𝑗 )2

]︀
and derive Lagrangian equations of motion:

(−𝜕2𝑡 +Δ)ℎ𝑇𝑇
𝑖𝑗 ≡ �ℎ𝑇𝑇

𝑖𝑗 = 0

Thus the physical Hamiltonian of general relativity gets localized in the spacetime bulk even despite its origin
from the surface integral at the boundary of space sections.

Lecture 6. Quantization: from Quantum Mechanics to QFT

� Canonical quantization: a reminder

� QFT: normal ordering and the functional formulation of Wick theorem

� Spacetime condensed notations

� Interacting �elds and interaction picture representation

6.1 Canonical quantization: a reminder

We begin by reminding basic principles of canonical quantization in quantum mechanics. Quantization of a
dynamical system with phase space variables 𝑞 = 𝑞𝑖, 𝑝 = 𝑝𝑖 and the Hamiltonian 𝐻(𝑞, 𝑝) consists in promoting
these classical quantities to Hermitian operators

𝑞, 𝑝,𝐻(𝑞, 𝑝)→ 𝑞, 𝑝, �̂�, (6.1)
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acting in the Hilbert space of states |𝜓 ⟩ with a positive norm ⟨𝜓 |𝜓 ⟩ > 0. The phase space operators satisfy
canonical commutation relations

[ 𝑞𝑖, 𝑝𝑘 ] ≡ 𝑞𝑖𝑝𝑘 − 𝑝𝑘𝑞𝑖 = 𝑖~𝛿𝑖𝑘, (6.2)

which are postulated as a promotion of classical Poisson brackets to the quantum level, {𝑞, 𝑝} → [ 𝑞, 𝑝 ] =

𝑖~{̂𝑞, 𝑝} = 𝑖~1. Similarly, the commutator of other quantum operators �̂� = 𝒪(𝑞, 𝑝) in the leading order in the
Planck constant ~ follow from the operator realization of their classical Poisson brackets

[ �̂�1, �̂�2 ] = 𝑖~ ̂{𝒪1,𝒪2}+𝑂(~2), (6.3)

where 𝑂(~2) depend of course on the details of of the operator realization 𝑂(𝑞, 𝑝) → 𝒪(𝑞, 𝑝) and {𝒪1,𝒪2} →
̂{𝒪1,𝒪2}.
Physical evolution in time is encoded in time dependent quantum state |𝜓(𝑡) ⟩, which satis�es the Schroedinger

equation

𝑖~
𝑑

𝑑𝑡
|𝜓(𝑡) ⟩ = �̂� |𝜓(𝑡) ⟩. (6.4)

For conserved Hamiltonians explicitly independent of time a formal solution reads in terms of unitary evolution
operator �̂�(𝑡)

|𝜓(𝑡) ⟩ = �̂�(𝑡) |𝜓(0) ⟩, �̂�(𝑡) = 𝑒−𝑖�̂� 𝑡/~, �̂�†(𝑡) �̂�(𝑡) = I. (6.5)

This operator intertwines the original Schroedinger operators with the Heisenberg operators satisfying the
Heisenberg equations of motion. I.e. for 𝑞 it looks like

𝑞𝐻(𝑡) = �̂�†(𝑡) 𝑞 �̂�(𝑡), (6.6)

𝑖~
𝑑

𝑑𝑡
𝑞𝐻(𝑡) = [ 𝑞𝐻(𝑡), �̂� ], (6.7)

so that the Heisenberg equations of motion follow from the classical ones by the generalization of the Poisson
bracket to the quantum commutator with the Hamiltonian, {..., 𝐻} → [..., �̂� ]/𝑖~. In what follows we will

basically use the units with ~ = 1.
Consider now free systems with the quadratic actions and Hamiltonians of the form

𝑆[ 𝑞 ] =
1

2

∫︁
𝑑𝑡
[︁
𝑎𝑖𝑘𝑞

𝑖𝑞𝑘 − (𝜔2)𝑖𝑘𝑞
𝑖𝑞𝑘
]︁
, (6.8)

𝐻(𝑞, 𝑝) =
1

2
𝑝𝑖𝑎

𝑖𝑘𝑝𝑘 +
1

2
(𝜔2)𝑖𝑘𝑞

𝑖𝑞𝑘. (6.9)

In the simplest case 𝑎𝑖𝑘 is just a unit matrix (canonical normalization), and the matrix of the quadratic potential
is diagonal in frequencies of normal modes

𝑎𝑖𝑘 = 𝛿𝑖𝑘, (𝜔2)𝑖𝑘 = diag (𝜔2
𝑖 ), 𝜔2

𝑖 > 0. (6.10)

Then normal modes satisfy harmonic oscillator equation, 𝑞𝑖+𝜔2
𝑖 𝑞

𝑖 = 0. It has a solution which we write directly
for Heisenberg operators

𝑞𝑖𝐻(𝑡) =
∑︁
𝐴

(︁
𝑢𝑖𝐴(𝑡) �̂�𝐴 + 𝑢𝑖*𝐴 (𝑡) �̂�†𝐴

)︁
, 𝑢𝑖𝐴(𝑡) =

1√
2𝜔𝑖

𝑒−𝑖𝜔𝑖𝑡𝛿𝑖𝐴, 𝑢𝑖*𝐴 (𝑡) =
1√
2𝜔𝑖

𝑒𝑖𝜔𝑖𝑡𝛿𝑖𝐴. (6.11)

It is convenient not to identify the index 𝐴 enumerating the basis functions with the label 𝑚 of the phase space
coordinate 𝑞𝑖 (this will be clear later) and consider 𝑢(𝑡) ≡ 𝑢𝑖𝐴(𝑡) as a matrix. This is a decomposition in positive
and negative frequency basis functions � two complex conjugated sets 𝑢𝑖𝐴(𝑡) and 𝑢𝑖*𝐴 (𝑡) which span the space
of all solutions. For any two solutions of the equation �̈�𝑖 + 𝜔2

𝑖 𝑢
𝑖 = 0 one can introduce the conserved (but not

positive de�nite) inner product,

⟨𝑢1, 𝑢2 ⟩ ≡ 𝑖(𝑢†1�̇�2 − �̇�
†
1𝑢2) ≡ 𝑖

(︁
𝑢𝑖*1 𝛿𝑖𝑘 �̇�

𝑘
2 − �̇�𝑖*1 𝛿𝑖𝑘 𝑢𝑘2

)︁
,

𝑑

𝑑𝑡
⟨𝑢1, 𝑢2 ⟩ = 0, (6.12)
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which obviously satis�es the relation ⟨𝑢*1, 𝑢*2 ⟩ = −⟨𝑢2, 𝑢1 ⟩. This inner product is conserved in virtue of
equations of motion and is used to split the whole space of solutions into those with the positive and negative
�norms�,

⟨𝑢𝐴, 𝑢𝐵 ⟩ ≡ 𝑖
(︁
𝑢𝑖*𝐴 𝛿𝑖𝑘 �̇�

𝑘
𝐵 − �̇�𝑖*𝐴 𝛿𝑖𝑘 𝑢𝑘𝐵

)︁
= 𝛿𝐴𝐵 , ⟨𝑢*𝐴, 𝑢*𝐵 ⟩ = −𝛿𝐴𝐵 , ⟨𝑢*𝐴, 𝑢𝐵 ⟩ = 0, (6.13)

Their coe�cients in the decomposition of 𝑞𝐻(𝑡) � the two sets of Hermitian conjugated annihilation and creation

operators �̂�𝐴 and �̂�†𝐴 � satisfy in virtue of the canonical commutators for 𝑞 and 𝑝 the commutation relations

[ �̂�𝐴, �̂�
†
𝐵 ] = 𝛿𝐴𝐵 (6.14)

Problem 6.1. Prove this commutation relation and derive:

�̂� = ⟨𝑢, 𝑞𝐻⟩ =
𝜔𝑞 + 𝑖𝑝
√
2𝜔

, �̂�† = ⟨𝑢*, 𝑞𝐻⟩ =
𝜔𝑞 − 𝑖𝑝
√
2𝜔

,

where 𝑞 = 𝑞𝐻(0) and 𝑝 = 𝑝𝐻(0) – Schroedinger operators of coordinates and momenta (which can be treated as initial conditions
for Heisenberg operators) and we skip the indices 𝑖 and 𝐴 which are identified in this particular case with 𝑢𝑖𝐴 ∼ 𝛿

𝑖
𝐴.

Coordinate representation in the Hilbert space of 𝛹(𝑞) = ⟨ 𝑞 |𝛹 ⟩,

𝑞 | 𝑞 ⟩ = 𝑞 | 𝑞 ⟩, 𝑝 𝛹(𝑞) =
~
𝑖

𝜕

𝜕𝑞
𝛹(𝑞), ⟨𝛹 |𝛷 ⟩ =

∫︁
𝑑𝑞 𝛹*(𝑞)𝛷(𝑞) (6.15)

in the case of 𝜔 ̸= 0 can be replaced by the occupation number representation consisting of the vacuum state
| 0 ⟩ and the tower of Fock states |𝑁 ⟩ ≡ |𝑁1, 𝑁2, ... ⟩

�̂�𝐴 | 0 ⟩ = 0, |𝑁 ⟩ =
∏︁
𝐴

(�̂�†𝐴)𝑁𝐴

√
𝑁𝐴!

| 0 ⟩, 𝑁 = 𝑁1, 𝑁2, ..., (6.16)

⟨ 𝑞 | 0 ⟩ = 𝛹0(𝑞) =
∏︁
𝑖

(︁𝜔𝑖

𝜋

)︁1/4
𝑒−𝜔𝑖(𝑞

𝑖)2/2 =
(︁∏︁

𝑖

𝜔𝑖

𝜋

)︁1/4
exp

[︂
−1

2
𝑞𝑖𝜔𝑖𝑘𝑞

𝑘

]︂
. (6.17)

In this representation the Hamiltonian is diagonal

�̂� =
1

2

∑︁
𝑖

(︀
𝑝2𝑖 + 𝜔2

𝑖 (̂𝑞𝑖)2
)︀

=
∑︁
𝐴

(︂
𝜔𝐴 �̂�

†
𝐴�̂�𝐴 +

1

2

)︂
, (6.18)

⟨𝑀 | �̂� |𝑁 ⟩ = 𝛿𝑀𝑁

∑︁
𝐴

(︂
𝜔𝐴𝑁𝐴 +

1

2

)︂
, 𝛿𝑀𝑁 =

∏︁
𝐴

𝛿𝑀𝐴,𝑁𝐴
. (6.19)

Note: for the modes with 𝜔𝐴 = 0 occupation number representation associated with the Hamiltonian
diagonalization does not exist, and therefore another representation is needed � usually this is a �nite set of
zero modes, for which the coordinate representation is used.

6.2 QFT: normal ordering and the functional formulation of Wick theorem

Formal transition from quantum mechanics to QFT with in�nite number of degrees of freedom consists in
extending the range of the index of 𝑞𝑖 to include both discrete spin-tensor labels and spatial coordinates. Say,
for a scalar �eld 𝜙(x) and its canonical momentum 𝜋(x) this means

𝑞𝑖 = 𝜙(x), 𝑝𝑖 = 𝜋(x), 𝑖 ↦→ x. (6.20)

The index 𝑖 becomes condensed and, according to the DeWitt rule, contraction of such repeated condensed
indices implies integration over their continuous part, i. e. over spatial coordinates, the derivatives with respect
to phase space variables become 3-dimensional functional derivatives and the Poisson brackets respectively read∑︁

𝑖

↦→
∫︁
𝑑3x,

𝜕

𝜕𝑞𝑖
=

𝛿

𝛿𝜙(x)
, {𝒪1,𝒪2} =

∫︁
𝑑3x

(︂
𝛿𝒪1

𝛿𝜙(x)

𝛿𝒪2

𝛿𝜋(x)
− (1⇔ 2)

)︂
. (6.21)
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Correspondingly the massive scalar �eld action

𝑆[𝜙 ] =
1

2

∫︁
𝑑4𝑥

(︀
− 𝜕𝜇𝜙𝜕𝜇𝜙−𝑚2𝜙2

)︀
=

1

2

∫︁
𝑑𝑡

∫︁
𝑑3x

[︀
�̇�2(x)− 𝜙(x)(𝑚2 −∆)𝜙(x)

]︀
(6.22)

takes the form (6.8) with the functional matrices

𝑎𝑖𝑘 = 𝛿(x,y), 𝜔𝑖𝑘 =
√︀
𝑚2 −∆ 𝛿(x,y), 𝑖 ↦→ x, 𝑘 ↦→ y. (6.23)

Canonical commutation relations (6.2) with 𝛿𝑖𝑘 = 𝛿(x,y) read [𝜙(x), �̂�(y) ] = 𝑖𝛿(x,y), and the decomposition
of the Heisenberg operators into positive-negative frequency parts looks as (6.11) with the basis functions �
solutions of the Klein-Gordon equation,

𝑢𝑖𝐴(𝑡) =
1

(2𝜋)3/2
√︀

2𝜔p

𝑒−𝑖𝜔p𝑡−𝑖px, 𝜔p =
√︀

p2 +𝑚2, 𝑖 ↦→ x, 𝐴 ↦→ p. (6.24)

Note that 𝐴 is also a condensed index, its contraction in (6.11) implies integration over p,
∑︀

𝐴 =
∫︀
𝑑3p, and

𝑢𝑖𝐴(𝑡) is a functional matrix with respect to its two continuous entries 𝑖 = x and 𝐴 = p. Commutation relations

for creation-annihilation operators [ �̂�p, �̂�
†
p′ ] = 𝛿(p,p′).

In the occupation number representation any operator �̂� which can be expanded in powers of the 𝑞 and 𝑝
can be rewritten as power series in �̂� and �̂�†. Then by their commutation it can be converted to the normal

form in which all creation operators stand to the left of annihilation ones

�̂� =: 𝒪(�̂�*, �̂�) : =
∑︁
𝑚,𝑛

𝒪𝐴1...𝐴𝑚,𝐵1...𝐵𝑛
𝑚,𝑛 �̂�†𝐴1

...�̂�†𝐴𝑚
�̂�𝐵1 ...�̂�𝐵𝑛 , (6.25)

where 𝒪𝐴1...𝐴𝑚,𝐵1...𝐵𝑛
𝑚,𝑛 are some coe�cients of the operator monomials. The 𝑐-number function,

𝒪(𝑎*, 𝑎) =
∑︁
𝑚,𝑛

𝒪𝐴1...𝐴𝑚,𝐵1...𝐵𝑛
𝑚,𝑛 𝑎*𝐴1

...𝑎*𝐴𝑚
𝑎𝐵1

...𝑎𝐵𝑛
, (6.26)

is then called the normal symbol of �̂�. The action of such operator on the vacuum state and its expectation
value in the vacuum state obviously express like

: 𝒪(�̂�*, �̂�) : | 0 ⟩ =

∞∑︁
𝑚=0

𝒪𝐴1...𝐴𝑚
𝑚,0 �̂�†𝐴1

...�̂�†𝐴𝑚
| 0 ⟩, (6.27)

⟨ 0 | : 𝒪(�̂�*, �̂�) : | 0 ⟩ = 𝒪0,0. (6.28)

The matrix element of the operator between two Fock states |𝛹 ⟩ = (�̂�†)𝑘| 0 ⟩ and |𝛷 ⟩ = (�̂�†)𝑙| 0 ⟩ equals the sum
of terms resulting from the commutation of all �̂� and �̂�† respectively to the right and to the left. The answer
reads a sum of all possible contractions of creation-annihilation pairs [ �̂�𝐴, �̂�

†
𝐵 ] = 𝛿𝐴𝐵 symbolically shown as

⟨𝛹 | : 𝒪(�̂�*, �̂�) : |𝛷 ⟩ =
∑︁

contractions

⟨ 0 | �̂�𝑘
∑︁
𝑚,𝑛

𝒪𝑚,𝑛(�̂�*)𝑚�̂�𝑛 (�̂�†)𝑙| 0 ⟩. (6.29)

The same applies to any monomial function of operators 𝜙 linear in creation-annihilation operators � any such
monomial equals the sum of normally ordered monomials with all possible contractions between 𝜙's. This is
the content of the so-called Wick theorem

𝜙1...𝜙𝑛 =: 𝜙1...𝜙𝑛 : +
∑︁
single

contractions

: 𝜙1𝜙2...𝜙𝑛 : +
∑︁
double

contractions

: 𝜙1𝜙2𝜙3𝜙4...𝜙𝑛 : + ... , (6.30)

𝜙1𝜙2 = 𝜙1𝜙2− : 𝜙1𝜙2 : = ⟨ 0 |𝜙1𝜙2 | 0 ⟩. (6.31)
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Explicitly this can be written down in the following form

𝜙1(𝑥1)...𝜙𝑛(𝑥𝑛) = :
∏︁
𝑖<𝑘

(︂
1 +

∫︁
𝑑𝑥 𝑑𝑦

𝛿

𝛿𝜙𝑖(𝑥)
𝐷(𝑥, 𝑦)

𝛿

𝛿𝜙𝑘(𝑦)

)︂
𝜙1(𝑥1)...𝜙𝑛(𝑥𝑛)

⃒⃒⃒
𝜙→𝜙

: , (6.32)

𝐷(𝑥, 𝑦) = 𝜙(𝑥)𝜙(𝑦) = ⟨ 0 |𝜙(𝑥)𝜙(𝑦) | 0 ⟩, (6.33)

where 𝐷(𝑥, 𝑦) is the two-point kernel of this contraction. Here the second order di�erential operator in func-
tional derivatives performs all the needed contractions in the chain of operators 𝜙1(𝑥1)...𝜙𝑛(𝑥𝑛). The sequence
of operations is as follows: �rst all operators are replaced by c-number functions, secondly their pairwise con-
tractions are inserted, thirdly the remaining functions are again replaced by the operators which are normally
ordered.

This Wick theorem can be reformulated in a more elegant (and useful, as we will later see) form for the
special case of the symmetrized product of operators on the left hand side. Functional formulation of the

Wick theorem states that any symmetrized monomial operator can be represented in the normally ordered
form by acting on this monomial with a special exponentiated di�erential operator

Sym
(︁
𝜙(𝑥1)...𝜙(𝑥𝑛)

)︁
= : exp

(︂
1

2

∫︁
𝑑𝑥 𝑑𝑦 𝐷(𝑥, 𝑦)

𝛿

𝛿𝜙(𝑥)

𝛿

𝛿𝜙(𝑦)

)︂
𝜙(𝑥1)...𝜙(𝑥𝑛)

⃒⃒⃒
𝜙→𝜙

: , (6.34)

Here symmetrization is given by 𝑛! terms with all possible permutations (1, ...𝑛) → 𝜎(1, ...𝑛) of the original 𝑛
entries, divided by overall 𝑛! factor

Sym𝑓(1, ...𝑛) ≡ 1

𝑛!

∑︁
𝜎

𝑓(𝜎(1, ...𝑛)). (6.35)

Note that this symmetrization on the left-hand side is very important, and although contraction 𝐷(𝑥, 𝑦) is
generally not symmetric, only its symmetric part contributes to the right-hand side of (6.34). Rigorous proof of
the theorem is somewhat lengthy and can be found in [A.N.Vasiliev, Functional methods in quantum field theory
and quantum statistics, St Petersburg University Press, St Petersburg, 1976; Overseas Publishers Association,
Amsterdam B.V., 1998]. It begins with the proof by induction of the Eq.(6.32) and then this equation takes
the form of (6.34) when applied to the symmetrized monomial.

6.3 Spacetime condensed notations

Remarkably this theorem can be further reformulated in even more concise form by using spacetime condensed

notations. In these notations we include not only spatial coordinates into the condensed index, but also absorb
into this index the time itself. In contrast to the canonical formalism, this will allow us in what follows to make
the formalism Lorentz covariant. As a rule we will pick up such indices from the �rst part of Latin alphabet.
Thus, the generalization of the above technique to the �elds of nonzero spin with some spin-tensor and isotopic
structure, labelled by discrete indices 𝐼, looks like

𝜙(𝑥) ⇒ 𝜑𝐼(𝑥) = 𝜑𝑎, 𝑎 ↦→ (𝐼, 𝑥), 𝑥 ≡ 𝑥𝜇 = (𝑥0,x). (6.36)

DeWitt summation-integration rule in these spacetime condensed notations implies both space and time inte-
gration in contraction of their indices

𝜓𝑎𝜑
𝑎 =

∫︁
𝑑4𝑥

∑︁
𝐼

𝜓𝐼(𝑥)𝜑𝐼(𝑥), (6.37)

so that Wick theorem for symmetrized products of free Heisenberg operators takes simple readable form which
is easy to memorize

Sym
(︁
𝜑1...𝜑𝑛

)︁
= : exp

(︂
1

2
𝐷𝑎𝑏 𝛿

𝛿𝜑𝑎
𝛿

𝛿𝜑𝑏

)︂
𝜑1...𝜑𝑛

⃒⃒⃒
𝜑→𝜑

: , (6.38)

𝐷𝑎𝑏 = 𝜑𝑎𝜑𝑏 = ⟨ 0 |𝜑𝑎𝜑𝑏 | 0 ⟩ (6.39)

31



As mentioned above 𝐷𝑎𝑏 can be replaced here by its symmetrized version 𝐷(𝑎𝑏),

𝐷(𝑎𝑏) = Sym
(︀
𝜑𝑎𝜑𝑏

)︀
− : 𝜑𝑎𝜑𝑏 : (6.40)

so that when used in (6.38) this di�erence between two types of operator orderings (symmetrized and normal)
matches with the di�erence of these orderings in the left and right hand sides of Eq.(6.38). The exponentiated
di�erential operator factor serves as a transition between these two orderings. In what follows we will see how
this mnemonic rule extends to other types of operator orderings (chronological and others).

In terms of spacetime condensed notations the positive-negative frequency decomposition takes the form
where the matrices of basis functions serve as coe�cients of transition from the �vectors� of creation-annihilation
operators to Heisenberg operators 𝜑𝑎. This in fact suggests to rewrite this relation in �supercondensed� form
with all indices omitted � 𝑢 is a functional matrix 𝑢𝑎𝐴, �̂� = �̂�𝐴 is a vector whose components are labelled by the
index 𝐴 (unfortunately it is in the subscript position, but we will leave it �covariant�),

𝜑𝑎 =
∑︁
𝐴

(︀
𝑢𝑎𝐴�̂�𝐴 + 𝑢𝑎*𝐴 �̂�

†
𝐴

)︀
= 𝑢 �̂�+ 𝑢*�̂�†. (6.41)

Thus we have for contraction matrix

𝐷𝑎𝑏 =
∑︁
𝐴,𝐵

𝑢𝑎𝐴 ⟨ 0 | �̂�𝐴�̂�
†
𝐵 | 0 ⟩𝑢

𝑏*
𝐵 =

∑︁
𝐴

𝑢𝑎𝐴 𝑢
𝑏*
𝐴 ⇒ 𝐷 = 𝑢𝑢†, 𝑢† ≡ 𝑢*𝑇 , (6.42)

where Hermitian conjugation of 𝑢 → 𝑢† is understood as its complex conjugation and transposition. Note,
however, that the condensed indices 𝑎 and 𝐴 of 𝑢𝑎𝐴 are very di�erent in nature � 𝑎 is spacetime condensed
because it contains time 𝑡 = 𝑥0, whereas 𝐴 is essentially space (canonical) condensed, for this entry contains
only spatial coordinates or dual spatial momentum (see above expressions for 𝑢 of the scalar �eld),

𝑢𝑎𝐴 = 𝑢𝑖𝐴(𝑡) = 𝑢p(𝑥), 𝑎 ↦→ (𝑖, 𝑡) ↦→ (x, 𝑥0) = 𝑥𝜇, 𝐴 ↦→ p.

Correspondingly, functional contraction of 𝐴 = p does not involve time integration � it incorporates only spatial
quantum numbers summation and integration,

∑︀
𝐴 ↦→

∫︀
𝑑3p. In particular, for a scalar �eld the contraction

function 𝐷𝑎𝑏 is the positive-frequency Wightman function,

𝐷(𝑥, 𝑦) =

∫︁
𝑑3p𝑢p(𝑥)𝑢*p(𝑦) =

1

(2𝜋)3

∫︁
𝑑3p

𝑒−𝑖𝑝(𝑥−𝑦)

2𝜔p

⃒⃒⃒
𝑝0=+𝜔p

≡ 𝑖𝐺(+)(𝑥, 𝑦). (6.43)

Problem 6.2. Derive this expression and show that it gives a positive-frequency part of the Pauli-Jordan commutator function:

[𝜙(𝑥), 𝜙(𝑦) ] = 𝑖 �̃�(𝑥, 𝑦), �̃�(𝑥, 𝑦) = 𝐺(+)(𝑥, 𝑦) +𝐺(−)(𝑥, 𝑦), 𝐺(−)(𝑥, 𝑦) = [𝐺(+)(𝑥, 𝑦) ]*, (6.44)

6.4 Interacting fields and interaction picture representation

Thus far, it was the quantum theory of free �elds. Now we turn to interacting �elds with nonlinear
interaction in their action functional. The �rst thing to do, in order to build the perturbation theory, is to
split the �eld into the background con�guration 𝜑0 and perturbation ℎ and expand the action in powers of ℎ,
𝜑 = 𝜑0 + ℎ,

𝑆[𝜑 ] = 𝑆[𝜑0 ] +
𝛿𝑆

𝛿𝜑

⃒⃒⃒⃒
𝜑0

ℎ+
1

2

𝛿2𝑆

𝛿𝜑𝛿𝜑

⃒⃒⃒⃒
𝜑0

ℎℎ+ 𝑆𝐼 [𝜑0, ℎ ], 𝑆𝐼 [𝜑0, ℎ ] = 𝑂[ℎ3 ], (6.45)

where we use adopted above spacetime supercondensed and condensed notations, implying in particular that
the second order term reads as

1

2

𝛿2𝑆

𝛿𝜑𝛿𝜑

⃒⃒⃒⃒
𝜑0

ℎℎ ≡ 1

2

𝛿2𝑆

𝛿𝜑𝑎𝛿𝜑𝑏

⃒⃒⃒⃒
𝜑0

ℎ𝑎 ℎ𝑏 ≡ 1

2

∫︁
𝑑4𝑥 𝑑4𝑦

𝛿2𝑆

𝛿𝜑𝐼(𝑥)𝛿𝜑𝐽(𝑦)

⃒⃒⃒⃒
𝜑0

ℎ𝐼(𝑥)ℎ𝐽(𝑦). (6.46)
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If one chooses 𝜑0 as some �xed solution of classical equations of motion 𝛿𝑆/𝛿𝜑|𝜑0
= 0 and treats 𝑆[𝜑0 ] as an

inessential constant, then the action of a new �eld ℎ begins with the quadratic order and contains a nonlinear
interaction term 𝑂(ℎ3). The transition to the canonical formalism of this �eld, ℎ → (𝑞, 𝑝) correspondingly
results in the total Hamiltonian consisting of a quadratic part 𝐻0 and the interaction part 𝑉 beginning with
the term cubic in (𝑞, 𝑝). Therefore, at the quantum level this Hamiltonian

�̂� = �̂�0 + 𝑉 , (6.47)

drives the Schroedinger evolution of the quantum state

𝑖~
𝑑

𝑑𝑡
|𝜓(𝑡) ⟩ = (�̂�0 + 𝑉 ) |𝜓(𝑡) ⟩. (6.48)

The ansatz for the solution of this equation in the form

|𝜓(𝑡) ⟩ = 𝑒−𝑖�̂�0𝑡 |𝜓𝐼(𝑡) ⟩, (6.49)

allows one to go over to the interaction picture representation in which the quantum state |𝜓𝐼(𝑡) ⟩ satis�es the
Schroedinger equation

𝑖~
𝑑

𝑑𝑡
|𝜓𝐼(𝑡) ⟩ = 𝑉𝐼(𝑡) |𝜓𝐼(𝑡) ⟩ (6.50)

with the interaction Hamiltonian 𝑉𝐼(𝑡) in this representation

𝑉𝐼(𝑡) = 𝑒𝑖�̂�0𝑡 𝑉 (𝑞, 𝑝) 𝑒−𝑖�̂�0𝑡 = 𝑉 (𝑞𝐼(𝑡), 𝑝𝐼(𝑡)), (6.51)

𝑞𝐼(𝑡) = 𝑒𝑖�̂�0𝑡 𝑞 𝑒−𝑖�̂�0𝑡, 𝑝𝐼(𝑡) = 𝑒𝑖�̂�0𝑡 𝑝 𝑒−𝑖�̂�0𝑡. (6.52)

The time-dependent phase space operators 𝑞𝐼(𝑡) and 𝑝𝐼(𝑡) of the interaction picture representation satisfy the
equations of the linearized theory

𝑖
𝑑

𝑑𝑡
𝑞𝐼(𝑡) = [ 𝑞𝐼(𝑡), �̂�0 ], 𝑖

𝑑

𝑑𝑡
𝑝𝐼(𝑡) = [ 𝑝𝐼(𝑡), �̂�0 ]. (6.53)

Since [𝑉𝐼(𝑡), 𝑉𝐼(𝑡′) ] ̸= 0, the solution for |𝜓𝐼(𝑡) ⟩ is more complicated than a simple exponentiation of∫︀
𝑑𝑡 𝑉 (𝑡). It is the evolution operator �̂�(𝑡, 𝑡−) in the interaction picture representation,

|𝜓𝐼(𝑡) ⟩ = �̂�(𝑡, 𝑡−) |𝜓𝐼(𝑡−) ⟩, (6.54)

�̂�(𝑡, 𝑡−) = 𝑒𝑖�̂�0𝑡 𝑒−𝑖�̂�(𝑡−𝑡−) 𝑒−𝑖�̂�0𝑡− , (6.55)

which is given by the chronologically ordered T-exponent,

�̂�(𝑡, 𝑡−) = T exp
(︁
− 𝑖
∫︁ 𝑡

𝑡−

𝑑𝑡′ 𝑉𝐼(𝑡′)
)︁

=

∞∑︁
𝑛=0

(−𝑖)𝑛

𝑛!

∫︁ 𝑡

𝑡−

𝑑𝑡1

∫︁ 𝑡

𝑡−

𝑑𝑡2...

∫︁ 𝑡

𝑡−

𝑑𝑡𝑛 T
(︁
𝑉𝐼(𝑡1)𝑉𝐼(𝑡2)...𝑉𝐼(𝑡𝑛)

)︁
. (6.56)

Chronological ordering symbol T means that all factors are ordered from right to left in the direction of growing
value of their time argument, operators at later times standing to the left of those at earlier times. Formally
this can be written down as a sum over all possible 𝑛! permutations of positions of factors � each term weighted
by 1 or 0, depending on the order of time arguments

T
(︁
𝑉𝐼(𝑡1)𝑉𝐼(𝑡2)...𝑉𝐼(𝑡𝑛)

)︁
=

∑︁
𝜎(1,2,...𝑛)

𝜃(𝑡1 − 𝑡2)𝜃(𝑡2 − 𝑡3)...𝜃(𝑡𝑛−1 − 𝑡𝑛)𝑉𝐼(𝑡1)𝑉𝐼(𝑡2)...𝑉𝐼(𝑡𝑛), (6.57)

where 𝜃(𝑥) is a step function

𝜃(𝑥) =

{︂
1, 𝑥 > 0,
0, 𝑥 < 0.

(6.58)
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For 𝑛 = 2, for example, this product reads

T
(︁
𝑉𝐼(𝑡1)𝑉𝐼(𝑡2)

)︁
= 𝜃(𝑡1 − 𝑡2)𝑉𝐼(𝑡1)𝑉𝐼(𝑡2) + 𝜃(𝑡2 − 𝑡1)𝑉𝐼(𝑡2)𝑉𝐼(𝑡1). (6.59)

For coincident time arguments the ordering prescription should be additionally �xed, which basically implies the
speci�cation of the value of 𝜃(𝑥) at 𝑥 = 0. This, however, will not be important for us in what follows, because
this is the set of points of measure zero, which is responsible for ultraviolet divergences and renormalization to
be separately considered.

Properties of the T-exponent:
1) �̂�(𝑡, 𝑡−) satis�es the composition law �̂�(𝑡, 𝑡−) = �̂�(𝑡, 𝑡1)�̂�(𝑡1, 𝑡−). This can be proven by calculating

𝜕𝑡1
(︀
�̂�(𝑡, 𝑡1)�̂�(𝑡1, 𝑡−)

)︀
= 0.

2) Unitarity, �̂�†(𝑡, 𝑡−)�̂�(𝑡, 𝑡−) = 1̂ � follows from Hermiticity of 𝑉𝐼(𝑡).
3) Variational law under 𝑉𝐼(𝑡)→ 𝑉𝐼(𝑡) + 𝛿𝑉𝐼(𝑡),

𝛿�̂�(𝑡, 𝑡−) = −𝑖
∫︁ 𝑡

𝑡−

𝑑𝑡1 �̂�(𝑡, 𝑡1) 𝛿𝑉𝐼(𝑡1) �̂�(𝑡1, 𝑡−) (6.60)

This can be proven by solving the next problem.

Problem 6.3. Prove that (6.56) solves the Cauchy problem for the unitary evolution operator �̂�(𝑡, 𝑡−)

𝑖
𝑑

𝑑𝑡
�̂�(𝑡, 𝑡−) = 𝑉𝐼(𝑡) �̂�(𝑡, 𝑡−), �̂�(𝑡−, 𝑡−) = 1̂ (6.61)

and the above variational equation.
Hint 1: use complete symmetry of T

(︀
𝑉𝐼(𝑡1)𝑉𝐼(𝑡2)...𝑉𝐼(𝑡𝑛)

)︀
with respect to permutations of 𝑡1, ...𝑡𝑛 and the fact that the

integration measure in (6.56) can be replaced by
∫︀ 𝑡
𝑡−
𝑑𝑡1...𝑑𝑡𝑛 = 𝑛!

∫︀ 𝑡
𝑡−
𝑑𝑡1

∫︀ 𝑡1
𝑡−
𝑑𝑡2...

∫︀ 𝑡𝑛−1
𝑡−

𝑑𝑡𝑛 .

Hint 2: Prove by integrating Eq.(6.61) that �̂�(𝑡, 𝑡−) = 1̂ − 𝑖
∫︀ 𝑡
𝑡−
𝑑𝑡′ 𝑉𝐼(𝑡

′), �̂�(𝑡′, 𝑡−) and solve this integral equation by iterations

– that is by systematically substituting the solution from the previous perturbation step into the right hand side of this equation,

�̂�(𝑡, 𝑡−) = 1̂ +

∞∑︁
𝑛=1

(−𝑖)𝑛
∫︁ 𝑡

𝑡−

𝑑𝑡1

∫︁ 𝑡1

𝑡−

𝑑𝑡2...

∫︁ 𝑡𝑛−1

𝑡−

𝑑𝑡𝑛 T
(︁
𝑉𝐼(𝑡1)𝑉𝐼(𝑡2)...𝑉𝐼(𝑡𝑛)

)︁
. (6.62)

Let us now choose a special type of perturbation which is linear in the operators of phase space variables,
𝛿𝑉𝐼(𝑡) = −𝛿𝑗𝑎(𝑡)𝜑𝑎𝐼 (𝑡) ≡ −𝛿𝐽𝑖(𝑡)𝑞𝑖𝐼 − 𝛿𝐼𝑖(𝑡)𝑝𝐼𝑖 (𝑡), with the c-number coe�cients � the variation of the sources

𝑗𝑎(𝑡) = 𝐽𝑖(𝑡), 𝐼
𝑖(𝑡), (6.63)

dual to the full set of interaction picture operators 𝜑𝑎(𝑡) = 𝑞𝑖𝐼(𝑡), 𝑝𝐼𝑖 (𝑡). Then

1

𝑖

𝛿�̂�(𝑡+, 𝑡−)

𝛿𝑗(𝑡1)
= �̂�(𝑡+, 𝑡1)𝜑𝐼(𝑡1) �̂�(𝑡1, 𝑡−) = T

(︁
𝜑𝐼(𝑡1) �̂�(𝑡+, 𝑡−)

)︁
, (6.64)

and similarly the 𝑛-th order functional derivative gives

1

𝑖𝑛
𝛿𝑛�̂�(𝑡+, 𝑡−)

𝛿𝑗(𝑡1)...𝛿𝑗(𝑡𝑛)
= 𝜃(𝑡1 − 𝑡2)𝜃(𝑡2 − 𝑡3)...𝜃(𝑡𝑛−1 − 𝑡𝑛) �̂�(𝑡+, 𝑡1)𝜑𝐼(𝑡1) �̂�(𝑡1, 𝑡2)𝜑𝐼(𝑡2)...𝜑𝐼(𝑡𝑛) �̂�(𝑡𝑛, 𝑡−)

+ permutations (1, 2, ...𝑛) = T
(︁
𝜑𝐼(𝑡1)...𝜑𝐼(𝑡𝑛) �̂�(𝑡+, 𝑡−)

)︁
. (6.65)

If we use the spacetime condensed index 𝑎 = (𝑖, 𝑡) which includes the time label, then this relation takes a very
concise form

1

𝑖𝑛
𝛿𝑛�̂�(𝑡+, 𝑡−)

𝛿𝑗𝑎1
...𝛿𝑗𝑎𝑛

= T
(︀
𝜑𝑎1

𝐼 ...𝜑
𝑎𝑛

𝐼 �̂�(𝑡+, 𝑡−)
)︀
. (6.66)

Note that the chronological product of operators is by de�nition completely symmetric with respect to permu-
tations of their condensed indices 𝑎 � time arguments and associated spatial and spin labels, which is consistent
with commutativity of variational derivatives here.
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Lecture 7. S-matrix and canonical Schwinger-Dyson equation

� S-matrix

� Schwinger-Dyson equations in the canonical form

� Solution of Schwinger-Dyson equations and the canonical path integral

� Calculation of the path integral via the Gaussian functional integral

Now we are ready to formulate the notion of S-matrix and set up the scattering problem. We assume that
interaction switches o� in distant past and distant future labeled by 𝑡± → ±∞. Therefore, in these asymptotic
limits the theory is described by its linearized approximation with the free Hamiltonian �̂�0. Its physical states
in the interaction picture representation are free multi-particle states of the Fock space (6.16)

|𝐴1, ...𝐴𝑛 ⟩ = �̂�†𝐴1
...�̂�†𝐴𝑛

| 0 ⟩. (7.1)

As |𝜓𝐼(𝑡) ⟩ evolves in time by the evolution operator (6.54), the transition from the remote past state to the
�nal future state is governed by the S-matrix

|𝜓𝐼(+∞) ⟩ = 𝑆 |𝜓𝐼(−∞) ⟩, (7.2)

𝑆 = lim
𝑡±→∞

�̂�(𝑡+, 𝑡−). (7.3)

The amplitudes of transition from the initial multi-particle state to the �nal one are then given by the matrix
elements

⟨𝐵1, ...𝐵𝑚 |𝑆 |𝐴1, ...𝐴𝑛 ⟩, (7.4)

which de�ne the probabilities of transitions 𝑃{𝐴}→{𝐵} = |⟨𝐵1, ...𝐵𝑚 |𝑆 |𝐴1, ...𝐴𝑛 ⟩|2 and relevant measurable
cross-sections of particle scattering.

Note that according to (6.55) the S-matrix factorizes into the operator product of two �half� S-matrices

𝑆 = 𝛺†(+∞)𝛺(−∞), (7.5)

�̂�(𝑡) = 𝑒𝑖�̂�𝑡 𝑒−𝑖�̂�0𝑡. (7.6)

The unitary operator 𝛺†(𝑡) = 𝛺−1(𝑡) intertwines the Heisenberg and interaction picture representations

𝜑𝐻(𝑡) = �̂�(𝑡)𝜑𝐼(𝑡)�̂�−1(𝑡). (7.7)

The existence of well-de�ned limits of this operator at 𝑡 → ±∞ can be intuitively explained by the fact of
adiabatic switching the interaction o� or turning it on in these asymptotic limits, �̂� → �̂�0, so that a naive
in�nity of the phase of �̂�(𝑡) in (7.6) cancels out. The operators 𝛺(∓∞) are responsible for turning on/switching
o� the interaction during the half-evolution from 𝑡 = −∞ to 𝑡 = 0 or half-evolution from 𝑡 = 0 to 𝑡 = +∞. The
moment 𝑡 = 0 is the point at which all three types of operators � Schroedinger, interaction and Heisenberg �
coincide, 𝜑 = 𝜑𝐼(0) = 𝜑𝐻(0), and the interaction is fully enforced. These operators also relate the asymptotic
states | {𝐴} ⟩ = |𝐴1, ...𝐴𝑛 ⟩ to the so-called ‘in’/‘out’ states | {𝐴},±⟩,

| {𝐴},±⟩ = �̂�(∓∞) | {𝐴} ⟩, (7.8)

which are exact eigenstates of the full Schroedinger picture Hamiltonian �̂�, (�̂� − 𝐸{𝐴})| {𝐴},±⟩ = 0. These
two sets of solutions of the stationary Schroedinger equation are distinguished by the fact that, when evolved by
the full evolution operator respectively to 𝑡 → ∓∞, they tend to free quantum states with the same quantum

numbers {𝐴} including their relevant energy 𝐸{𝐴}, 𝑒
−𝑖�̂�𝑡| {𝐴},±⟩ → 𝑒−𝑖𝐸{𝐴}𝑡| {𝐴} ⟩. All this holds when the

spectrum of the full Hamiltonian �̂� coincides with that of the free one �̂�0, which is a typical assumption of
perturbation theory in 𝑉 . The details of the `in'/`out' states and their role in the relation between the so-
called old-fashioned or stationary scattering perturbation theory and the modern time-dependent perturbation
theory of S-matrix can be found in [ S.Weinberg, The Quantum Theory of Fields, Cambridge University Press,
Cambridge, 1993, volume 1, Section 3 ]. Here we proceed with the time-dependent perturbation theory which
is capable of maintaining the manifest spacetime covariance.

35



7.1 Schwinger-Dyson equations in the canonical form

Here we introduce Schwinger-Dyson equations for the generating functional of chronological products of
Heisenberg operators. Schwinger-Dyson equations are a consequence of equations of motion for these operators.
The solution of Schwinger-Dyson equations allows one to construct the path integral representation for the
S-matrix, and this is the goal of our further work.

To begin with note that in view of (7.7) and the fact that �̂�(𝑡, 𝑡′) = �̂�†(𝑡)�̂�(𝑡′)

T
(︀
𝜑𝐼(𝑡1)...𝜑𝐼(𝑡𝑛)𝑆

)︀
= �̂�†(∞)T

(︀
𝜑𝐻(𝑡1)...𝜑𝐻(𝑡𝑛)

)︀
�̂�(−∞). (7.9)

This relation obviously applies to any operator functional 𝐹 [𝜑𝐼 ] expandable in powers of its argument and
chronologically ordered. For a particular choice of 𝐹 [𝜑 ] = exp

(︀
𝑖
∫︀
𝑑𝑡 𝑗(𝑡)𝜑(𝑡)

)︀
≡ exp

(︀
𝑖 𝑗𝑎𝜑

𝑎
)︀
it reads

T
{︁

exp
(︁
𝑖

∫︁ +∞

−∞
𝑑𝑡 𝑗(𝑡)𝜑𝐼(𝑡)

)︁
𝑆
}︁

= �̂�†(∞)T exp
(︁
𝑖

∫︁ +∞

−∞
𝑑𝑡 𝑗(𝑡)𝜑𝐻(𝑡)

)︁
�̂�(−∞). (7.10)

What stands on the right hand side is the limit 𝑡± → ±∞ of the same chronologically ordered functional of
Heisenberg operators

𝑍(𝑡+, 𝑡−) = T 𝑒𝑖𝑗𝑎𝜑
𝑎
𝐻 = T exp

(︁
𝑖

∫︁ 𝑡+

𝑡−

𝑑𝑡 𝑗(𝑡)𝜑𝐻(𝑡)
)︁

= T exp
(︁
𝑖

∫︁ 𝑡+

𝑡−

𝑑𝑡
(︀
𝐽𝑖(𝑡) 𝑞

𝑖
𝐻(𝑡) + 𝐼𝑖(𝑡) 𝑝𝐻𝑖 (𝑡

)︀)︁
, (7.11)

where similarly to (6.63) 𝑗𝑎(𝑡) = 𝐽𝑖(𝑡), 𝐼
𝑖(𝑡) are the sources dual respectively to the operators of phase space

coordinates and momenta.
As in (6.66) this object as a functional of the c-number source 𝑗(𝑡), 𝑍(𝑡+, 𝑡−) = 𝑍(𝑡+, 𝑡−)[ 𝐽(𝑡), 𝐼(𝑡) ] gener-

ates chronological products of Heisenberg operators,

1

𝑖𝑛
𝛿𝑛𝑍(𝑡+, 𝑡−)

𝛿𝑗𝑎1 ...𝛿𝑗𝑎𝑛

= T
(︀
𝜑𝑎1

𝐻 ...𝜑
𝑎𝑛

𝐻 𝑍(𝑡+, 𝑡−)
)︀
, (7.12)

every variational derivative lowers from the exponential the relevant operator and places it in chronological order
with respect to all other operators, including those contained in 𝑍(𝑡+, 𝑡−). Therefore, for a generic operator

functional 𝐹 [𝜑𝐻 ] one has

T
(︀
𝐹 [𝜑𝐻 ]𝑍[ 𝑗 ]

)︀
= 𝐹

[︁ 𝛿

𝑖 𝛿𝑗

]︁
𝑍[ 𝑗 ]. (7.13)

Another obvious property of 𝑍(𝑡+, 𝑡−) is that it satis�es with respect to 𝑡± the �left/right Schroedinger� equa-

tions with the Hamiltonians ∓𝑖 𝜑𝐻(𝑡±)𝑗(𝑡±),

𝑖𝜕𝑡+𝑍(𝑡+, 𝑡−) = −𝑗(𝑡+)𝜑𝐻(𝑡+)𝑍(𝑡+, 𝑡−), 𝑖𝜕𝑡−𝑍(𝑡+, 𝑡−) = 𝑍(𝑡+, 𝑡−) 𝑗(𝑡−)𝜑𝐻(𝑡−). (7.14)

Consider now 𝑍 = 𝑍(𝑡+, 𝑡−) at 𝑡± → ±∞ and apply to it the operation 𝜕𝑡
(︀
𝛿/𝛿𝑗𝑎(𝑡)

)︀
,

𝜕𝑡

(︁ 𝛿

𝑖 𝛿𝑗𝑎(𝑡)

)︁
𝑍 = 𝜕𝑡T

(︀
𝜑𝑎𝐻(𝑡)𝑍

)︀
= 𝜕𝑡

(︁
𝑍(∞, 𝑡)𝜑𝑎𝐻(𝑡)𝑍(𝑡,−∞)

)︁
. (7.15)

Then consecutively use Eq.(7.14), the Heisenberg equation of motion

𝜕𝑡𝜑𝐻 =
1

𝑖
[𝜑𝐻 , �̂� ] = {̂𝜑,𝐻} |𝜑→𝜑𝐻

, (7.16)

and the relation (7.13) to obtain

�̇�𝑎𝐻(𝑡)
⃒⃒
𝜑=𝛿/𝑖𝛿𝑗

𝑍 = 𝑍(∞, 𝑡)
(︁
𝑖 [𝜑𝑏𝐻(𝑡), 𝜑𝑎𝐻(𝑡) ] 𝑗𝑏(𝑡) + ̂{𝜑𝑎, 𝐻} |𝜑→𝜑𝐻(𝑡)

)︁
𝑍(𝑡,−∞)

= T
{︁(︀
− 𝜖𝑎𝑏𝑗𝑏(𝑡) + ̂{𝜑𝑎, 𝐻} |𝜑→𝜑𝐻(𝑡)

)︀
𝑍
}︁

=
(︁
− 𝜖𝑎𝑏𝑗𝑏(𝑡) + {𝜑𝑎, 𝐻} |𝜑=𝛿/𝑖𝛿𝑗(𝑡)

)︁
𝑍. (7.17)
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Here the symplectic matrix 𝜖𝑎𝑏 determines canonical equal-time commutator of Heisenberg operators

[𝜑𝑎𝐻(𝑡), 𝜑𝑏𝐻(𝑡) ] = 𝑖 {𝜑𝑎, 𝜑𝑏} = 𝑖 𝜖𝑎𝑏, 𝜖𝑎𝑏 =

[︂
0 1
−1 0

]︂
, 𝜖𝑎𝑏 ≡ (𝜖𝑎𝑏)−1 =

[︂
0 −1
1 0

]︂
, (7.18)

and it is understood as acting in the space of phase space columns (we omit for brevity the indices of 𝑞𝑖 and 𝑝𝑖)

𝜑 =

[︂
𝑞
𝑝

]︂
. (7.19)

Now the functional variational equation on 𝑍[ 𝑗 ] can be rewritten as

𝜖𝑎𝑏
(︀
�̇�𝑏 − {𝜑𝑏, 𝐻}

)︀ ⃒⃒
𝜑=𝛿/𝑖𝛿𝑗(𝑡)

𝑍[ 𝑗 ] = −𝑗𝑎(𝑡)𝑍[ 𝑗 ], (7.20)

but what we have in the left hand side is just the variational derivative of the canonical action

𝑆[𝜑 ] = 𝑆[ 𝑞, 𝑝 ] =

∫︁ ∞
−∞

𝑑𝑡
(︀
𝑝 𝑞 −𝐻(𝑞, 𝑝)

)︀
+𝐵, (7.21)

𝛿𝑆

𝛿𝜑𝑎
= 𝜖𝑎𝑏

(︀
�̇�𝑏 − {𝜑𝑏, 𝐻}

)︀
, (7.22)

where 𝐵 is some surface term at the spacetime boundaries 𝑡± → ±∞, which should guarantee correctness of
the variational procedure and which we shall consider in more detail later. Thus �nally we have[︂

𝛿𝑆[𝜑 ]

𝛿𝜑𝑎
+ 𝑗𝑎

]︂ ⃒⃒⃒⃒
𝜑=𝛿/𝑖𝛿𝑗

𝑍[ 𝑗 ] = 0. (7.23)

This is the �nal form of the canonical (or Hamiltonian) Schwinger-Dyson equations. Note that this is a canonical
�rst-order formalism with time derivatives of maximum �rst order. This is in contrast to the usually considered
Lagrangian Schwinger-Dyson equations which are basically equivalent to the the canonical ones and look the
same, except that the set of 𝜑𝑎 includes only the con�guration space coordinates 𝑞, and 𝑆[ 𝑞 ] is just the
Lagrangian action. Later we will discuss this in more detail.

In the next lecture we will solve these Schwinger-Dyson equations in terms of the phase space path integral
and will derive the so-called reduction formulae relating the path integral to S-matrix.

7.2 Solution of Schwinger-Dyson equations and canonical path integral

It is useful to go over from the operator 𝑍[ 𝑗 ] to its c-number analogue � its matrix element between the in
and out vacuum states de�ned by Eq.(7.8),

𝑍[ 𝑗 ] = ⟨ 0,− |𝑍(+∞,−∞) | 0,+ ⟩ = ⟨ 0,− |T 𝑒𝑖 𝑗𝑎𝜑
𝑎
𝐻 | 0,+ ⟩, (7.24)

where for brevity we used spacetime condensed notation, 𝑗𝑎𝜑
𝑎
𝐻 =

∫︀ +∞
−∞ 𝑑𝑡 𝑗𝑎(𝑡)𝜑𝑎𝐻(𝑡), in which the index 𝑎

carries both space and time continuous labels, and contraction of such indices implies spacetime integration.2

In view of (7.8)-(7.9) this vacuum-to-vacuum transition amplitude equals the expectation value of the S-
matrix 𝑆[ 𝑗 ] in the interaction picture vacuum state | 0 ⟩,

𝑍[ 𝑗 ] = ⟨ 0 |𝑆[ 𝑗 ] | 0 ⟩, (7.25)

where the S-matrix in the presence of the external 𝑐-number source 𝑗𝑎 is

𝑆[ 𝑗 ] = T
(︀
𝑒𝑖 𝑗𝑎𝜑

𝑎
𝐼𝑆
)︀

= T exp
[︁
− 𝑖
∫︁ +∞

−∞
𝑑𝑡
(︀
𝑉𝐼(𝑡)− 𝑗𝑎(𝑡)𝜑𝑎𝐼 (𝑡)

)︀ ]︁
. (7.26)

2In what follows we will, when it is necessary for clarity, distinguish between the spacetime condensed index 𝑎 of any variable 𝒪𝑎

and the canonical index of 𝒪𝑎(𝑡) by a simple rule – if the time argument of the variable is explicitly written down then its index is
canonical, whereas for spacetime condensed indices and their contractions the time arguments will not be explicitly written down.
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In view of (6.66) this is a generating functional of Green's functions � vacuum expectation values of chrono-
logical products of interaction picture operators with S-matrix 𝑆[ 𝑗 ] or equivalently the matrix elements of
products of Heisenberg operators between in and out vacua,

1

𝑖𝑛
𝛿𝑛𝑍[ 𝑗 ]

𝛿𝑗𝑎1
...𝛿𝑗𝑎𝑛

= ⟨ 0 |T
(︀
𝜑𝑎1

𝐼 ...𝜑
𝑎𝑛

𝐼 𝑆[ 𝑗 ]
)︀
| 0 ⟩ = ⟨ 0,− |T

(︀
𝜑𝑎1

𝐻 ...𝜑
𝑎𝑛

𝐻

)︀
| 0,+ ⟩. (7.27)

At 𝑗 = 0 the Heisenberg operators 𝜑𝐻(𝑡) obviously coincide with those de�ned in Eqs.(7.6)-(7.7), while for the
nonvanishing sources � the situation which is called off shell � they are determined by the unitary evolution
with the total Schroedinger picture Hamiltonian including the source term,

�̂� → �̂�[ 𝑗 ](𝜑, 𝑡) = �̂�(𝜑)− 𝑗𝑎(𝑡)𝜑𝑎. (7.28)

Note that in this case even in the Schroedinger picture the Hamiltonian �̂�[ 𝑗 ](𝜑, 𝑡) is explicitly time dependent,
so that in Eq.(7.7) the following replacement should be done

𝑒𝑖�̂�𝑡 → T exp
[︁
𝑖

∫︁ 𝑡

0

𝑑𝑡′ �̂�[ 𝑗 ](𝜑, 𝑡
′)
]︁
. (7.29)

In what follows, for brevity, we will not mark o�-shell Heisenberg operators by extra label.

Problem 7.1. Show that Eqs.(7.5) and (7.7) hold off shell with �̂�(𝑡) replaced by

�̂�[ 𝑗 ](𝑡) = T†
{︂
exp

[︁
𝑖

∫︁ 𝑡

0
𝑑𝑡′ �̂�[ 𝑗 ](𝜑, 𝑡

′)
]︁}︂

𝑒−𝑖�̂�0𝑡, (7.30)

where T† denotes the anti-chronological ordering. Then the off-shell operator of unitary evolution and off-shell S-matrix read

�̂�[ 𝑗 ](𝑡+, 𝑡−) ≡ 𝑒𝑖�̂�0𝑡 T

{︃
exp

[︁
𝑖

∫︁ 𝑡+

𝑡−

𝑑𝑡 �̂�[ 𝑗 ](𝜑, 𝑡)
]︁}︃

𝑒−𝑖�̂�0𝑡 = �̂�†
[ 𝑗 ]

(𝑡+)�̂�[ 𝑗 ](𝑡−), (7.31)

𝑆[ 𝑗 ] = �̂�†
[ 𝑗 ]

(+∞) �̂�[ 𝑗 ](−∞). (7.32)

Altogether the o�-shell extension corresponds to including the sources for all phase space coordinates and
momenta in the full action of the theory

𝑆[𝜑 ]→ 𝑆[𝜑, 𝑗 ] = 𝑆[𝜑 ] + 𝑗𝑎𝜑
𝑎 = 𝑆[ 𝑞, 𝑝, 𝐽, 𝐼 ] +

∫︁ +∞

−∞
𝑑𝑡
(︀
𝐽𝑖(𝑡) 𝑞

𝑖(𝑡) + 𝐼𝑖(𝑡) 𝑝𝑖(𝑡)
)︀
. (7.33)

The in-out vacuum-to-vacuum matrix element of the operator Schwinger-Dyson equation (7.23) implies that
the same equation holds for the generating functional 𝑍[ 𝑗 ] (note that neither | 0,±⟩ nor �̂�(±∞) in (7.10)
depend on the source � these are on-shell objects)[︂

𝛿𝑆[𝜑 ]

𝛿𝜑𝑎
+ 𝑗𝑎

]︂ ⃒⃒⃒⃒
𝜑=𝛿/𝑖𝛿𝑗

𝑍[ 𝑗 ] = 0. (7.34)

As equations of motion 𝛿𝑆/𝛿𝜑𝑎 = 𝜖𝑎𝑏
(︀
�̇�𝑏 − {𝜑𝑏, 𝐻}

)︀
involve time derivatives, this equation in partial and

variational derivatives requires setting the boundary conditions both in time and in the functional space of
𝑗𝑎 = 𝑗𝑎(𝑡). The boundary conditions at 𝑡 → ±∞ follow from the following observation. Consider 𝛿𝑍/𝑖𝛿𝑗(𝑡) at
𝑡 → −∞ (the quantity that stands under the time derivative and, therefore, requiring initial conditions). It
equals

𝛿𝑍[𝜑 ]

𝑖𝛿𝑗(𝑡)

⃒⃒⃒⃒
𝑡→−∞

= ⟨ 0 |T𝜑𝐼(−∞)𝑆 | 0 ⟩ = ⟨ 0 |𝑆 𝜑𝐼(−∞) | 0 ⟩ = ⟨ 0 |𝑆 𝜑(−)𝐼 (−∞) | 0 ⟩, (7.35)

where 𝜑
(−)
𝐼 (𝑡) ∼ �̂�† 𝑒𝑖𝜔𝑡 is the negative frequency part of the free theory operator. This means that the positive

frequency part of 𝛿𝑍/𝑖𝛿𝑗(−∞) equals zero[︂
𝛿𝑍[ 𝑗 ]

𝑖 𝛿𝑗(𝑡)

]︂(+)

𝑡→−∞
∼
[︁
𝜔

𝛿

𝑖 𝛿𝐽(𝑡)
+

𝛿

𝛿𝐼(𝑡)

]︁
𝑍[ 𝐼, 𝐽 ]

⃒⃒⃒
𝑡→−∞

= 0, (7.36)
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where we took into account that this part of 𝜑𝐼(𝑡) = 𝑞𝐼(𝑡), 𝑝𝐼(𝑡) in the theory with a free Hamiltonian (6.18) is

proportional to the annihilation operator, 𝜑
(+)
𝐼 (𝑡) ∼ �̂� ∼ 𝜔𝑞𝐼(𝑡) + 𝑖𝑝𝐼(𝑡). Analogous considerations give in the

asymptotic future [︂
𝛿𝑍[ 𝑗 ]

𝑖 𝛿𝑗(𝑡)

]︂(−)
𝑡→+∞

∼
[︁
𝜔

𝛿

𝑖 𝛿𝐽(𝑡)
− 𝛿

𝛿𝐼(𝑡)

]︁
𝑍[ 𝐼, 𝐽 ]

⃒⃒⃒
𝑡→+∞

= 0. (7.37)

In other words, only positive and only negative frequency parts of the �eld are propagated by the unitary
evolution respectively to the asymptotic future and asymptotic past of the system. This is expressed by these
homogeneous boundary conditions in functional derivatives at 𝑡→ ±∞.

Now we will look for the solution of Schwinger-Dyson equation (7.34) in the form of the functional Fourier
integral

𝑍[ 𝑗 ] =

∫︁
{𝜑}

𝐷𝜑𝑒𝑖 𝑗𝑎𝜑
𝑎

𝜁[𝜑 ]. (7.38)

Note that 𝜑 = 𝜑𝑎 is a c-number �eld unlike the operators 𝜑 considered above. This is a formal generalization of
the multiple Fourier integral to in�nite dimensional case with a formally de�ned Liouville integration measure
in phase space of the theory.

𝐷𝜑 =
∏︁
𝑎

𝑑𝜑𝑎 = 𝐷𝑞𝐷𝑝 =
∏︁
𝑡

(︁∏︁
𝑖

𝑑𝑞𝑖(𝑡)
)︁ ∏︁

𝑡

(︁∏︁
𝑖

𝑑𝑝𝑖(𝑡)
)︁
. (7.39)

Integration here runs over the class of �elds {𝜑 } = {𝜑(𝑡) } which should be speci�ed regarding the behavior
of their �paths� in time at 𝑡→ ±∞. We will derive this class from the boundary conditions for 𝑍[ 𝑗 ] obtained
above.

Using (7.38) we consecutively have[︂
𝛿𝑆[𝜑 ]

𝛿𝜑𝑎
+ 𝑗𝑎

]︂ ⃒⃒⃒⃒
𝜑=𝛿/𝑖𝛿𝑗

𝑍[ 𝑗 ] =

∫︁
{𝜑}

𝐷𝜑𝜁[𝜑 ]
(︁𝛿𝑆[𝜑 ]

𝛿𝜑𝑎
+ 𝑗𝑎

)︁
𝑒𝑖 𝑗𝑏𝜑

𝑏

=

∫︁
{𝜑}

𝐷𝜑𝜁[𝜑 ]
(︁𝛿𝑆[𝜑 ]

𝛿𝜑𝑎
+

𝛿

𝑖 𝛿𝜑𝑎

)︁
𝑒𝑖 𝑗𝑏𝜑

𝑏

=

∫︁
{𝜑}

𝐷𝜑
(︁𝛿𝑆[𝜑 ]

𝛿𝜑𝑎
𝜁[𝜑 ]− 𝛿𝜁[𝜑 ]

𝑖 𝛿𝜑𝑎

)︁
𝑒𝑖 𝑗𝑏𝜑

𝑏

, (7.40)

where we functionally integrated by parts on the assumption that the rules of Fourier transform apply also in
the functional case. Equating the right hand side to zero we get

𝛿 ln 𝜁[𝜑 ]

𝑖 𝛿𝜑𝑎
=
𝛿𝑆[𝜑 ]

𝛿𝜑𝑎
, (7.41)

whence

𝜁[𝜑 ] = const 𝑒𝑖 𝑆[𝜑 ], (7.42)

where 𝑆[𝜑 ] is the canonical action (7.21) with a yet unknown boundary term 𝑆𝐵 . This term should guarantee
the correctness of the variational procedure which, in its turn, is determined by the class of functions 𝜑(𝑡) over
which the integration takes place. This class can be derived from the boundary conditions (7.36)-(7.37). Indeed,
these boundary conditions imply[︁

𝜔
𝛿

𝑖 𝛿𝐽(𝑡)
± 𝛿

𝛿𝐼(𝑡)

]︁
𝑍[ 𝑗 ]

⃒⃒⃒
𝑡→∓∞

=

∫︁
{𝜑}

𝐷𝜑𝑒𝑖 𝑗𝑎𝜑
𝑎

𝜁[𝜑 ]
(︀
𝜔𝑞(𝑡)± 𝑖𝑝(𝑡)

)︀ ⃒⃒⃒
𝑡→∓∞

= 0, (7.43)

and they get granted if this class consists of functions having positive or negative frequency asymptotics respec-
tively at future and past in�nities,

{𝜑(𝑡) } : 𝜔𝑞(𝑡)± 𝑖𝑝(𝑡)
⃒⃒
𝑡→∓∞ = 0. (7.44)

Thus phase space integration variables in the path integral repeat the boundary conditions for the vacuum-to-
vacuum matrix elements of Heisenberg operators.
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Then educated guess hints that the surface term in the canonical action takes the form

𝑆𝐵 =
𝑖

2
𝜔 𝑞2

⃒⃒⃒
𝑡→+∞

+
𝑖

2
𝜔 𝑞2

⃒⃒⃒
𝑡→−∞

, (7.45)

because the variation of the total action (7.21) reads

𝛿𝑆[𝜑 ] =

𝑡+∫︁
𝑡−

𝑑𝑡 𝛿𝜑𝑎𝜖𝑎𝑏
(︀
�̇�𝑏 − {𝜑𝑏, 𝐻}

)︀ ⃒⃒⃒
𝑡±→±∞

+ (𝑝+ 𝑖𝜔 𝑞) 𝛿𝑞
⃒⃒⃒
𝑡→+∞

− (𝑝− 𝑖𝜔 𝑞) 𝛿𝑞
⃒⃒⃒
𝑡→−∞

, (7.46)

and with the boundary conditions of the above type does not at all contain surface terms at 𝑡± = ±∞. It
contains only the bulk term which con�rms the expression (7.22) for the functional derivative of the action.
This expression was critically important for the derivation of the path integral form of 𝑍[ 𝑗 ].

Note that this result fully agrees with quantum mechanical path integral for the kernel of the unitary
evolution in the Schroedinger picture representation,

𝑈( 𝑡+, 𝑞+| 𝑡−, 𝑞−) = const

∫︁
𝑞(𝑡±)=𝑞±

𝐷𝑞𝐷𝑝 exp
{︁
𝑖

∫︁ 𝑡+

𝑡−

𝑑𝑡
(︀
𝑝𝑞 −𝐻(𝑞, 𝑝)

)︀}︁
, (7.47)

where the integration runs over the phase space paths interpolating between the coordinate points 𝑞+ at 𝑡+ and
𝑞− at 𝑡−. With the vacuum state in the coordinate representation (6.17) the vacuum-to-vacuum matrix element
of this evolution operator equals∫︁

𝑑𝑞+ 𝑑𝑞− 𝛹
*
0 ( 𝑞+)𝑈( 𝑡+, 𝑞+| 𝑡−, 𝑞−)𝛹0( 𝑞−)

= const

∫︁
𝐷𝑞𝐷𝑝 exp

{︁
𝑖

∫︁ 𝑡+

𝑡−

𝑑𝑡
(︀
𝑝𝑞 −𝐻(𝑞, 𝑝)

)︀
− 1

2
𝜔 𝑞2+ −

1

2
𝜔 𝑞2−

}︁
, (7.48)

where the path integration now runs also over end points 𝑞±. The total action in the exponential of this
integrand con�rms the form of the surface term (7.45). The boundary conditions on a full set of phase space
variables 𝜑 = 𝑞, 𝑝 at 𝑡± are not directly visible here, but they can be derived at least within the saddle-point
approximation for the path integral, which will be done later.

Let us summarize what we have got thus far:

The generating functional of Green’s functions is given by the phase space functional integral

𝑍[ 𝑗 ] = const

∫︁
{𝜑}

𝐷𝜑𝑒𝑖
(︀
𝑆[𝜑 ]+𝑗𝑎𝜑

𝑎
)︀
, (7.49)

where 𝑆[𝜑 ] = 𝑆[ 𝑞, 𝑝 ] is the canonical action on phase space of 𝜑𝑎 = 𝑞𝑖(𝑡), 𝑝𝑖(𝑡) and integration runs over the class of paths in this
space {𝜑} = {𝜑(𝑡) } satisfying special positive-negative frequency boundary conditions

𝑆[ 𝑞, 𝑝 ] =

∫︁ +∞

−∞
𝑑𝑡

(︀
𝑝𝑞 −𝐻(𝑞, 𝑝)

)︀
+
𝑖

2
𝜔 𝑞2

⃒⃒⃒
𝑡→+∞

+
𝑖

2
𝜔 𝑞2

⃒⃒⃒
𝑡→−∞

, (7.50)

{𝜑(𝑡) } : 𝜔𝑞(𝑡)± 𝑖𝑝(𝑡)
⃒⃒
𝑡→∓∞ = 0. (7.51)

The constant normalization of 𝑍[ 𝑗 ] remains undefined, but it is physically irrelevant because, as we will see below, it does affect
S-matrix.

7.3 Calculation of the path integral via the Gaussian functional integral

The rules of path (functional) integration might seem not rigorous and incomplete for the calculation of
S-matrix and relevant physical amplitudes. Here we will show that the rules formulated above are actually
su�cient for calculations within perturbation theory. This is based on the reduction of these calculations to the
calculation of the Gaussian path integrals. In certain sense this is a counterpart to the mathematical justi�cation
of Fourier transform via Gaussian integration.
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To begin with, note that the splitting of the total Hamiltonian in the quadratic part and nonlinear interaction
𝐻 = 𝐻0 + 𝑉 corresponds to relevant decomposition of the total canonical action into the quadratic and
interaction parts (similar to the expansion (6.45)). In supercondensed form this reads as

𝑆[𝜑 ] =
1

2
𝑆𝜑𝜑 𝜑

2 + 𝑆int[𝜑 ], (7.52)

𝑆int[𝜑 ] ≡ −𝑖
∫︁ +∞

−∞
𝑑𝑡 𝑉

(︀
𝜑(𝑡)

)︀
=

∞∑︁
𝑛=3

1

𝑛!
𝑆
(𝑛)
0 𝜑𝑛, (7.53)

where 𝑆𝜑𝜑 = 𝑆(2) ≡ 𝛿2𝑆/𝛿𝜑 𝛿𝜑 |𝜑0 and 𝑆
(𝑛)
0 are the second and higher order functional derivatives of the action

at the background value of the �eld 𝜑0 which for simplicity is assumed to be zero. 𝑆0 = 𝑆[𝜑0 ] is also assumed
to be zero (or absorbed into a constant normalization of 𝑍[ 𝑗 ], which we will also omit in what follows), and the
linear term is absent, because 𝜑0 is a background solution of equations of motion. With these notations 𝑍[ 𝑗 ]
can be rewritten as

𝑍[ 𝑗 ] =

∫︁
{𝜑}

𝐷𝜑𝑒𝑖
(︀
𝑆[𝜑 ]+𝑗𝑎𝜑

𝑎
)︀

= exp
(︁
𝑆int

[︁ 𝛿

𝑖𝛿𝑗

]︁)︁ ∫︁
{𝜑}

𝐷𝜑𝑒
𝑖
2 𝑆𝜑𝜑𝜑

2+𝑖 𝑗𝜑, (7.54)

where we extracted the contribution of the interaction term outside of the integral in terms of the exponentiated
functional variation operator exp (𝑆int[ 𝛿/𝑖𝛿𝑗 ]). This is, of course, a commutative analogue of the operator
relation (7.13), which is based on a simple fact that 𝑒𝑖 𝑗𝜑 is an eigenfunction of the di�erentiation operator 𝛿/𝑖𝛿𝑗
with the eigenvalue 𝜑.

We have got here the Gaussian integral of the form

𝑍0[𝐹, 𝑗 ] =

∫︁
{𝜑}

𝐷𝜑𝑒
𝑖
2 𝜑𝑎𝐹𝑎𝑏𝜑

𝑏+𝑖 𝑗𝑎𝜑
𝑎

, (7.55)

where the functional quadratic form with the kernel 𝐹𝑎𝑏 = 𝛿2𝑆/𝛿𝜑𝑎𝛿𝜑𝑏 � an operator acting in the space of 𝜑𝑏

� reads in spacetime condensed notations and canonical condensed notations respectively as

𝑖

2
𝜑𝑎𝐹𝑎𝑏𝜑

𝑏 =
𝑖

2

𝑡+∫︁
𝑡−

𝑑𝑡 𝑑𝑡′ 𝜑𝑎(𝑡)
𝛿2𝑆[𝜑 ]

𝛿𝜑𝑎(𝑡) 𝛿𝜑𝑏(𝑡′)
𝜑𝑎(𝑡′). (7.56)

For a local Hamiltonian action (7.50) 𝐹𝑎𝑏 is a delta-function type kernel of the �rst order di�erential in time
operator 𝑆𝑎𝑏(𝑑/𝑑𝑡)

𝐹𝑎𝑏 =
𝛿2𝑆[𝜑 ]

𝛿𝜑𝑎(𝑡) 𝛿𝜑𝑏(𝑡′)
= 𝑆𝑎𝑏

(︁ 𝑑

𝑑𝑡

)︁
𝛿(𝑡− 𝑡′), (7.57)

𝑆𝑎𝑏

(︁ 𝑑

𝑑𝑡

)︁
= 𝜖𝑎𝑏

𝑑

𝑑𝑡
− 𝜕2𝐻(𝜑)

𝜕𝜑𝑎 𝜕𝜑𝑏
. (7.58)

Problem 7.2. Derive this expression.

Integration in the Gaussian integral (7.55) runs over paths denoted by {𝜑} with some linear homogeneous
boundary conditions at 𝑡±, which in our case are given by positive-negative frequency boundary conditions
(7.44). In the calculation of (7.55) their type will be unimportant for a time being, because we want to calculate
this integral in a more general case. Also we can keep the limits 𝑡± �nite, rather than taking them to in�nity.

If (7.55) were a �nite dimensional integral, its calculation would be trivial and would reduce to �nding the
determinant of the �nite dimensional matrix 𝐹𝑎𝑏 and its inverse. In the functional case the derivation is more
involved and seriously uses the boundary conditions. First of all, shift the integration variables 𝜑 = 𝜑0 + 𝜙 in
such a way that 𝜑0 solves the condition of stationarity of the exponential in (7.55) (the �classical equation of
motion� for the full exponentiated action) and demand that 𝜙 satis�es the same boundary conditions as {𝜑} �
that is belongs to the same functional space {𝜑}. This means that 𝜑0 satis�es the equation

𝐹𝑎𝑏𝜑
𝑏
0 + 𝑗𝑎 = 0 (7.59)
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and the same linear homogeneous boundary condition. Then, if 𝐹𝑎𝑏 is invertible on the functional space {𝜑},
then

𝜑𝑎0 = 𝐺𝑎𝑏𝑗𝑏, 𝐹𝑎𝑏𝐺
𝑏𝑐 = −𝛿𝑐𝑎, (7.60)

where 𝐺𝑎𝑏 is the inverse of 𝐹𝑎𝑏 on this space � the Green's function of the operator (7.57) subject the boundary
conditions of {𝜑}. Using the decomposition 𝜑 = 𝜑0 + 𝜙 in (7.55) we have

𝑍0[𝐹, 𝑗 ] = exp
(︁ 𝑖

2
𝑗𝑎𝐺

𝑎𝑏𝑗𝑏

)︁ ∫︁
{𝜑}

𝐷𝜙𝑒
𝑖
2 𝜙𝑎𝐹𝑎𝑏𝜙

𝑏

= exp
(︁ 𝑖

2
𝑗𝑎𝐺

𝑎𝑏𝑗𝑏

)︁
𝑍0[𝐹, 0 ]. (7.61)

To �nd 𝑍0[𝐹, 0 ] make the following chain of identical transformations for the variation of this quantity with
respect to the operator variation, 𝐹𝑎𝑏 → 𝐹𝑎𝑏 + 𝛿𝐹𝑎𝑏,

𝛿𝐹𝑍0[𝐹, 0 ] =
𝑖

2

∫︁
{𝜑}

𝐷𝜙 (𝜙 𝛿𝐹𝜙) 𝑒
𝑖
2 𝜙𝐹𝜙 =

𝑖

2
𝛿𝐹𝑎𝑏

𝛿2𝑍0[𝐹, 𝑗 ]

𝑖𝛿𝑗𝑏 𝑖𝛿𝑗𝑎

⃒⃒⃒
𝑗=0

=
1

2
𝛿𝐹𝑏𝑎𝐺

𝑎𝑏𝑍0[𝐹, 0 ], (7.62)

whence

𝛿𝐹
(︀

ln𝑍0[𝐹, 0 ]
)︀

= −1

2
𝛿𝐹𝑏𝑎

(︀
𝐹−1

)︀𝑎𝑏
= −1

2
Tr
(︀
𝐹−1𝛿𝐹

)︀
, (7.63)

or

𝑍0[𝐹, 0 ] = const exp
(︁
− 1

2
Tr ln𝐹

)︁
= const

(︀
Det𝐹

)︀−1/2
, (7.64)

where Tr and Det denote the functional trace and the functional determinant of the operator on the correspond-
ing space of functions with given boundary conditions.

Problem 7.3. Prove this formal relation, lnDet𝐹 = Tr ln𝐹 , between the trace of the logarithm of a linear operator and its
determinant.
Hint: Use variational equation for a determinant and write down the integral representation for 𝐹−1 =

∫︀∞
0 𝑑𝑠 𝑒−𝑠𝐹 and for

ln(𝐹/𝐹0) = −
∫︀∞
0 𝑑𝑠 (𝑒−𝑠𝐹 − 𝑒−𝑠𝐹0 )/𝑠.

Thus, �nally the Gaussian path integral equals

𝑍0[𝐹, 𝑗 ] ≡
∫︁
{𝜑}

𝐷𝜑𝑒
𝑖
2 𝜑𝑎𝐹𝑎𝑏𝜑

𝑏+𝑖 𝑗𝑎𝜑
𝑎

= const
(︁

Det𝐹𝑎𝑏

)︁−1/2
exp

(︁ 𝑖
2
𝑗𝑎𝐺

𝑎𝑏𝑗𝑏

)︁
, 𝐹𝑎𝑏𝐺

𝑏𝑐 = −𝛿𝑐𝑎, (7.65)

where the Green's function 𝐺𝑎𝑏 and the functional determinant of 𝐹𝑎𝑏 are both determined by boundary
conditions of the functional space {𝜑}. For a �nite dimensional multiple Gaussian path integral the question of
boundary conditions never arises, but in the path integral case such speci�cation regarding boundary conditions
is critically important, because they are invoked to �x uniquely 𝐺𝑎𝑏 and Det𝐹𝑎𝑏 .

Using this result for the Gaussian path integral in (7.54) we get

𝑍[ 𝑗 ] = const exp
(︁
𝑖 𝑆int

[︁ 𝛿

𝑖𝛿𝑗

]︁)︁
exp

(︁ 𝑖
2
𝑗𝑎𝐺

𝑎𝑏𝑗𝑏

)︁
, (7.66)

where all preexponential factors, including the 𝑗-independent (Det𝐹 )−1/2 (note that 𝐹 = 𝑆𝜑𝜑 |𝜑0
is independent

of the source), are included into the constant normalization coe�cient.

Lecture 8. S-matrix in Lagrangian formalism and LSZ reduction for-
mulae

� Wick theorem for chronological products

� Path integral in the Lagrangian form � integration over momenta

� Transition to Lagrangian formalism

� Lehman-Symanzik-Zimmermann (LSZ) reduction formulae

42



8.1 Wick theorem for chronological products

The above expression for the generating functional, which was derived from the Gaussian integration
method, should of course be understood as a perturbation theory in interaction part of the action

exp
(︁
𝑖 𝑆int

[︁ 𝛿

𝑖𝛿𝑗

]︁)︁
= 1 + 𝑖 𝑆int

[︁ 𝛿

𝑖𝛿𝑗

]︁
+

1

2

(︁
𝑖 𝑆int

[︁ 𝛿

𝑖𝛿𝑗

]︁)︁2
+ ... . (8.1)

We show now that it corresponds to the functional formulation of the Wick theorem for chronological products
� the so-called Chori formula. For this purpose this expression can be further transformed as follows.

We represent the second factor in (7.66) as the result of action of the exponentiated di�erential operator in
variational derivatives 𝛿/𝛿𝜑 on 𝑒𝑖𝐽𝜑 at 𝜑 = 0

exp
(︁ 𝑖

2
𝑗𝑎𝐺

𝑎𝑏𝑗𝑏

)︁
= exp

(︁
− 𝑖

2

𝛿

𝛿𝜑𝑎
𝐺𝑎𝑏 𝛿

𝛿𝜑𝑏

)︁
𝑒𝑖𝑗𝜑

⃒⃒⃒
𝜑=0

, (8.2)

and then commute the di�erential operators in 𝜑 with that in 𝑗,

𝑍[ 𝑗 ] = const exp
(︁
𝑖 𝑆int

[︁ 𝛿

𝑖𝛿𝑗

]︁)︁
exp

(︁
− 𝑖

2

𝛿

𝛿𝜑𝑎
𝐺𝑎𝑏 𝛿

𝛿𝜑𝑏

)︁
𝑒𝑖𝑗𝜑

⃒⃒⃒
𝜑=0

,

= const exp
(︁
− 𝑖

2

𝛿

𝛿𝜑𝑎
𝐺𝑎𝑏 𝛿

𝛿𝜑𝑏

)︁
𝑒 𝑖𝑆int[𝜑 ]+𝑖𝑗𝜑

⃒⃒⃒
𝜑=0

(8.3)

This result of the Gaussian integration and perturbation theory in 𝑆int corresponds to the transformation
of the chronological operator ordering to the normal ordering � Wick theorem for chronological products of
interaction picture operators. This is the analogue of the Wick theorem for their symmetrized products. For
any monomial of operators 𝜙 linear in creation-annihilation operators it reads as a sum of normal products of
the monomials with all possible chronological contractions of pairs of operators 𝜙,

T𝜙1...𝜙𝑛 =: 𝜙1...𝜙𝑛 : +
∑︁
single

contractions

: 𝜙1𝜙2...𝜙𝑛 : +
∑︁
double

contractions

: 𝜙1𝜙2𝜙3𝜙4...𝜙𝑛 : + ... , (8.4)

𝜙1𝜙2 = T (𝜙1𝜙2)− : 𝜙1𝜙2 : = ⟨ 0 |T𝜙1𝜙2 | 0 ⟩. (8.5)

Similarly to (6.38) for monomials of interaction picture operators it can be rewritten in the functional form with
the help of the chronological contraction 𝐷𝑎𝑏

𝑇

T
(︁
𝜑𝑎1

𝐼 ...𝜑
𝑎𝑛

𝐼

)︁
= : exp

(︂
1

2

𝛿

𝛿𝜑𝑎
𝐷𝑎𝑏

𝑇

𝛿

𝛿𝜑𝑏

)︂
𝜑𝑎1 ...𝜑𝑎𝑛

⃒⃒⃒
𝜑→𝜑𝐼

: , (8.6)

𝐷𝑎𝑏
𝑇 = 𝜑𝑎𝐼 𝜑

𝑏
𝐼 = ⟨ 0 |T𝜑𝑎𝐼 𝜑𝑏𝐼 | 0 ⟩ = 𝜃(𝑡− 𝑡′) ⟨ 0 |𝜑𝑎𝐼 (𝑡)𝜑𝑏𝐼(𝑡′) | 0 ⟩+ 𝜃(𝑡′ − 𝑡) ⟨ 0 |𝜑𝑏𝐼(𝑡′)𝜑𝑎𝐼 (𝑡) | 0 ⟩ (8.7)

Here in 𝐷𝑎𝑏
𝑇 = 𝐷𝑎𝑏

𝑇 (𝑡, 𝑡′) the arguments 𝑡 and 𝑡′ are associated with the condensed indices 𝑎 and 𝑏 respectively.
Let us prove now that this contraction is directly related to the Green's function 𝐺𝑎𝑏 of the operator (7.57)

with the positive/negative frequency boundary conditions (7.44) at future/past in�nities,

𝐺𝑎𝑏 = 𝑖𝐷𝑎𝑏
𝑇 = 𝑖 ⟨ 0 |T𝜑𝑎𝐼 𝜑𝑏𝐼 | 0 ⟩. (8.8)

In view of the positive/negative frequency decomposition (6.41) 𝐷𝑎𝑏
𝑇 (𝑡, 𝑡′) ∼ 𝑒∓𝑖𝜔𝐴𝑡 at 𝑡 → ±∞, so that it

satis�es the same boundary conditions as 𝐺𝑎𝑏 = 𝐺𝑎𝑏(𝑡, 𝑡′). Moreover, by acting with the operator (7.57) on
𝐷𝑎𝑏

𝑇 (𝑡, 𝑡′) we get

𝑆𝑎𝑏(𝑑/𝑑𝑡)𝐷
𝑏𝑐
𝑇 (𝑡, 𝑡′) = 𝛿(𝑡− 𝑡′) 𝜖𝑎𝑏⟨ 0 | [𝜑𝑏𝐼(𝑡), 𝜑𝑐𝐼(𝑡′)] | 0 ⟩ = 𝑖 𝛿(𝑡− 𝑡′) 𝛿𝑐𝑎. (8.9)

Here we took into account that 𝑆𝑎𝑏𝜑
𝑏
𝐼 = 0 and used a usual property of the step function, 𝜕𝑡𝜃(𝑡− 𝑡′) = 𝛿(𝑡− 𝑡′)

along with the equal-time commutator of phase space operators and normalization of the vacuum state ⟨ 0 | 0 ⟩ =
1. Thus 𝑖𝐷𝑎𝑏

𝑇 satis�es the same equation as 𝐺𝑎𝑏,

𝑆𝑎𝑏𝐺
𝑏𝑐 = −𝛿𝑐𝑎, (8.10)
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and has the same boundary conditions at 𝑡 → ±∞. As we believe that these boundary conditions uniquely
de�ne the Green's function of the operator 𝑆𝑎𝑏, the two-point function 𝑖𝐷

𝑎𝑏
𝑇 indeed coincides with 𝐺𝑎𝑏.3

With this observation Wick theorem for chronologically ordered monomials (8.6) can obviously be extended
to chronologically ordered functionals expandable in power series

T𝐹 [𝜑𝐼 ] = : exp

(︂
− 𝑖

2

𝛿

𝛿𝜑𝑎
𝐺𝑎𝑏 𝛿

𝛿𝜑𝑏

)︂
𝐹 [𝜑 ]

⃒⃒⃒
𝜑→𝜑𝐼

: . (8.11)

When applied to the functional 𝐹 [𝜑 ] = 𝑒 𝑖𝑆int[𝜑 ]+𝑖𝜑 𝑗 � the chronological ordering symbol of the S-matrix in
the presence of sources (7.26) (see the notation for the interaction part of the action (7.53))

𝑆[ 𝑗 ] = T
(︀
𝑒𝑖 𝑗𝑎𝜑

𝑎
𝐼𝑆
)︀

= T exp
(︁
𝑖 𝑆int[𝜑𝐼 ] + 𝑖𝜑𝐼𝑗

)︁
, (8.12)

and bearing in mind that ⟨ 0 | : 𝒪[𝜑𝐼 ] : | 0 ⟩ = 𝒪[ 0 ] this chronological Wick theorem immediately gives

⟨ 0 |𝑆[ 𝑗 ] | 0 ⟩ = exp
(︁
− 𝑖

2

𝛿

𝛿𝜑𝑎
𝐺𝑎𝑏 𝛿

𝛿𝜑𝑏

)︁
exp

(︁
𝑖 𝑆int[𝜑 ] + 𝑖𝜑 𝑗

)︁ ⃒⃒⃒
𝜑=0

, (8.13)

which coincides up to a constant factor with 𝑍[ 𝑗 ] � the generating functional (8.3). This derivation in fact
recovers the original de�nition of the generating functional as a vacuum expectation value of S-matrix in the
presence of sources (7.25) and can serve as a con�rmation of equivalence between the Gaussian path integration
method and the functional formulation of the chronological Wick theorem. Unit value of the normalization
constant in (8.3), which is not determined from the derivation of the Gaussian integral in (7.62)-(7.64), easily
follows from the fact that 𝑆 = 1̂ when both the interaction 𝑆int and the sources 𝑗 are switched o�.

Now we aready to derive the expression for on-shell S-matrix directly in terms of the generating functional
𝑍[ 𝑗 ] � the so-called reduction formulae. We have for on-shell S-matrix

𝑆 = T exp
(︁
𝑖 𝑆int[𝜑𝐼 ]

)︁
= : exp

(︁
− 𝑖

2

𝛿

𝛿𝜑𝑎
𝐺𝑎𝑏 𝛿

𝛿𝜑𝑏

)︁
exp

(︁
𝑖 𝑆int[𝜑 ]

)︁ ⃒⃒⃒
𝜑→𝜑𝐼

:

= : exp
(︁
𝑖 𝑆int

[︁ 𝛿

𝑖𝛿𝑗

]︁)︁
exp

(︁
− 𝑖

2

𝛿

𝛿𝜑𝑎
𝐺𝑎𝑏 𝛿

𝛿𝜑𝑏

)︁
𝑒 𝑖 𝑗𝜑

⃒⃒⃒
𝜑→𝜑𝐼 , 𝑗=0

:

= : exp
(︁
𝑖 𝑆int

[︁ 𝛿

𝑖𝛿𝑗

]︁)︁
exp

(︁ 𝑖
2
𝑗𝑎𝐺

𝑎𝑏𝑗𝑏 + 𝑖 𝑗𝑎𝜑
𝑎
𝐼

)︁
:
⃒⃒⃒
𝑗=0

, (8.14)

where we commuted the di�erential operators in variational derivatives with respect to 𝜑 and 𝑗. Now we can
rewrite the exponential as follows

𝑖

2
𝑗𝑎𝐺

𝑎𝑏𝑗𝑏 + 𝑖 𝑗𝑎𝜑
𝑎
𝐼 =

𝑖

2
(𝑗𝑎 − 𝜑𝑐𝐼

→
𝑆 𝑐𝑎)𝐺𝑎𝑏(𝑗𝑏−

←
𝑆 𝑏𝑑 𝜑

𝑑
𝐼). (8.15)

Here
→
𝑆 𝑐𝑎 denotes the usual action of the di�erential operator to the right, whereas

←
𝑆 𝑏𝑑 implies its action to the

left in the sense of integration by parts of its time (and space if ever) derivatives. Explicitly, for any two test
functions

𝜓𝑏
←
𝑆 𝑏𝑑 𝜑

𝑑 =

+∞∫︁
−∞

𝑑𝑡
(︁
− 𝑑

𝑑𝑡
𝜓𝑏(𝑡)𝜖𝑏𝑑 − 𝜓𝑏(𝑡)𝐻𝑏𝑑

)︁
𝜑𝑑(𝑡) =

+∞∫︁
−∞

𝑑𝑡
[︀
𝑆𝑑𝑏(𝑑/𝑑𝑡)𝜓

𝑏(𝑡)
]︀
𝜑𝑑(𝑡), (8.16)

where 𝐻𝑏𝑑 = 𝜕2𝐻(𝜑)/𝜕𝜑𝑏 𝜕𝜑𝑑 and in the second equality we use the symmetry of the operator (7.57), 𝑆𝑏𝑑 = 𝑆𝑑𝑏.
It follows from the symmetry of second order functional derivatives or from the symmetry properties under the
functional transposition (𝑑/𝑑𝑡)𝑇 = −𝑑/𝑑𝑡 and 𝜖𝑏𝑑 = −𝜖𝑑𝑏. Obviously, the quadratic forms di�ering by the

3We agreed above to distinguish spacetime condensed and canonical condensed notations by either omitting or explicitly writing
down time labels. Correspondingly for differential in time operators and their kernels when the time derivative is explicitly
written down as an argument of the operator, its indices are assumed to be of canonical condensed nature. For example, the
chain of notations for one and the same object, 𝑆𝜑𝜑(≡ 𝛿2𝑆/𝛿𝜑 𝛿𝜑) = 𝑆𝑎𝑏(≡ 𝛿2𝑆/𝛿𝜑𝑎𝛿𝜑𝑏) = 𝑆𝑎𝑏(𝑑/𝑑𝑡) 𝛿(𝑡 − 𝑡′), runs from the
supercondensed notation to spacetime condensed and then canonical condensed one. Correspondingly, the action of the operator
in these notations looks like 𝑆𝜑𝜑𝜑 = 𝑆𝑎𝑏𝜑

𝑏 =
∫︀
𝑑𝑡′ 𝑆𝑎𝑏(𝑑/𝑑𝑡) 𝛿(𝑡− 𝑡′)𝜑𝑏(𝑡′) = 𝑆𝑎𝑏(𝑑/𝑑𝑡)𝜑

𝑏(𝑡).
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direction of the operator action in their kernels di�er from each other by the boundary term following from
integration by parts. In case of the �rst-order di�erential in time operator 𝑆𝑎𝑏 this reads

𝜓𝑎
→
𝑆𝑎𝑏𝜑

𝑏 = 𝜓𝑎
←
𝑆𝑎𝑏𝜑

𝑏 + 𝜓𝑎(𝑡)𝜖𝑎𝑏𝜑
𝑏(𝑡)

⃒⃒⃒ 𝑡=+∞

𝑡=−∞
, (8.17)

With these notations the right hand side of (8.15) indeed reproduces the left hand side, because

→
𝑆𝜑𝜑𝐺 = 𝐺

←
𝑆𝜑𝜑= −1,

→
𝑆𝜑𝜑𝜑𝐼 = 𝜑𝐼

←
𝑆𝜑𝜑= 0, (8.18)

and the S-matrix in Eq.(8.14) takes the form

𝑆 = : exp
(︁
𝑖 𝑆int

[︁ 𝛿

𝑖𝛿𝑗

]︁)︁
exp

(︁ 𝑖
2
𝑗𝑎𝐺

𝑎𝑏𝑗𝑏

)︁ ⃒⃒⃒
𝑗=−𝜑𝐼

→
𝑆𝜑𝜑

: , (8.19)

but what stands here under the sign of normal ordering is just the generating functional 𝑍[ 𝑗 ] (see Eq.(7.66))
at a special value of the source. Therefore

𝑆 = :𝑍
[︀
− 𝜑𝐼

→
𝑆𝜑𝜑

]︀
: . (8.20)

The normal ordering symbol of S-matrix is the generating functional of Green's functions 𝑍[ 𝑗 ] at weakly
vanishing value of the source expressed in terms of the interaction picture �eld 𝜑𝐼

𝑗𝑎 = −𝜑𝑏𝐼
→
𝑆 𝑏𝑎 . (8.21)

Weakly vanishing or on-shell source means that the contribution of the source reduces to surface terms, because

integration by parts of the operator
−→
𝑆 𝑏𝑎 reverses its action on the interaction picture �eld 𝜑𝐼 and annihilates it

along with its local contribution in the bulk. For example, if the generating functional is represented in terms
of the path integral (7.49),

𝑍
[︀
− 𝜑𝐼

→
𝑆𝜑𝜑

]︀
= const

∫︁
{𝜑}

𝐷𝜑 exp
(︁
𝑖𝑆[𝜑 ]− 𝑖𝜑𝑏𝐼

→
𝑆 𝑏𝑎 𝜑

𝑎
)︁

= const

∫︁
{𝜑}

𝐷𝜑 exp
(︁
𝑖 𝑆[𝜑 ]− 𝑖 𝜑𝑏𝐼𝜖𝑏𝑎𝜑𝑎

⃒⃒+∞
−∞

)︁
, (8.22)

then what remains from the source term is just a symplectic form bilinear in 𝜑𝐼(𝑡) and the integration �eld 𝜑(𝑡)
located at 𝑡→ ±∞.

8.2 Path integral in the Lagrangian form – integration over momenta

For theories with the Lagrangian action quadratic in velocities 𝑞 and the corresponding Hamiltonians
quadratic in canonical momenta 𝑝,

𝑆𝐿[ 𝑞 ] =

∫︁
𝑑𝑡
[︁ 1

2
𝑎𝑖𝑘(𝑞) 𝑞𝑖𝑞𝑘 + 𝑏𝑖(𝑞) 𝑞

𝑖 − 𝑉 (𝑞)
]︁
, (8.23)

𝑝𝑖 = 𝑎𝑖𝑘(𝑞) 𝑞𝑘 + 𝑏𝑖 ≡ 𝑝0𝑖 (𝑞, 𝑞), (8.24)

𝐻(𝑞, 𝑝) =
1

2
𝑝𝑖𝑎

𝑖𝑘𝑝𝑘 − 𝑝𝑖𝑎𝑖𝑘𝑏𝑘 + 𝑉 (𝑞) +
1

2
𝑏𝑖𝑎

𝑖𝑘𝑏𝑘, 𝑎𝑖𝑘 =
(︀
𝑎𝑖𝑘
)︀−1

, (8.25)

the above formalism can be easily reformulated in terms of the Lagrangian formalism without resorting to
the Hamiltonian framework. This can be done by explicit integration in the canonical path integral over the
momenta. This is possible because this integral is exactly Gaussian one. We have∫︁

𝐷𝑞𝐷𝑝 𝑒𝑖𝑆[ 𝑞,𝑝 ] =

∫︁
𝐷𝑞
(︀

Det 𝑎𝑖𝑘
)︀1/2

𝑒 𝑖𝑆𝐿[ 𝑞 ], (8.26)
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where the Lagrangian action (the subscript 𝐿 indicating that this is the Lagrangian action) follows from the
canonical action by the substitution for the momenta their expression (8.24) in terms of 𝑞 and 𝑞,

𝑆𝐿[ 𝑞 ] = 𝑆[ 𝑞, 𝑝 ]
⃒⃒
𝑝=𝑝0(𝑞,𝑞)

. (8.27)

As the result we also get additional factor in the integration measure which is determined by the functional
determinant of the matrix 𝑎𝑖𝑘 � the kernel of the kinetic quadratic form in the Lagrangian. For local theories
this matrix is ultralocal in time, that is proportional to undi�erentiated delta function, 𝑎𝑖𝑘 = 𝑎𝑖𝑘(𝑡) 𝛿(𝑡 − 𝑡′),
with the spacetime condensed indices 𝑖 ↦→ (𝑖, 𝑡), 𝑘 ↦→ (𝑘, 𝑡′). Its functional determinant reads

Det 𝑎𝑖𝑘 = exp
(︀

Tr ln 𝑎𝑖𝑘
)︀

= exp
(︁ ∫︁

𝑑𝑡
(︀

tr ln 𝑎𝑖𝑘(𝑡)
)︀
𝛿(𝑡− 𝑡′)

⃒⃒
𝑡′=𝑡

)︁
= exp

(︁
𝛿(0)

∫︁
𝑑𝑡 ln

(︀
det 𝑎𝑖𝑘(𝑡)

)︀)︁
, (8.28)

where tr and det denote the functional trace and determinant operations with respect to canonical condensed
indices. Because of 𝛿(0) this is a pure divergence whose origin can be traced back to the formal de�nition of
path integral with the measure (7.39). Within this de�nition the measure of integration in the Lagrangian path
integral can be understood as

𝐷𝑞
(︀
Det 𝑎

)︀1/2
=
∏︁
𝑡

𝑑𝑞(𝑡)
(︀
det 𝑎𝑖𝑘(𝑡)

)︀1/2
, (8.29)

where the formal product over the time points is approximated by the skeletonization of the range of the time
variable � forming the lattice of points separated by the intervals of length ∆𝑡 → 0. This length becomes
a regularization parameter in terms of which the regulated coincidence limit of the delta function is 𝛿(0) =
1/∆𝑡→∞. Therefore the regularized functional determinant of the ultralocal measure matrix becomes

(︀
Det 𝑎

)︀1/2
= exp

(︁1

2
𝛿(0)

∫︁
𝑑𝑡 ln det 𝑎𝑖𝑘(𝑡)

)︁
= exp

(︁ 1

2∆𝑡

∑︁
𝑡

∆𝑡 ln det 𝑎𝑖𝑘(𝑡)
)︁

=
∏︁
𝑡

(︀
det 𝑎𝑖𝑘(𝑡)

)︀1/2
, (8.30)

and corresponds to the measure (8.29).
Note that this measure has a form of Riemannian measure in the con�guration space of 𝑞𝑖-variables with

the metric 𝑎𝑖𝑘. It is obvious that under the di�eomorphisms in this functional space 𝑞 → 𝑞′ = 𝑞′(𝑞) the matrix
𝑎𝑖𝑘 transforms as a metric,

𝑎𝑖𝑘(𝑞)→ 𝑎𝑖′𝑘′(𝑞′) =
𝛿𝑞𝑖

𝛿𝑞𝑖′
𝛿𝑞𝑘

𝛿𝑞𝑘′ 𝑎𝑖𝑘(𝑞), (8.31)

if the action 𝑆𝐿[ 𝑞 ] is demanded to behave as a scalar, 𝑆′𝐿[ 𝑞′ ] = 𝑆𝐿[ 𝑞 ]. Then the total measure (8.29) re-
mains invariant in view of the transformation 𝐷𝑞 = 𝐷𝑞′𝐷(𝑞)/𝐷(𝑞′) with the functional Jacobian 𝐷(𝑞)/𝐷(𝑞′) =
Det (𝛿𝑞/𝛿𝑞′). This is a counterpart to the canonical transformations on phase space which leave invariant the
Liouville measure 𝐷𝑞𝐷𝑝 and the canonical action 𝑆[ 𝑞, 𝑝 ].

Problem 8.1. Prove Eq.(8.31).

8.3 Transition to Lagrangian formalism

Let us now use Eq.(8.26) to convert the expressions for the generating functional of the Green's functions
and reduction formulae for the S-matrix to the Lagrangian form. For this purpose we switch o� the sources
dual to the phase space momenta, 𝐼𝑖 = 0, and perform the integration over momenta in the path integral for
the generating functional. For theories with Hamiltonians quadratic in momenta this can be done explicitly
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according to Eqs.(8.26)-(8.27). The result consists in the replacement of the canonical action by the Lagrangian
one and integrating only over con�guration space coordinates with extra local measure (8.29), which can be
interpreted as an additional 𝛿(0)-type contribution to the action

𝑆[ 𝑞, 𝑝 ]→ 𝑆𝐿[ 𝑞 ]− 𝑖

2
𝛿(0)

∫︁
𝑑𝑡 ln det 𝑎𝑖𝑘(𝑡). (8.32)

Explicit applications show that this 𝛿(0)-type contribution only cancels other so-called volume divergences arising
in perturbation theory calculations and does not explicitly lead to to physical results. Moreover, there exists
dimensional regularization of UV divergences which explicitly puts 𝛿(0) to zero, which allows one to avoid this
cancellation explicitly. For this reason we will not focus on the e�ects of the local measure and systematically
disregard it in what follows.

Modulo the contribution of the local measure, integration over canonical momenta in (7.49) leads to the
replacement of these momenta by their Lagrangian expressions, 𝑝 → 𝑝0(𝑞, 𝑞), {𝜑} → {𝑞}. In particular, the
con�guration space of 𝑞-integration becomes the class of the con�gurations {𝑞} subject to positive/negative
frequency conditions at future/past in�nity, {𝜑} → {𝑞}, de�ned by this replacement in (7.51). This would lead
to the recovery of all the above formalism (8.18)-(8.22) by the replacement of all the canonical phase-space
ingredients with their Lagrangian counterparts,

𝜑 = (𝑞, 𝑝)→ 𝑞, 𝑗 = (𝐽, 𝐼)→ 𝐽, 𝑆𝜑𝜑 =
𝛿2𝑆[𝜑 ]

𝛿𝜑 𝛿𝜑
→ 𝑆𝐿,𝑞𝑞 =

𝛿2𝑆𝐿[ 𝑞 ]

𝛿𝑞 𝛿𝑞
, 𝐺𝜑𝜑 → 𝐺𝑞𝑞, (8.33)

𝑍[ 𝑗 ]→ 𝑍[ 𝐽 ] ≡ 𝑍[ 𝐽, 0 ] = const

∫︁
{𝑞}

𝐷𝑞 𝑒𝑖(𝑆[ 𝑞 ]+𝐽𝑖𝑞
𝑖), (8.34)

However, for this to be true we have to provide two important properties.
Firstly, the 2× 2 block form of the canonical 2-point Hessian function 𝑆𝑎𝑏 and its inverse 𝐺𝑎𝑏 should lead to

the Green's function of the Hessian operator of the Lagrangian action 𝑆𝐿,𝑞𝑞 = 𝛿2𝑆𝐿[ 𝑞 ]/𝛿𝑞 𝛿𝑞, 𝑆𝐿,𝑞𝑞𝐺
𝑞𝑞 = −1.

This is the operator of linear Lagrangian wave equations, 𝑆𝐿,𝑞𝑞𝑞𝐼 = 0, for c-number free �elds 𝑞𝐼 or the corre-
sponding free interaction picture Heisenberg operators 𝑞𝐼 . This property of the Lagrangian formalism can be
directly derived from its canonical counterpart.

Problem 8.2. Prove the above property.

Hint 1. Use the block-matrix structure of canonical equations for 𝐺𝑎𝑏 and 𝜑𝑎𝐼

𝑆𝜑𝜑𝐺
𝜑𝜑 =

[︂
𝑆𝑞𝑞 𝑆𝑞𝑝

𝑆𝑝𝑞 𝑆𝑝𝑝

]︂ [︂
𝐺𝑞𝑞 𝐺𝑞𝑝

𝐺𝑝𝑞 𝐺𝑝𝑝

]︂
= −

[︂
1 0
0 1

]︂
, 𝑆𝜑𝜑 𝜑𝐼 =

[︂
𝑆𝑞𝑞 𝑆𝑞𝑝

𝑆𝑝𝑞 𝑆𝑝𝑝

]︂ [︂
𝑞𝐼
𝑝𝐼

]︂
= 0, (8.35)

where various blocks of these matrices obviously denote second-order functional derivatives of the canonical action,
𝑆𝑞𝑞 = 𝛿2𝑆/𝛿𝑞𝛿𝑞, etc. Show then that 𝑆𝐿,𝑞𝑞 𝐺

𝑞𝑞 = −1,𝑆𝐿,𝑞𝑞 𝑞𝐼 = 0, where 𝑆𝐿,𝑞𝑞 = 𝑆𝑞𝑞 − 𝑆𝑞𝑝 𝑆
−1
𝑝𝑝 𝑆𝑝𝑞 . Note that

𝑆𝑝𝑝 = 𝛿2𝑆/𝛿𝑝𝑖(𝑡)𝛿𝑝𝑘(𝑡
′) = −𝑎𝑖𝑘(𝑡) 𝛿(𝑡 − 𝑡′) is an ultralocal in time functional matrix, and its inverse 𝑆−1

𝑝𝑝 does not require
specification of boundary conditions.

Hint 2. Show, on the other hand, that this operator coincides with the Hessian of the Lagrangian action in view of

𝛿2𝑆𝐿[ 𝑞 ]

𝛿𝑞 𝛿𝑞
=

𝛿2

𝛿𝑞 𝛿𝑞
𝑆[ 𝑞, 𝑝0(𝑞, 𝑞) ] = 𝑆𝑞𝑞 + 𝑆𝑞𝑝

𝛿𝑝0

𝛿𝑞
= 𝑆𝑞𝑞 − 𝑆𝑞𝑝 𝑆

−1
𝑝𝑝 𝑆𝑝𝑞 , (8.36)

where we took into account that 𝛿𝑝0/𝛿𝑞 = −𝑆−1
𝑝𝑝 𝑆𝑝𝑞 . Note that, because 𝑆𝑞𝑝 = −𝜕𝑡 + ... and 𝑆𝑝𝑞 = +𝜕𝑡 + ... are first-order

differential operators in time, this is the second-order differential operator, as it should be in the Lagrangian formalism in contrast
to first order canonical formalism (cf. Eq.(7.58)),

𝑆𝐿,𝑞𝑞 = −
𝑑

𝑑𝑡
𝑎𝑖𝑘(𝑡)

𝑑

𝑑𝑡
+ ... ⇐⇒ 𝑆𝜑𝜑 = 𝜖𝑎𝑏

𝑑

𝑑𝑡
+ ... . (8.37)

Secondly, the e�ect of the weakly vanishing canonical source (8.21) � that is the contribution of the symplectic
form in (8.22) � should be equally well induced by the weakly vanishing source of the Lagrangian formalism

𝐽 = −𝑞𝐼
→
𝑆𝐿,𝑞𝑞 . (8.38)
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This can indeed be easily proven by using in Eq.(8.17) with 𝜓 = 𝜑𝐼 and with the Lagrangian value 𝑝 = 𝑝0(𝑞, 𝑞)
of the momentum in the set of variables 𝜑 = (𝑞, 𝑝). We have for the symplectic form in the exponential of (8.22)

−𝜑𝑎𝐼
→
𝑆𝑎𝑏𝜑

𝑏
⃒⃒⃒ 𝑡=+∞

𝑡=−∞, 𝑝→𝑝0

= −𝜑𝑎𝐼 (𝑡)𝜖𝑎𝑏𝜑
𝑏(𝑡)

⃒⃒⃒ 𝑡=+∞

𝑡=−∞
=
[︁
𝑞𝐼(𝑡) 𝑝0(𝑞, 𝑞)− 𝑝𝐼(𝑡) 𝑞(𝑡)

]︁ 𝑡=+∞

𝑡=−∞
. (8.39)

According to boundary conditions on integration variables 𝑞(𝑡) at 𝑡 → ±∞ they tend to positive/negative
frequency solutions of linear equations of motion for free �elds. Then, to illustrate the situation in simple
theories (8.23) with 𝑎𝑖𝑘 = 𝛿𝑖𝑘 and 𝑏𝑖 = 0, the Lagrangian value of the momentum is just a time derivative of
𝑞(𝑡), 𝑝0(𝑞, 𝑞) = 𝑞, and this symplectic form reduces to[︁

𝑞𝐼(𝑡) 𝑞(𝑡)− 𝑞𝐼(𝑡) 𝑞(𝑡)
]︁ 𝑡=+∞

𝑡=−∞
=

∫︁ +∞

−∞
𝑑𝑡 (𝑞𝐼 𝑞 − 𝑞𝐼 𝑞) = −𝑞𝐼

(︀→
𝑆𝐿,𝑞𝑞 𝑞

)︀
+
(︀
𝑞𝐼
←
𝑆𝐿,𝑞𝑞

)︀
𝑞 = −𝑞𝐼

→
𝑆𝐿,𝑞𝑞 𝑞. (8.40)

Thererfore in the Lagrangian formalism on-shell reduction of the generating functional is indeed achieved by
the weakly vanishing source (8.38) of the Lagrangian formalism.4

This �nalizes the proof of the fact that the canonical phase space formalism of perturbation theory for
S-matrix literally goes over to the Lagrangian formalism in terms of Lagrangian con�guration variables 𝑞 and
their Lagrangian action. In what follows, in order to emphasize �eld-theoretic content of these variables we will
denote them by 𝜙𝑎 = 𝜙𝑖(𝑡), their spacetime condensed index 𝑎 including the canonical labels 𝑖 (discrete spin-
tensor indices and spatial coordinates) and time 𝑡. The Lagrangian action will be denoted by 𝑆[𝜙 ] (omitting
the 𝐿-subscript). With all this let us summarize the obtained results.

8.4 Lehman-Symanzik-Zimmermann (LSZ) reduction formulae

The generating functional 𝑍[ 𝐽 ] of the multiple-point Green's functions � in-out vacuum matrix elements of
chronological products of Heisenberg operators or chronological products of interaction picture operators with
S-matrix,

𝛿𝑛𝑍[ 𝐽 ]

𝑖𝛿𝐽𝑎1 ...𝑖𝛿𝐽𝑎𝑛

⃒⃒⃒⃒
𝐽=0

= ⟨ 0,− |T𝜙𝑎1

𝐻 ...𝜙
𝑎𝑛

𝐻 | 0,+ ⟩ = ⟨ 0 |T
(︀
𝜙𝑎1

𝐼 ...𝜙
𝑎𝑛

𝐼 𝑆
)︀
| 0 ⟩, (8.41)

has a path integral representation in the form of the integral over �eld con�gurations with positive/negative
frequency asymptotics at the future/past in�nity

𝑍[ 𝐽 ] = const

∫︁
{𝜙(±)(±∞)}

𝐷𝜙𝑒𝑖
(︀
𝑆[𝜙 ]+𝐽𝑎𝜙

𝑎
)︀
. (8.42)

This generating functional has another representation summing up the perturbation series in powers of the
interaction part 𝑆int[𝜙 ] of the total action,

𝑍[ 𝐽 ] = exp
(︁
𝑖 𝑆int

[︁ 𝛿

𝑖𝛿𝐽

]︁)︁
exp

(︁ 𝑖
2
𝐽𝑎𝐺

𝑎𝑏𝐽𝑏

)︁
, (8.43)

where 𝐺𝑎𝑏 is the two-point chronological contraction of interaction picture operators, which is the Green's
function of the Hessian of the classical action 𝑆𝜙𝜙 = 𝛿2𝑆/𝛿𝜙𝛿𝜙 on empty �at spacetime background

𝐺𝑎𝑏 = 𝑖 ⟨ 0 |T𝜙𝑎
𝐼 𝜙

𝑏
𝐼 | 0 ⟩, (8.44)

𝛿2𝑆[𝜙 ]

𝛿𝜙𝑎 𝛿𝜙𝑏

⃒⃒⃒⃒
𝜙0

𝐺𝑏𝑐 = −𝛿𝑐𝑎, (8.45)

4For a generic theory the same relation between the canonical and Lagrangian symplectic forms and the Hessian operator can
be obtained by introducing the Wronskian operator 𝑊 (𝑑/𝑑𝑡) obtained by the variation of 𝑝0(𝑞, 𝑞) with respect to 𝑞, 𝛿𝑝0(𝑡)/𝛿𝑞(𝑡′) =
𝑊 (𝑑/𝑑𝑡)𝛿(𝑡− 𝑡′). Then for linearized variables 𝑞1(𝑡), 𝑝1(𝑡) =𝑊 (𝑑/𝑑𝑡)𝑞1(𝑡) and 𝑞2(𝑡), 𝑝2(𝑡) =𝑊 (𝑑/𝑑𝑡)𝑞2(𝑡) one has[︀

𝑞1(𝑡) 𝑝2(𝑡)− 𝑞2(𝑡) 𝑝1(𝑡)
]︀+∞
−∞ =

[︀
𝑞1(𝑡)𝑊𝑞2(𝑡)− (𝑊𝑞1(𝑡)) 𝑞2(𝑡)

]︀+∞
−∞ =

∫︁ +∞

−∞
𝑑𝑡

[︁
− 𝑞1

(︀→
𝑆𝐿,𝑞𝑞 𝑞2

)︀
+

(︀
𝑞1
←
𝑆𝐿,𝑞𝑞

)︀
𝑞2
]︁
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This Green's function is called Feynman propagator which has positive/negative frequency boundary condi-
tions at 𝑡 → ±∞. Interaction picture operators 𝜙𝐼 are zero modes of the wave operator 𝑆𝜙𝜙 and they have
a decomposition in complex conjugated positive/negative frequency basis functions 𝑢𝑎𝐴/(𝑢

𝑎
𝐴)* with the cre-

ation/annihilation operators, �̂�𝐴/�̂�
†
𝐴, as coe�cients,

𝛿2𝑆[𝜙 ]

𝛿𝜙𝑎 𝛿𝜙𝑏

⃒⃒⃒⃒
𝜙0

𝜙𝑏
𝐼 = 0, 𝜙𝑎

𝐼 = 𝑢𝑎𝐴�̂�𝐴 + 𝑢𝑎*𝐴 �̂�
†
𝐴, 𝑢𝑎𝐴 ∼ 𝑒−𝑖𝜔𝐴𝑡, 𝜔𝐴 > 0. (8.46)

S-matrix is given by the normally ordered generating functional 𝑍[ 𝐽 ] with weakly vanishing operator source,
whose contribution to the generating functional actually reduces to special boundary terms at 𝑡→ ±∞,

𝑆 = :𝑍
[︀
− 𝜙𝐼

→
𝑆𝜙𝜙

]︀
: . (8.47)

This can be represented as expansion in multiple-point Green's functions acted upon their spacetime entries by
the free-theory wave opertor 𝑆𝜙𝜙 contracted with interaction picture �elds,

𝑆 = :

∞∑︁
𝑛=0

1

𝑛!

𝛿𝑛𝑍[ 𝐽 ]

𝛿𝐽𝑎1
...𝛿𝐽𝑎𝑛

⃒⃒⃒⃒
𝐽=0

(︀
−
←
𝑆𝑎1𝑏1 𝜙

𝑏1
𝐼

)︀
...
(︀
−
←
𝑆𝑎𝑛𝑏𝑛 𝜙

𝑏𝑛
𝐼

)︀
:

=:

∞∑︁
𝑛=0

(−𝑖)𝑛

𝑛!
⟨ 0,− |T𝜙𝑎1

𝐻 ...𝜙
𝑎𝑛

𝐻 | 0,+ ⟩
(︀←
𝑆𝑎1𝑏1 𝜙

𝑏1
𝐼

)︀
...
(︀←
𝑆𝑎𝑛𝑏𝑛 𝜙

𝑏𝑛
𝐼

)︀
: . (8.48)

This relation between S-matrix and chronological Green's functions has the name of Lehman-Symanzik-Zimmerman
(LSZ) reduction formulae.

The advantage of the Lagrangian version of the path integral, its perturbation theory and relevant LSZ
reduction formulae is its Lorentz covariance, because in contrast to the canonical formalism and Dyson T-
exponent it does not involve splitting of spacetime into time and space. Manifest Lorentz covariance of the
theory, which is hidden behind �rst principles of quantization (that is canonical commutation relations for phase
space operators, etc.), gives enormous advantages in renormalization of ultraviolet divergences and concrete
applications. To demonstrate the Lorentz covariant nature of the above expansion for S-matrix, let us show
how these terms of look like in simplest theory of massive scalar �eld∫︁

𝑑𝑥1...𝑑𝑥𝑛
(−𝑖)𝑛

𝑛!
⟨ 0,− |T𝜙𝐻(𝑥1)...𝜙𝐻(𝑥𝑛) | 0,+ ⟩

(︀←
�𝑥1−𝑚2

)︀
...
(︀←
�𝑥𝑛−𝑚2

)︀
: 𝜙𝐼(𝑥1)...𝜙𝐼(𝑥𝑛) : , (8.49)

where the interaction picture or free scalar �eld 𝜙𝐼(𝑥) satis�es the Lorentz covariant Klein-Gordon equation
(�−𝑚2)𝜙𝐼(𝑥) = 0 with the d'Alembertian operator � = 𝜂𝜇𝜈𝜕𝜇𝜕𝜈 .

Let us derive general expression for matrix elements of the S-matrix between multi-particle states. The
state of 𝑚 particles can be written in condensed notations as 𝑚-th order derivative of the coherent 𝛼-state with
respect to the c-number 𝛼-parameter

| 1, ...𝑚 ⟩ = �̂�†1...�̂�
†
𝑚 | 0 ⟩ =

𝜕

𝜕𝛼1
...

𝜕

𝜕𝛼𝑚
𝑒𝛼�̂�†

| 0 ⟩
⃒⃒⃒
𝛼=0

. (8.50)

Introduce the generating functional of the matrix elements

𝑍[𝛼, 𝛼* ] = ⟨ 0 | 𝑒𝛼*�̂� 𝑆 𝑒𝛼�̂�†
| 0 ⟩ = ⟨ 0 | 𝑒𝛼*�̂� :𝑆𝑁 [𝜙𝐼 ] : 𝑒𝛼�̂�†

| 0 ⟩, (8.51)

⟨ 1, ...𝑛 |𝑆 | 1, ...𝑚 ⟩ =
𝜕

𝜕𝛼*1
...

𝜕

𝜕𝛼*𝑛

𝜕

𝜕𝛼1
...

𝜕

𝜕𝛼𝑚
𝑍[𝛼, 𝛼* ],

⃒⃒⃒
𝛼=0,𝛼*=0

(8.52)

where 𝑆𝑁 [𝜙𝐼 ] is the normal symbol of S-matrix, which as we have just derived is the generating functional of
Green's functions at weakly vanishing source, see Eq.(8.47),

𝑆𝑁 [𝜙𝐼 ] = 𝑍
[︀
− 𝜙𝐼

→
𝑆𝜙𝜙

]︀
, 𝑆 =:𝑆𝑁 [𝜙𝐼 ] : . (8.53)

To calculate (8.51) let us use the generalized Wick theorem in the functional form � see Eqs.(6.38)-(6.40)
and comments after them for the case of symmetrized products of interaction picture operators. Now instead
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of normal or chronological ordering we have in (8.51) a special type ordering when all �̂�† stand to the right of
𝜙𝐼 and �̂�, all 𝜙𝐼 are normally ordered with respect to each other and stand to the right of all �̂�. This ordering,
which we will denote by O can be formalized as

O
(︀
𝜙𝐼𝜙𝐼

)︀
=:𝜙𝐼𝜙𝐼 : , O

(︀
𝜙𝐼 �̂�

)︀
= �̂�𝜙𝐼 , O

(︀
𝜙𝐼 �̂�

†)︀ = 𝜙𝐼 �̂�
†, O

(︀
�̂��̂�†
)︀

= �̂��̂�†. (8.54)

Therefore, if we denote the collection of all operators in Eq.(8.51) by 𝜑 = (𝜙𝐼 , �̂�, �̂�
†) then the conversion of the

full operator in this equation to the normal ordering can be written down as

𝑒𝛼*�̂� :𝑆𝑁 [𝜙𝐼 ] : 𝑒𝛼�̂�†
≡ O

(︀
𝑒𝛼*�̂� :𝑆𝑁 [𝜙𝐼 ] : 𝑒𝛼�̂�†)︀

= : exp
(︁ 1

2

𝛿

𝛿𝜑
𝐷

𝛿

𝛿𝜑

)︁
𝑒𝛼*𝑎 𝑆𝑁 [𝜙𝐼 ] 𝑒𝛼𝑎†

⃒⃒⃒
𝜑→𝜑

: , (8.55)

where 𝐷 is the contraction in the space of all 𝜑 given by the di�erence of O-ordering and normal ordering

𝐷 = O
(︀
𝜑𝜑
)︀
− :𝜑𝜑 : . (8.56)

Problem 8.3. Calculate this contraction and show that

𝑍[𝛼, 𝛼* ] = 𝑒𝛼*𝛼 𝑆𝑁 [𝜙𝐼(𝛼, 𝛼
*) ] = 𝑒𝛼*𝛼 𝑍

[︀
− 𝜙𝐼(𝛼, 𝛼

*)
→
𝑆𝜙𝜙

]︀
, (8.57)

𝜙𝐼(𝛼, 𝛼
*) = 𝜙𝐼

⃒⃒⃒
�̂�†, �̂�→𝛼*, 𝛼

= 𝑢𝛼+ 𝑢*𝛼*, (8.58)

where 𝜙𝐼(𝛼, 𝛼
*) is the c-number interaction picture field obtained from the operator 𝜙𝐼 by the replacement of creation-annihilation

operators with the c-number 𝛼-parameters.

With this expression for 𝑍[𝛼, 𝛼* ] the contributions to transition amplitudes between ingoing and outgoing
particle states (8.52) can be classi�ed as follows. Di�erentiation of 𝑒𝛼*𝛼 gives contributions with no scattering

𝜕

𝜕𝛼*𝐴

𝜕

𝜕𝛼𝐵
𝑒𝛼*𝛼 ⇒ 𝛿𝐴𝐵 , (8.59)

whereas the di�erentiation of 𝑆𝑁 [𝜙𝐼(𝛼, 𝛼*) ] corresponds to dressing the multiple-point Green's functions with
external lines carrying the positive-frequency basis functions 𝑢𝐵 for ingoing particles and negative-frequency
basis functions 𝑢*𝐴 for outgoing particles

𝜕

𝜕𝛼*𝐴1

...
𝜕

𝜕𝛼*𝐴𝑛

𝜕

𝜕𝛼𝐵1

...
𝜕

𝜕𝛼𝐵𝑚

𝑍
[︀
− 𝜙𝐼(𝛼, 𝛼*)

→
𝑆𝜙𝜙

]︀
⇒ (−𝑖)𝑛+𝑚

(𝑛+𝑚)!

(︀
𝑢*𝐴1

→
𝑆𝜙𝜙

)︀
...
(︀
𝑢*𝐴𝑛

→
𝑆𝜙𝜙

)︀
⟨ 0 |T𝜙𝐼

1...𝜙
𝐼
𝑛+𝑚 𝑆 | 0 ⟩

(︀←
𝑆𝜙𝜙𝑢𝐵1

)︀
...
(︀←
𝑆𝜙𝜙𝑢𝐵𝑚

)︀
. (8.60)

Lecture 9. Bose-Fermi systems in the functional formalism of QFT

� Dirac theory and Grassman (fermionic) variables

� Canonical formalism with fermions

� Quantization of boson-fermion systems

� Sources and Gaussian integration over boson-fermion �elds

9.1 Dirac theory and Grassman (fermionic) variables

Let us extend the above formalism to systems containing both bosonic and fermionic �elds. We begin with
the Dirac theory with the action

𝑆[𝜓 ] =

∫︁
𝑑4𝑥𝜓 (𝑖𝜕 −𝑚)𝜓, 𝜓 = 𝜓†𝛾0, 𝜕 = 𝛾𝜇𝜕𝜇 (9.1)
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of the complex 4-component massive spinor �eld. Here we use the standard representation of Dirac gamma
matrices

𝛾𝜇𝛾𝜈 + 𝛾𝜇𝛾𝜈 = −2𝜂𝜇𝜈 , 𝜂𝜇𝜈 = diag (−1,+1,+1,+1), (9.2)

𝛾0 =

[︂
0 I
I 0

]︂
, 𝛾𝑖 =

[︂
0 𝜎𝑖
−𝜎𝑖 0

]︂
. (9.3)

Dirac equations for 𝜓 and 𝜓, which follow from the (left and right) variation of the action, have the form

−→
𝛿

𝛿𝜓
𝑆[𝜓 ] = (𝑖𝜕 −𝑚)𝜓 = 0, 𝑆[𝜓 ]

←−
𝛿

𝛿𝜓
= −( 𝑖𝜕𝜇𝜓𝛾

𝜇 +𝑚𝜓 ) = 0 (9.4)

The 4-component column 𝜓 of the spinor �eld is complex, so that 𝜓 and 𝜓 should be treated as independent
�elds. In view of their complexity the decomposition of the general solution of the Dirac equation in its basis
functions is more complicated than for a real scalar �eld. It reads along with the momentum space decomposition
of the conserved Hamiltonian as follows

𝜓(𝑥) =

∫︁
𝑑3p

(︁
𝑢(−)𝑠 (𝑥,p) 𝑎(−)𝑠 (p) + 𝑢(+)

𝑠 (𝑥,p) [ 𝑎(+)
𝑠 (p) ]*

)︁
, (9.5)

𝜓(𝑥) =

∫︁
𝑑3p

(︁
𝑢
(+)
𝑠 (𝑥,p) 𝑎(+)

𝑠 (p) + 𝑢
(−)
𝑠 (𝑥,p) [ 𝑎(−)𝑠 (p) ]*

)︁
, (9.6)

𝐻 = 𝑖

∫︁
𝑑3x𝜓†𝜕𝜇𝜓 =

∫︁
𝑑3p𝜔(p)

(︁
[ 𝑎(−)𝑠 (p) ]* 𝑎(−)𝑠 (p)− 𝑎(+)

𝑠 (p) [ 𝑎(+)
𝑠 (p) ]*

)︁
, (9.7)

where 𝑢
(∓)
𝑠 (𝑥,p) ∼ 𝑒∓𝑖𝜔(p)𝑡, 𝜔(p) > 0, are positive/negative energy basis functions of the Dirac equation with

two 𝑠 = ±1 helicities. Note that the negative frequency part of 𝜓 is not complex conjugated to its positive
frequency part, but the Hamiltonian is diagonal, 𝐻 ∼ [ 𝑎(∓) ]* 𝑎(∓) in what becomes under quantization the
creation/annhilation operators, 𝑎(∓) → �̂�(∓), [ 𝑎(∓) ]* → [ �̂�(∓) ]†. However, classically it is not positive-de�nite,
which serves as a motivation for imposing at the quantum level the anti-commutation relations. For any two
spinor (or fermionic) variables 𝐹 and 𝐺 this is the replacement of their commutator by anti-commutator

[𝐹,𝐺 ]− ≡ 𝐹𝐺−𝐺𝐹 → [𝐹,𝐺 ]+ ≡ 𝐹𝐺+𝐺𝐹. (9.8)

Then from the positivity of the Hamiltonian and the requirement of the invariance of the theory with respect to
the permutation of particles and antiparticles �̂�(+) ⇔ �̂�(−), �̂�(+)† ⇔ �̂�(−)†,5 the following commutation relations
follow,

[ �̂�𝐴, �̂�
†
𝐵 ]+ = 𝛿𝐴𝐵 , 𝐴,𝐵 ↦→ (±, 𝑠,p), (9.9)

(all other anti-commutators vanish), where we use condensed index to label all modes of the Dirac equation.
Therefore we have

⟨ 0 |𝜓(𝑥)𝜓(𝑦) | 0 ⟩ =

∫︁
𝑑3p𝑢(−)𝑠 (𝑥,p)𝑢

(−)
𝑠 (𝑦,p) = ( 𝑖𝜕 +𝑚 1̂ ) 𝑖𝐺(+)(𝑥, 𝑦), (9.10)

⟨ 0 |𝜓(𝑦)𝜓(𝑥) | 0 ⟩ =

∫︁
𝑑3p𝑢(−)𝑠 (𝑥,p)𝑢

(−)
𝑠 (𝑦,p) = ( 𝑖𝜕 +𝑚 1̂ ) 𝑖𝐺(−)(𝑥, 𝑦), (9.11)

where 1̂ is a unit matrix in the space of 𝜓 and 𝐺(±)(𝑥, 𝑦) are the Wightman functions of the scalar �eld
(6.43)-(6.44).6 The anti-commutator function then equals

[𝜓(𝑥), 𝜓(𝑦) ]+ = ⟨ 0 |𝜓(𝑥)𝜓(𝑦) + 𝜓(𝑦)𝜓(𝑥) | 0 ⟩ = 𝑖 (𝑖𝜕 +𝑚 1̂) �̃�(𝑥, 𝑦), (9.12)

5Superscript labels (±) of creation-annihilation operators here distinguish particles from antiparticles related by charge conju-
gation, rather than the positive/negative frequency splitting.

6These relations of summation over polarizations follow from the standard course on the theory of the Dirac field, see
N.N.Bogolyubov and D.V.Shirkov, Quantized Fields, Nauka, Moscow, 1980.
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and expresses in terms of �̃�(𝑥, 𝑦) � the scalar �eld commutator function of Pauli-Jordan from Eq.(6.44). Since
�̃�(𝑥, 𝑦) | 𝑥0=𝑦0 = 0 and 𝜕0𝐺(𝑥, 𝑦) | 𝑥0=𝑦0 = 𝛿(3)(x− y), the equal time anti-commutator equals

[𝜓(𝑥), 𝜓(𝑦) ]+
⃒⃒
𝑥0=𝑦0 = 𝛾0𝛿(3)(x− y). (9.13)

This relation suggests that the operator variable 𝜋 = 𝑖 𝜓 𝛾0 could be interpreted as an operator of momentum
canonically conjugated to 𝜓 and satisfying the canonical anti-commutation relation

[𝜓(x), 𝜋(y) ]+ = 𝑖 𝛿(3)(x− y), [𝜓(x), 𝜓(y) ]+ = 0, [𝜋(x), 𝜋(y) ]+ = 0. (9.14)

This interpretation follows from the action of the spinor �eld (9.1) which is already in the �rst order formalism
� under the (3+1)-decomposition of spacetime it reads

𝑆[𝜓 ] =

∫︁
𝑑4𝑥 (𝑖𝜓 𝛾0 �̇� + 𝑖𝜓 𝛾𝑘𝜕𝑘𝜓 −𝑚𝜓𝜓 ), (9.15)

where the �rst term is a symplectic form 𝜋�̇� and the rest is minus the Hamiltonian of the theory.

9.2 Canonical formalism with fermions

Quantum commutation relations (9.14) lead to reconsidering the status of the spinor theory at the classical
level. Classically the �elds 𝜓 and 𝜓 belong to the Grassmann algebra of anti-commuting elements,

𝜓𝐼(𝑥)𝜓𝐽(𝑦) = −𝜓𝐽(𝑦)𝜓𝐼(𝑥), 𝜓𝐼(𝑥)𝜓𝐽(𝑦) = −𝜓𝐽(𝑦)𝜓𝐼(𝑥), 𝜓𝐼(𝑥)𝜓𝐽(𝑦) = −𝜓𝐽(𝑦)𝜓𝐼(𝑥),

𝜋𝐼(𝑥)𝜓𝐽(𝑦) = −𝜓𝐽(𝑦)𝜋𝐼(𝑥), ... , (9.16)

where we explicitly wrote down the spinor indices of columns of 𝜓 and rows of 𝜓. This applies also to the
commutation of these �elds with their variations

𝜓𝐼(𝑥)𝛿𝜓𝐽(𝑦) = −𝛿𝜓𝐽(𝑦)𝜓𝐼(𝑥), ... , (9.17)

which means that one should de�ne two di�erent (but related) derivatives with respect to Grassmann variables.
For any monomial 𝐹 = 𝜓1𝜓2...𝜓𝑛 one has the de�nition of two � right and left � derivatives,

𝛿𝐹 = 𝛿𝜓1𝜓2...𝜓𝑛 + 𝜓1𝛿𝜓2𝜓3...𝜓𝑛 + ... =

∫︁
𝑑𝑥

𝛿𝑅𝐹

𝛿𝜓(𝑥)
𝛿𝜓(𝑥) =

∫︁
𝑑𝑥 𝛿𝜓(𝑥)

𝛿𝐿𝐹

𝛿𝜓(𝑥)
. (9.18)

Obviously, for even 𝑛 we have 𝛿𝑅𝐹/𝛿𝜓(𝑥) = −𝛿𝐿𝐹/𝛿𝜓(𝑥), while for odd 𝑛 these two derivatives coincide.
More generally we ascribe Grassmannn parity to any functional of 𝜓, 𝜖(𝐹 ) ≡ 𝜖𝐹 which equals 0 or 1 modulo

2. If 𝐹 is even in 𝜓 (even element of Grassmannn algebra including purely bosonic quantities with 𝜖 = 0) then
𝜖𝐹 = 0 and 𝜖𝐹 = 1 if 𝐹 is odd in 𝜓. Then

𝛿𝑅𝐹

𝛿𝜓(𝑥)
= −(−1)𝜖(𝐹 ) 𝛿𝐿𝐹

𝛿𝜓(𝑥)
. (9.19)

Another useful notation for left and right derivatives, which we will use, is

𝛿𝐿𝐹

𝛿𝜓(𝑥)
=

−→
𝛿

𝛿𝜓(𝑥)
𝐹,

𝛿𝑅𝐹

𝛿𝜓(𝑥)
= 𝐹

←−
𝛿

𝛿𝜓(𝑥)
. (9.20)

These fermionic functional derivatives allow us to de�ne the Poisson bracket on Grassmann phase space,

{𝐹,𝐺 }+ =

∫︁
𝑑3x

𝛿𝑅𝐹

𝛿𝜓(x)

𝛿𝐿𝐺

𝛿𝜋(x)
− (−1)𝜖𝐹 𝜖𝐺

(︀
𝐹 ⇔ 𝐺

)︀
=

∫︁
𝑑3x

(︁ 𝛿𝑅𝐹

𝛿𝜓(x)

𝛿𝐿𝐺

𝛿𝜋(x)
+

𝛿𝑅𝐹

𝛿𝜋(x)

𝛿𝐿𝐺

𝛿𝜓(x)

)︁
. (9.21)

{𝐹,𝐺 }+ = −(−1)𝜖𝐹 𝜖𝐺{𝐺,𝐹 }+ (9.22)

Problem 9.1. Prove equivalence of these two definitions and this symmetry.
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Then Dirac equations can be rewritten as the following canonical fermionic equations of motion

�̇� =
𝛿𝐿𝐻

𝛿𝜋
= {𝜓,𝐻 }+, �̇� = −𝛿𝑅𝐻

𝛿𝜓
= {𝜋,𝐻 }+, (9.23)

𝐻 =

∫︁
𝑑3x

(︀
− 𝜋 𝛾0 𝛾𝑖𝜕𝑖𝜓 − 𝑖𝑚𝜋 𝛾0 𝜓

)︀
(9.24)

Problem 9.2. Derive these equations of motion.

9.3 Quantization of boson-fermion systems

Now we can proceed to the transition from classical to quantum theory of fermionic variables by a usual
procedure of canonical quantization. For fermionic observables 𝐹,𝐺, ... it consists in the promotion of their
fermionic Poisson brackets to anti-commutators, 𝐹,𝐺, ...→ 𝐹 , �̂�, ..., {𝐹,𝐺 }+ → 1

𝑖 [𝐹,𝐺 ]+. Moreover, we can
generalize the quantization scheme to general systems including both bosonic and fermionic degrees of freedom.
In this general setup, using condensed notations, we have a boson-fermion phase space and various observables
with their grassman parities

𝜑 = (𝑞𝑖, 𝑝𝑖, 𝐹 (𝑞, 𝑝), 𝐺(𝑞, 𝑝), ...), 𝜖(𝜑) = 𝜖𝜑, 𝜖(𝑞𝑖) = 𝜖(𝑝𝑖) = 𝜖𝑖, 𝜑1𝜑2 = (−1)𝜖1𝜖2𝜑2𝜑1. (9.25)

Equations of motion

𝑞𝑖 =

−→
𝜕

𝜕𝑝𝑖
𝐻 = { 𝑞𝑖, 𝐻 }𝑆 , �̇�𝑖 = −𝐻

←−
𝜕

𝜕𝑞𝑖
= { 𝑞𝑖, 𝐻 }𝑆 , (9.26)

can be rewritten in terms of super-Poisson bracket de�ned on combined boson-fermion phase space by the
following two equivalent de�nitions

{𝐹,𝐺 }𝑆 = 𝐹

←−
𝜕

𝜕𝑞𝑖

−→
𝜕

𝜕𝑝𝑖
𝐺− (−1)𝜖𝑖𝐹

←−
𝜕

𝜕𝑝𝑖

−→
𝜕

𝜕𝑞𝑖
𝐺 = 𝐹

←−
𝜕

𝜕𝑞𝑖

−→
𝜕

𝜕𝑝𝑖
𝐺− (−1)𝜖𝐹 𝜖𝐺𝐺

←−
𝜕

𝜕𝑞𝑖

−→
𝜕

𝜕𝑝𝑖
𝐹, (9.27)

{𝐹,𝐺 }𝑆 = −(−1)𝜖𝐹 𝜖𝐺{𝐺,𝐹 }𝑆 . (9.28)

Problem 9.3. Prove equivalence of these two definitions and this symmetry.

In this setup quantization proceeds by the usual way,

𝜑→ 𝜑 = (𝑞, 𝑝, 𝐹 , �̂�, ...), {𝐹,𝐺 }𝑆 → [𝐹 , �̂� ]𝑆 = 𝐹�̂�− (−1)𝜖𝐹 𝜖𝐺�̂�𝐹 = 𝑖~ ̂{𝐹,𝐺 }𝑆 +𝑂(~2), (9.29)

including exact realization of supercommutators of basic phase space operators [ 𝑞, 𝑝 ] = 𝑖~. Heisenberg equa-

tions of motion for Heisenberg operators 𝜑𝐻 remain of course the same, 𝑖~𝑑𝜑𝐻/𝑑𝑡 = [𝜑𝐻 , �̂� ], because of bosonic
nature of the Hamiltonian. Therefore, all the formalism of interaction picture representation, generating func-
tional of Green's functions, S-matrix, etc., remain basically the same. We will now only dwell on modi�cations
in this formalism which are necessary in order to take into account inclusion of fermions.

First modi�cation concerns the symmetry properties of multi-particle states (8.50) and de�nition of chrono-

logical products of operators (6.57). Since fermionic creation operators are anti-commuting, �̂�†1�̂�
†
2 = −�̂�†2�̂�

†
1,

changing the order of each pair of those leads to �ipping the overall sign. Therefore, each state of fermionic
particles is antisymmetric with respect to their permutations. For a state | 1, ...𝑚 ⟩ = �̂�†1...�̂�

†
𝑚 | 0 ⟩ containing

both fermions and bosons among the creation operators this property can be formulated in terms of the parity
of fermionic permutation. If we denote by 𝑝(1, ...𝑛) = (𝑝1, ...𝑝𝑛) the permutation of 𝑛 indices, when each 𝑘-th
index goes over into 𝑝𝑘, 𝑘 → 𝑝𝑘. The parity of the 𝑝-permutation 𝑃 (𝑝) equals 0 if this permutation consists of
an even number of pair permutations, and it is 1 if the permutation is odd. Then the symmetry of such generic
boson-fermion state under this permutation is

𝑝
(︀
| 1, ...𝑛 ⟩

)︀
≡ | 𝑝1, ...𝑝𝑛 ⟩ = (−1)𝑃 (𝑝𝑓 (1,...𝑛)) | 1, ...𝑛 ⟩ (9.30)
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where 𝑝𝑓 (1, ...𝑛) is a permutation of only fermionic members among 1, 2...𝑛. Similarly, the sign factor should
be taken into account in the de�nition of the chronological product (6.57) and its symmetry property

T
(︀
𝜑1𝜑2...𝜑𝑛

)︀
=
∑︁
{ 𝑝 }

(−1)𝑃 (𝑝𝑓 (1,...𝑛))𝜃(𝑡𝑝1
− 𝑡𝑝2

)𝜃(𝑡𝑝2
− 𝑡𝑝3

)...𝜃(𝑡𝑝𝑛−1
− 𝑡𝑝𝑛

)𝜑𝑝1
𝜑𝑝2

...𝜑𝑝𝑛
, (9.31)

𝑝
(︁
T
(︀
𝜑1𝜑2...𝜑𝑛

)︀)︁
= (−1)𝑃 (𝑝𝑓 (1,...𝑛)) T

(︀
𝜑1𝜑2...𝜑𝑛

)︀
(9.32)

where the indices carry of course all the labels of relevant operators, 𝜑𝑘 = 𝜑𝑎𝑘(𝑡𝑘). In particular, for pure Dirac
�eld

T𝜓(𝑥)𝜓(𝑦) = 𝜃(𝑥0 − 𝑦0)𝜓(𝑥)𝜓(𝑦)− 𝜃(𝑦0 − 𝑥0)𝜓(𝑦)𝜓(𝑥) = −𝑖𝐺Dirac(𝑥, 𝑦) (9.33)

Problem 9.4. By using (9.10)-(9.13) show that 𝐺Dirac(𝑥, 𝑦) is the Green’s function of Dirac operator – the Hessian of the Dirac
action,

( 𝑖𝜕 −𝑚)𝐺Dirac(𝑥, 𝑦) = −𝛿(𝑥− 𝑦), (9.34)
−→
𝛿

𝛿𝜓(𝑥)
𝑆[𝜓,𝜓 ]

←−
𝛿

𝛿𝜓(𝑦)
= ( 𝑖 𝜕 −𝑚 1̂ ) 𝛿(𝑥− 𝑦). (9.35)

Now introduce the column notation for the full set of Dirac �elds and de�ne the full Hessian of the action,

𝜑𝑎 =

[︂
𝜓(𝑥)
𝜓(𝑥)

]︂
,

−→
𝛿

𝛿𝜑𝑎
𝑆[𝜑 ]

←−
𝛿

𝛿𝜑𝑏
=

[︂
0 𝑖𝜕 +𝑚

𝑖𝜕 −𝑚 0

]︂
𝛿(𝑥− 𝑦), (9.36)

and the functional matrix of chronological contractions

𝐺𝑎𝑏 = 𝑖⟨ 0 |T𝜑𝑎𝜑𝑏 | 0 ⟩ =

[︂
0 𝑖⟨ 0 |T𝜓(𝑥)𝜓(𝑦) | 0 ⟩

𝑖⟨ 0 |T𝜓(𝑥)𝜓(𝑦) | 0 ⟩ 0

]︂
, (9.37)

so that �nally

𝑎𝑆 𝑏𝐺
𝑏𝑐 = −𝛿𝑐𝑎, 𝑎𝑆 𝑏 ≡

−→
𝛿

𝛿𝜑𝑎
𝑆[𝜑 ]

←−
𝛿

𝛿𝜑𝑏
, (9.38)

where we introduced a special condensed notation indicating by the position of the subscripts the left and right
action of the relevant functional derivatives. This exactly reproduces a similar equation in the bosonic theory
� the functional matrix of the chronological contractions is the Green's function of the Hessian of the action.
This is the Feynman propagator in the full set of �elds with the same choice of positive/negative frequency
conditions at spacetime in�nity.

Problem 9.5. Prove the following symmetries of the action Hessian and Green’s function

𝑎𝑆 𝑏 = (−1)𝜖𝑎+𝜖𝑏+𝜖𝑎𝜖𝑏
𝑏𝑆 𝑎, 𝐺𝑎𝑏 = (−1)𝜖𝑎𝜖𝑏𝐺𝑏𝑎. (9.39)

9.4 Sources and Gaussian integration over boson-fermion fields

In extending the formalism of generating functional and S-matrix reduction formulae to boson-fermion
systems one should be careful how to include the sources 𝐽𝑎 dual to fermions 𝜙𝑎 in 𝑍[ 𝐽 ] and how to perform
functional di�erentiation with respect to them. First of all, the sources should obviously be of the same
statistics as their �elds, 𝜖(𝜙𝑎) = 𝜖(𝐽𝑎), and in the exponential of the generating functional their order in
𝐽𝑎𝜙

𝑎 = (−1)𝜖𝑎𝜙𝑎𝐽𝑎 should be chosen. Under the left choice for the position of sources in Eq.(7.11) and left
functional derivatives in (7.12) we will have for pure fermion case

𝑍[ 𝜂 ] = T exp
(︁
𝑖

∫︁
𝑑𝑡 𝜂(𝑡)𝜓(𝑡)

)︁
, (9.40)

T
(︀
𝜓1...𝜓𝑛 𝑍[ 𝜂 ]

)︀
=

−→
𝛿

𝑖𝛿𝜂1
...

−→
𝛿

𝑖𝛿𝜂𝑛
𝑍[ 𝜂 ], (9.41)
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and this rule can be extended to the whole functional formalism of bosons and fermions. With this rule
the Gaussian path integral (7.66) generalizes to boson-fermion case as (mind the order of factors in the

exponential!) ∫︁
𝐷𝜙𝑒

𝑖
2 𝜑𝑎(𝑎𝑆 𝑏)𝜑

𝑏+𝑖 𝐽𝑎𝜙
𝑎

= const
(︁

Sdet 𝑎𝑆 𝑏

)︁−1/2
exp

(︁ 𝑖
2
𝐽𝑎𝐽𝑏𝐺

𝑏𝑎
)︁
, (9.42)

where the functional superdeterminant or Berezinian is de�ned by its variational law in terms of supertrace �
the sum of the diagonal elements weighted by the parity sign factor,

𝛿 ln
(︁

Sdet𝐾𝑎𝑏

)︁
=
(︀
𝐾−1

)︀𝑏𝑎
𝛿𝐾𝑎𝑏(−1)𝜖𝑏 ≡ Str

(︀
𝐾−1𝛿𝐾

)︀
. (9.43)

For a particular case of the block-diagonal matrix 𝐾𝑎𝑏 consisting of the bosonic block 𝐵 and fermionic block 𝐹
this superdeterminant equals

𝐾𝑎𝑏 =

[︂
𝐵 0
0 𝐹

]︂
, Sdet𝐾 = Det𝐵

(︀
Det𝐹

)︀−1
. (9.44)

Problem 9.6. By the method of Lecture 6 prove Eqs.(9.42)-(9.44).

Lecture 10. Perturbation theory, types of Feynman diagrams and
semiclassical expansion

� Factorization of vacuum graphs

� Connected and one-particle irreducible graphs. E�ective action

� Semiclassical (loop) expansion and background �eld formalism

� E�ective action in one and two-loop approximations

Perturbation theory for S-matrix and its generating functional give rise to Feynman diagrammatic technique.
In particular, Eq.(8.43) or its equivalent form

𝑍[ 𝐽 ] = exp
(︁
− 𝑖

2

𝛿

𝛿𝜙𝑎
𝐺𝑎𝑏 𝛿

𝛿𝜙𝑏

)︁
exp

(︁
𝑖 𝑆int

[︀
𝜙
]︀

+ 𝑖𝐽𝑎𝜙
𝑎
)︁ ⃒⃒⃒

𝜙=0
, (10.1)

Problem 10.1. Derive (10.1) from (8.43).

explicitly show that in the 𝜙-expansion of the exponential of the action (and the source term) all monomi-
als of 𝜙, 𝜙1...𝜙𝑛 should be replaced by the contractions of their pairs. The result is an expansion in powers
of the propagator 𝐺𝑎𝑏 = 𝐺𝐼𝐾(𝑥, 𝑦), 𝑎 = (𝐼, 𝑥), and sources 𝐽𝑎 = 𝐽𝐼(𝑥). Graphically this means that you get
the set of terms corresponding to spacetime Feynman graphs. These graphs consist of point vertices connected
by lines of two-point propagators, some of these lines ending on the sources 𝐽 . Vertices correspond to multiple
functional derivatives of the action, 𝑆𝑎1...𝑎𝑛 = 𝛿𝑛𝑆int/𝛿𝜙

𝑎1 ...𝛿𝜙𝑎𝑛 . For local �eld theories the action is a space-
time integral of the local function of �elds and their derivatives to some �nite order, so that the structure of
the vertex function looks as

𝛿𝑛𝑆int

𝛿𝜙(𝑥1)...𝛿𝜙(𝑥𝑛)
= 𝑃 (𝑥, 𝜕/𝜕𝑥) 𝛿((𝑥1 − 𝑥2) 𝛿(𝑥1 − 𝑥3)...𝛿(𝑥1 − 𝑥𝑛), (10.2)

where 𝑃 (𝑥, 𝜕/𝜕𝑥) is some polynomial in derivatives. Therefore, every 𝑛-th vertex is associated with just one
point which remains after the integration over other (𝑛 − 1) coordinates is done. The propagators correspond
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to the Feynman Green's function 𝐺𝑎𝑏 � the lines connecting the spacetime points associated with condensed
indices 𝑎 and 𝑏. The sources sit at the ends of external lines, so that the chronological Green's functions
𝐺(𝑥1, ...𝑥𝑛) = ⟨ 0 |T𝜙(𝑥1)𝜙...𝜙(𝑥𝑛)𝑆 | 0 ⟩ (which are obtained by functional di�erentiation of these sources)
have external propagators terminating at the points 𝑥1, ...𝑥𝑛.

Here we will dwell on connectedness properties of Feynman graphs which lead to the factorization of vacuum
graphs, the notion of the generating functional of connected graphs and the notion of effective action � the
generator of one-particle irreducible graphs. Since all the graphs can be obtained by simple combinatorics of
irreducible graphs, this division is rather useful.

10.1 Factorization of vacuum graphs

First of all, vacuum diagrams are those which do not have external lines. External lines in the diagram describing
the multi-point Green's function ⟨ 0 |T𝜙1...𝜙𝑛𝑆 | 0 ⟩ end up on the spacetime points 𝑥𝑘 of 𝜙𝑘 = 𝜙(𝑥𝑘). It turns
out that the vacuum graphs always factor out as one overall factor from every Green's function. This follows from
simple combinatorics of contractions between the operators inside the action 𝑆int and the operators belonging
to the chain 𝜙𝜙1...𝜙𝑛,

⟨ 0 |T𝜙𝜙...𝜙𝑆 | 0 ⟩ =

∞∑︁
𝑉=0

1

𝑉 !

∑︁
all

contractions

(︀
𝑖𝑆int

)︀𝑉
𝜙𝜙...𝜙

=

∞∑︁
𝑉=0

1

𝑉 !

𝑉∑︁
𝑀=0

𝐶𝑀
𝑉

[︃ ∑︁
all

contractions

(︀
𝑖𝑆int

)︀𝑀 ]︃[︃ ∑︁
𝜙𝑆int

contractions

(︀
𝑖𝑆int

)︀𝑉−𝑀
𝜙𝜙...𝜙

]︃

=

[︃ ∞∑︁
𝑀=0

∑︁
all

contractions

(︀
𝑖𝑆int

)︀𝑀
𝑀 !

]︃[︃ ∞∑︁
𝑉=0

∑︁
𝜙𝑆int

contractions

(︀
𝑖𝑆int

)︀𝑉
𝑉 !

𝜙𝜙...𝜙

]︃

= 𝑍[ 0 ] ⟨ 0 |T𝜙𝜙...𝜙𝑆 | 0 ⟩ non−vacuum, (10.3)

where in the last factor 𝜙𝑆int-contractions by de�nition contain at least one contraction between 𝜙's and 𝑆int

and 𝐶𝑀
𝑉 = 𝑉 !/𝑀 ! (𝑉 −𝑀)! is the number of possible divisions of the product of 𝑉 factors into the products of

𝑀 and 𝑉 −𝑀 factors. Here 𝑍[ 0 ] = ⟨ 0 |𝑆 | 0 ⟩ is the vacuum to vacuum amplitude given by the set of vacuum
diagrams. Thus, non-vacuum Green's functions read

⟨ 0 |T𝜙𝜙...𝜙𝑆 | 0 ⟩ non−vacuum =
1

𝑍[ 0 ]

𝛿𝑛𝑍[ 𝐽 ]

𝛿𝐽1...𝛿𝐽𝑛

⃒⃒⃒⃒
𝐽=0

. (10.4)

Division by 𝑍[ 0 ] removes all vacuum diagrams.
Now consider connected diagrams. For a simplest case of the interaction action cubic in the �elds

𝑆int =
1

3!
𝑆𝑎𝑏𝑐𝜙

𝑎𝜙𝑏𝜙𝑐, (10.5)

we have in the second order of perturbation theory in 𝑆int

⟨T𝜙1𝜙2 ⟩ ≡ ⟨ 0 |T𝜙1𝜙2𝑆 | 0 ⟩ = exp
(︁
− 𝑖

2

𝛿

𝛿𝜙
𝐺
𝛿

𝛿𝜙

)︁
𝜙1𝜙2

[︁
1 +

𝑖

3!
𝑆(3)𝜙3 +

1

2

(︁ 𝑖
3!
𝑆(3)𝜙3

)︁2
+ ...

]︁
, (10.6)

which is easier to draw than to explicitly write. We have it on Fig.6, where all the elements of diagrams are
explained including the mean �eld ⟨𝜙 ⟩, in terms of which the disconnected term is factorized as a product
⟨𝜙1 ⟩⟨𝜙2 ⟩,

The mean �eld is shown on Fig.7 in the lowest order of perturbation theory. It reads as the following
contraction of the 3-vertex with two propagators,

⟨𝜙𝑎 ⟩ ≡ ⟨ 0 |T𝜙𝑎
𝐼 𝑆 | 0 ⟩ = − 𝑖

2
𝐺𝑎𝑏𝑆𝑏𝑐𝑑𝐺

𝑑𝑐 + ..., (10.7)

One propagator forms the external line ending at the entry 𝑎 of ⟨𝜙𝑎 ⟩. The second propagator contracts the two
indices of the vertex and forms a loop. Of course, everywhere here contractions of condensed indices includes
spacetime integration.
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Figure 6: Diagrammatic representation of the two-point Green’s function in the second order of perturbation theory.

Last term is disconnected.

Figure 7: Mean field diagram.

10.2 Connected and one-particle irreducible graphs. Effective action

It turns out that one can get rid of the disconnected piece of ⟨𝜙1 ⟩⟨𝜙2 ⟩ in Fig.6 by going over to the generating
functional of connected Green's function 𝑍[ 𝐽 ]→𝑊 [ 𝐽 ] which is just the logarithm of 𝑍[ 𝐽 ],

𝑊 [ 𝐽 ] =
1

𝑖
ln𝑍[ 𝐽 ], 𝑍[ 𝐽 ] = 𝑒𝑖𝑊 [ 𝐽 ]. (10.8)

For the two-point case this gives

𝑊 12 ≡ 𝐺12
connected =

𝛿2𝑊 [ 𝐽 ]

𝛿𝐽1 𝛿𝐽2
= 𝑖
(︀
⟨𝜙1𝜙2 ⟩ − ⟨𝜙1 ⟩⟨𝜙2 ⟩

)︀
, (10.9)

which cancels the disconnected graph in Fig.6. The same can be observed for multi-point connected Green's
functions � they are generated by higher order functional derivatives of 𝑊 [ 𝐽 ].

Problem 10.2. Prove (10.9).

The next step is to consider one-particle irreducible Green's functions. Their graphs have the property that
cutting down any single of their propagators does not make the total graph disconnected. For example, on
Fig.8 the total graph consists of two one particle irreducible diagrams OPI1(𝑥1, ...𝑥𝑛, 𝑧) and OPI2(𝑢, 𝑦1, ...𝑦𝑚)
connected by the propagator,∫︁

𝑑𝑧 𝑑𝑢OPI1(𝑥1, ...𝑥𝑛, 𝑧)𝐺(𝑧, 𝑢) OPI2(𝑢, 𝑦1, ...𝑦𝑚). (10.10)

The knowledge of OPI ingredients of the full diagram of course allows one to calculate it by this rule as a
whole. OPI diagrams by their de�nition do not have external lines-propagators, because their cutting would
destroy their irreducible nature. For this reason OPI graphs on Fig.8 have only small black dots corresponding
to spacetime entries 𝑥1, .., 𝑦1, ..., etc. Di�erent structure of external entries of OPI Green's functions manifest
themselves in the di�erent character of their generating functional. It is not a functional of the source 𝐽 , but
rather a functional of the mean �eld 𝜑 ≡ ⟨𝜙 ⟩ the simplest version of which has already been introduced above.

Introduce the o�-shell version of the mean �eld as the following functional of the source 𝐽

𝜑𝑎 = 𝜑𝑎[ 𝐽 ] = ⟨ 0 |T𝜙𝑎
𝐼 𝑆[ 𝐽 ] | 0 ⟩ =

1

𝑍[ 𝐽 ]

𝛿𝑍[ 𝐽 ]

𝑖𝛿𝐽𝑎

⃒⃒⃒
𝐽 ̸=0

=
𝛿𝑊 [ 𝐽 ]

𝛿𝐽𝑎
, (10.11)

and assume that this relation is invertible, which means that the source can be expressed as a functional of the
mean �eld 𝐽𝑎 = 𝐽𝑎[𝜑 ]. Then the generating functional of the OPI Green's functions is the Legendre transform
of 𝑊 [ 𝐽 ]

𝛤 [𝜑 ] =
(︀
𝑊 [ 𝐽 ]− 𝐽𝑎𝜑𝑎

)︀ ⃒⃒
𝐽=𝐽[𝜑 ]

. (10.12)
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Figure 8: Two one-particle irreducible diagrams connected by a propagator.

This functional is also called effective action, though this term is always used in the di�erent sense � as the
action in e�ective �eld theory, which is valid in the range of energies below a certain cuto� and the result of
integrating out high-energy quantum �elds.

E�ective action generates OPI diagrams or proper (full) quantum vertices

𝛤𝑎1...𝑎𝑛
=

𝛿𝑛𝛤 [𝜑 ]

𝛿𝜑𝑎1 ...𝛿𝜑𝑎𝑛
. (10.13)

Let us now see that these vertices and the e�ective action 𝛤 [𝜑 ] itself are represented by OPI diagrams. To begin
with, from the properties of the Legendre transform it follows that e�ective action yields e�ective equations of
motion for the mean �eld

𝛿𝛤 [𝜑 ]

𝛿𝜑𝑎
= −𝐽𝑎. (10.14)

Problem 10.3. Prove (10.14).

Note that this is the direct analogue of the classical equations of motion in the presence of sources under
the replacement of the classical �eld by the mean �eld and the replacement of the classical action by the quan-
tum e�ective action, 𝜙 → 𝜑, 𝑆[𝜙 ] → 𝛤 [𝜑 ]. For 𝜑 = 𝜑[ 𝐽 ] this is the identity valid for any value of the source
𝛿𝛤 [𝜑]/𝛿𝜑 |𝜑=𝜑[𝐽] = −𝐽 , which can be di�erentiated with respect to 𝐽 . Therefore,

𝛤𝑎𝑏
𝛿𝜑𝑏

𝛿𝐽𝑐
= −𝛿𝑐𝑎,

𝛿𝜑𝑎

𝛿𝐽𝑏
= −

(︀
𝛤𝑏𝑎

)︀−1
= 𝒢𝑎𝑏, (10.15)

whence

𝛿2𝑊

𝛿𝐽𝑎𝛿𝐽𝑏
= −

(︀
𝛤𝑏𝑎

)︀−1
= 𝒢𝑎𝑏, (10.16)

where 𝒢𝑎𝑏 is the full quantum propagator � the classical Green's function 𝐺𝑎𝑏 dresses by the full set of quantum
corrections. But we know that𝑊 generates all connected diagrams so that this second order functional derivative
can be rewritten as an in�nite sum of diagrams, where the blotted circle denotes the sum of all OPI diagrams

Figure 9: Self energy

with two entries (it cannot contain non-OPI graphs, because the latter are all included in the sum of terms on
this Fig.9). If we denote this shaded circle operator as 𝛴, then the in�nite sum of this �gure can be resummed
as the geometric progression

𝛿2𝑊

𝛿𝐽1𝛿𝐽2
= 𝐺+𝐺𝛴𝐺+𝐺𝛴𝐺𝛴𝐺+ ... = 𝐺

1

1−𝛴𝐺
. (10.17)

On the other hand 𝐺 = −(𝑆𝜑𝜑)−1, so that 𝛿2𝑊/𝛿𝐽1𝛿𝐽2 = −
(︀
𝑆𝜑𝜑 + 𝛴

)︀−1
= −

(︀
𝛤𝜑𝜑

)︀−1
, where we recalled

Eq.(10.16). Therefore

𝛤𝑎𝑏 =
𝛿2𝛤

𝛿𝜑𝑎𝛿𝜑𝑏
= 𝑆𝑎𝑏 +𝛴𝑎𝑏, (10.18)
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and Σ[𝜑 ] can be interpreted as a quantum part of the full quantum e�ective action ,

𝛤 [𝜑 ] = 𝑆[𝜑 ] +𝛴[𝜑 ], (10.19)

and 𝛴𝑎𝑏 = 𝛿2𝛴/𝛿𝜑𝑎𝛿𝜑𝑏 is usually called self-energy operator.

Problem 10.4. Prove that 𝛤𝑎𝑏𝑐 = 𝛤𝑎𝑑𝛤𝑏𝑓𝛤𝑐𝑒
𝛿3𝑊

𝛿𝐽𝑑𝛿𝐽𝑓 𝛿𝐽𝑒
= 𝛤𝑎𝑑𝛤𝑏𝑓𝛤𝑐𝑒𝐺

𝑑𝑓𝑒
connected.

Therefore, the exact connected 3-point Green's function expresses via the full 3-vertex 𝛤𝜑𝜑𝜑 and full quan-
tum propagators 𝒢𝜑𝜑,

𝐺𝑎𝑏𝑐
connected = −𝒢𝑎𝑑𝒢𝑏𝑓𝒢𝑐𝑒 𝛤𝑑𝑓𝑒 . (10.20)

Similar expressions hold for higher order connected Green's functions. Diagrammatically they are composed
of the full propagators 𝒢𝜑𝜑 joining full vertices 𝛤𝜑1𝜑2...𝜑𝑛 . In terms of these OPI ingredients connected Green's
functions have the form of the trees � in contrast to the Feynman diagrams built of classical (usually called tree
level) propagators 𝐺𝜑𝜑 and classical (tree level) vertices 𝑆𝜑1𝜑2...𝜑𝑛

they do not contain loops. Full propagators
and full vertices imply in�nite resummation of Feynman diagrams in terms of tree level objects � this is a
complicated extension of summation via the geometric progression made above.

To summarize what we have got thus far is as follows:
i) non-vacuum diagrams � coe�cient functions of S-matrix,

𝐺𝑎1...𝑎𝑛 =
1

𝑍[ 𝐽 ]

𝛿𝑛𝑍[ 𝐽 ]

𝛿𝐽𝑎1
...𝛿𝐽𝑎𝑛

⃒⃒⃒⃒
𝐽=0

; (10.21)

ii) connected Green's functions and their generating functional

𝑊 𝑎1...𝑎𝑛 =
𝛿𝑛𝑊 [ 𝐽 ]

𝛿𝐽𝑎1 ...𝛿𝐽𝑎𝑛

, 𝑊 =
1

𝑖
ln𝑍; (10.22)

iii) OPI vertices and their generating functional � e�ective action,

𝛤𝑎1...𝑎𝑛
=

𝛿𝑛𝛤 [𝜑 ]

𝛿𝜑𝑎1 ...𝛿𝜑𝑎𝑛
𝛤 [𝜑 ] =

(︀
𝑊 [ 𝐽 ]− 𝐽𝑎𝜑𝑎

)︀
𝐽=𝐽[𝜑 ]

. (10.23)

Green's functions (nonvacuum and connected) look very much like contravariant tensors with upper indices
on con�guration space of the theory7, whereas the OPI vertex functions have lower �covariant" condensed indices.
Diagrammatically this looks as the amputation of external propagator lines from the connected diagrams (along
with resummation which makes the diagram irreducible with respect to cutting the propagator lines).

10.3 Semiclassical (loop) expansion and background field formalism

Another type of perturbation theory is semiclassical expansion. This is neither the perturbation expansion
in 𝑆int (the number of vertices) nor in the number of external lines. There is a natural parameter measuring
the deviation of the theory from its classical limit � the Planck constant ~. Expansion in powers of ~ is called
semiclassical expansion.

To begin with, we reinsert ~ in the path integral for the generating functional

exp
𝑖

~
𝑊 [ 𝐽 ] =

∫︁
𝐷𝜙 exp

𝑖

~
(︀
𝑆[𝜙 ] + 𝐽𝑎𝜙

𝑎
)︀

(10.24)

and apply to it the stationary phase method of asymptotic expansion in the limit of ~→ 0. The essence of the
method in the case of �nite-dimensional integral

∞∫︁
−∞

𝑑𝑥 exp
𝑖

~
𝑓(𝑥) (10.25)

7Strictly speaking, they are not tensors because under diffeomorphisms of the configuration space, 𝜙 → 𝜙′[𝜙], they transform
inhomogeneously. Their tensor covariantization can be achieved within the so-called Vilkovisky-DeWitt effective action formalism.
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consists in the expansion of the function 𝑓(𝑥) in power series in the vicinity of the stationary point 𝑥0, 𝑓
′(𝑥0) = 0,

𝑓(𝑥) = 𝑓(𝑥0) +
1

2
𝑓 ′′(𝑥0) (𝑥− 𝑥0)2 +

1

3!
𝑓 ′′′(𝑥0) (𝑥− 𝑥0)3 + ... , (10.26)

and in the subsequent expansion of the integrand in powers of everything but the quadratic part of 𝑓(𝑥). The
inttegral then reduces to the in�nite sum of Gaussian momenta integrals

∞∫︁
−∞

𝑑𝑥 exp
𝑖

~
𝑓(𝑥) = 𝑒𝑖𝑓0/~

∞∫︁
−∞

𝑑∆ 𝑒𝑖𝑓
′′
0 Δ2/~

[︂
1 +

𝑖

3!~
𝑓 ′′′0 ∆3 +

𝑖

4!~
𝑓 ′′′′0 ∆4 +

1

2

(︁ 𝑖𝑓 ′′′0
3!~

)︁2
∆6 + ...

]︂

= 𝑒𝑖𝑓0/~
(︁2𝑖𝜋~
𝑓 ′′0

)︁1/2 [︂
1 +

𝑖

3!
𝑓 ′′′0
⟨∆3⟩
~

+
𝑖

4!
𝑓 ′′′′0

⟨∆4⟩
~
− 1

2(3!)2
(𝑓 ′′′0 )2

⟨∆6⟩
~2

+ ...

]︂
, (10.27)

where 𝑓0 = 𝑓(𝑥0), 𝑓 ′′0 = 𝑑2𝑓/𝑑𝑥2| 𝑥=𝑥0
, etc., ∆ = 𝑥− 𝑥0, and

⟨∆𝑛⟩ =

∫︀
𝑑∆ 𝑒𝑖𝑓

′′
0 Δ2/~ ∆𝑛∫︀

𝑑∆ 𝑒𝑖𝑓
′′
0 Δ2/~ . (10.28)

Odd Gaussian momenta integrals vanish, ⟨∆2𝑛+1⟩ = 0, while even ones are expressed as products of pairwise
contractions

⟨∆2𝑛⟩ ∼ ∆∆...∆∆ ∼ ~𝑛, ∆∆ = 𝑖~
(︀
𝑓 ′′0
)︀−1

. (10.29)

Therefore, in the series (10.27) the powers of ~ grow in the numerator faster than in the denominator, in
particular ⟨∆4⟩/~ ∼ ⟨∆6⟩/~2 ∼ ~, etc. Therefore this is the expansion in powers of ~.

Apply this technique to �eld theory

𝑥→ 𝜙𝑎, 𝑑𝑥→ 𝐷𝜙, 𝑓(𝑥)→ 𝑆[𝜙 ] + 𝐽𝑎𝜙
𝑎, 𝑥0 → 𝜙0,

𝛿𝑆[𝜙0 ]

𝛿𝜙0
= −𝐽, (10.30)

∆∆ = 𝑖~/𝑓 ′′0 → ∆𝑎∆𝑏 = −~𝐺𝑎𝑏[𝜙0 ]. (10.31)

Note that in view of (10.30) 𝜙0 = 𝜙0[ 𝐽 ] is the functional of the source as a nontrivial solution of the classical
equation of motion. Correspondingly, the chronological contraction 𝐺𝑎𝑏[𝜙0 ] is the Green's function of the
Hessian of the action on a nontrivial classical background,

𝛿2𝑆[𝜙 ]

𝛿𝜙𝑎 𝛿𝜙𝑏

⃒⃒⃒⃒
𝜙0

𝐺𝑏𝑐[𝜙0 ] = −𝛿𝑐𝑎. (10.32)

So the meaning of 𝜙0[ 𝐽 ] here is di�erent from empty �at spacetime background 𝜙0 in Eq.(8.45).
By using these objects we again arrive at the Feynman diagrams in coordinate space , but with more compli-

cated elements of diagrammatic technique � propagator𝐺[𝜙0 ] and vertices 𝑆𝑎1...𝑎𝑛
[𝜙0 ] = 𝛿𝑛𝑆int/𝛿𝜙

𝑎1 ...𝛿𝜙𝑎𝑛 |𝜙0

de�ned on the background 𝜙0[ 𝐽 ]. The generating functional of connected Green's functions 𝑊 [ 𝐽 ] becomes
given by the set of Feynman graphs without external lines or points (just like vacuum diagrams above). The
dependence on 𝐽 enters the answer through 𝜙0[ 𝐽 ],

𝑊 [ 𝐽 ] = �̄� [𝜙0[ 𝐽 ] ]. (10.33)

The functional �̄� [𝜙0 ] is sometimes called the background �eld functional.
To the second order in ~ inclusive the answer for �̄� [𝜙0 ] is graphically shown on Fig.10, where the �rst two

terms represent the tree-level part and the rest is the set of the diagrams with lines and vertices computed on
the background �eld 𝜙0. The one-loop circle denotes the log of the functional determinant of the Hessian of the
action on this background,

ln Det𝑆𝑎𝑏[𝜙0 ] = Tr ln𝑆𝑎𝑏[𝜙0 ], (10.34)
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Figure 10: Background field functional in the two-loop approximation.

two-loop eight, nut (or sunset) and the dumbbell one-particle reducible diagrams respectively read as

𝐺𝑎𝑏 𝑆𝑎𝑏𝑐𝑑𝐺
𝑐𝑑, 𝑆𝑎1𝑏1𝑐1𝐺

𝑎1𝑎2𝐺𝑏1𝑏2𝐺𝑐1𝑐2𝑆𝑎2𝑏2𝑐2 , 𝐺𝑎1𝑏1 𝑆𝑎1𝑏1𝑐1𝐺
𝑐1𝑐2 𝑆𝑐2𝑏2𝑎2

𝐺𝑎1𝑏1 . (10.35)

Problem 10.5. Derive this representation.

Now, notice that in this diagrammatic technique every vertex carries the factor ~−1 and every propagator
(10.32) carries ~+1, so that the total power is

~𝐿−𝑉 = ~𝑙−1, (10.36)

where 𝐿 is the number of lines, 𝑉 is the number of vertices and 𝑙 = 𝐿 − 𝑉 + 1 is the number of loops in the
Feynman graph. Therefore, semiclassical expansion is the expansion in the number of loops. In fact, this is a
resummation of the original perturbation theory � for a given �xed number of loops 𝑙 we sum up all diagrams
with all possible numbers of vertices and all possible numbers of external points (with the background �eld 𝜙0

sitting on these external points).

10.4 Effective action in one and two-loop approximations

Let us apply this loop expansion to the e�ective action 𝛤 [𝜑 ]. First, derive in a closed form the equation for it.
From the path integral representation (10.24) of 𝑊 [ 𝐽 ] and the Legendre transform to 𝛤 [𝜑 ] this equation reads

exp
𝑖

~
𝛤 [𝜑 ] =

∫︁
𝐷𝜙 exp

𝑖

~

(︁
𝑆[𝜙 ]− 𝛿𝛤 [𝜑 ]

𝛿𝜑
(𝜙− 𝜑)

)︁
(10.37)

Problem 10.6. Derive this equation.

It is important to note that we have two �elds in the integrand � the quantum (integration) �eld 𝜙 and
the mean �eld 𝜑. Their di�erence 𝜙− 𝜑 is the quantum �uctuation in the vicinity of the mean �eld.

How to �nd 𝛤 [𝜑 ] from this equation? An obvious di�culty is that 𝛿𝛤/𝛿𝜑 entering the integrand is unknown.
But if we are interested in the ~-expansion, the solution can be found by iterations � by substituting at every
step the answer for 𝛤 [𝜑 ] obtained in the previous order in ~. The starting point is the classical action,
𝛤 [𝜑 ] = 𝑆[𝜑 ] + 𝑂( ~ ) (see Eq.(10.19)). This iteration method is e�cient because the quantum �uctuation
𝜙− 𝜑 = 𝑂( ~ ), which justi�es this substitution for every transition from 𝑙-th loop order to the (𝑙 + 1)-st one.

Consider this solution in the one-loop approximation. Substitute 𝛤tree[𝜑 ] = 𝑆[𝜑 ] into the right hand side
of (10.37) and apply stationary phase method. The equation for a stationary point 𝜙0 takes the simple form
𝛿𝑆[𝜙0 ]/𝛿𝜙0 = 𝛿𝑆[𝜑 ]/𝛿𝜑 and, under the assumption of the non-degeneracy of the Hessian of the classical action
𝑆𝜙0𝜙0

, has an obvious solution 𝜙0 = 𝜑. Now expand the exponential in the integrand around this point in
powers of the quantum �uctuation ∆ = 𝜙 − 𝜑 and see that the integral reduces to the Gaussian integral over
∆, because the linear in ∆ term cancels out,

𝑆[𝜙 ]− 𝛿𝑆[𝜑 ]

𝛿𝜑
(𝜙− 𝜑) = 𝑆[𝜑 ] +

1

2
𝑆𝜑𝜑[𝜑 ] ∆2 +𝑂(∆3). (10.38)

As a result

𝛤 [𝜑 ] = 𝑆[𝜑 ]− ~
2𝑖

Tr ln
𝛿2𝑆[𝜑 ]

𝛿𝜑 𝛿𝜑
+𝑂(~2), (10.39)
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and the one-loop contribution to e�ective action is

𝛤one−loop[𝜑 ] = − ~
2𝑖

Tr ln
𝛿2𝑆[𝜑 ]

𝛿𝜑 𝛿𝜑
, (10.40)

which is graphically represented on Fig.11. Here the loop with a solid line propagator is in the external �eld with

Figure 11: One-loop effective action.

the propagator 𝐺𝜑𝜑[𝜑 ] � the inverse of −𝑆𝜑𝜑[𝜑 ] ̸= −𝑆𝜑𝜑[ 0 ]. Of course, it can be expanded in powers of the �eld
in accordance with the expansion of the action Hessian, 𝑆𝜑𝜑[𝜑 ] = 𝑆𝜙𝜙[ 0 ] + 𝑆𝜑𝜑𝜑[ 0 ]𝜑+ (1/2)𝑆𝜑𝜑𝜑𝜑[ 0 ]𝜑2 + ...,
which leads to the expansion shown on Fig.12. Solid line propagator is a propagator in the external �led 𝜑, thin
line propagators are at zero background �eld, black blots denote the factors of the background �eld attached
to the loop via the vertices. Here we use obvious variational relations for Tr ln𝑆𝜑𝜑 and the Green's function

Figure 12: Expansion of the background field loop in powers of the field.

𝐺[𝜑 ] = −(𝑆𝜑𝜑[𝜑 ])−1, written down in supercondensed notations (the contraction of omitted condensed indices
should be obvious)

𝛿

𝛿𝜑
Tr ln𝑆𝜑𝜑 = −Tr

(︀
𝑆𝜑𝜑𝜑𝐺

𝜑𝜑
)︀
,

𝛿

𝛿𝜑
𝐺𝜑𝜑 = 𝐺𝜑𝜑𝑆𝜑𝜑𝜑𝐺

𝜑𝜑,
𝛿

𝛿𝜑
𝑆𝜑𝜑𝜑 = 𝑆𝜑𝜑𝜑𝜑. (10.41)

These relations teach us that every functional di�erentiation with respect to 𝜑 is the insertion of the vertex or
attaching extra prong to the already existing vertex. So the solid line loop represents in�nite resummation of
one loop diagrams with a growing number of 𝜑-s attached to this loop.

Figure 13: Two-loop part of effective action.

In the second, two-loop, iteration for the e�ective action one should substitute into the integrand of Eq.(10.37)
the one-loop approximation for 𝛤 [𝜑 ] with

𝛿𝛤

𝛿𝜑𝑎

⃒⃒⃒
one−loop

=
𝛿𝑆

𝛿𝜑𝑎
+

~
2 𝑖
𝑆𝑎𝑐𝑑𝐺

𝑑𝑐 (10.42)

and again perform a Gaussian integration in the vicinity of the stationary point 𝜙 = 𝜑. The result for the
two-loop part of the e�ective action reads as shown in Fig.13,

𝛤2−loop = −~2

8
𝐺𝑎𝑏 𝑆𝑎𝑏𝑐𝑑𝐺

𝑐𝑑 − ~2

12
𝑆𝑎𝑏𝑐𝐺

𝑎𝑑𝐺𝑏𝑒𝐺𝑐𝑓𝑆𝑑𝑒𝑓 . (10.43)

These eight and nut (sunset) diagrams are represented by the contractions of propagators and vertices of
Eq.(10.35) and coincide with those in the background �eld functional �̄� [𝜑 ] of Fig.10. The one particle re-
ducible dumbbell diagram of �̄� [𝜑 ] gets cancelled in 𝛤two−loop due to the one-loop contribution in (10.42) � the
tadpole structure of the mean �eld (10.7) with amputated external line. This is fully consistent with the fact
that 𝛤 [𝜑 ] is a generating functional of OPI diagrams.

Problem 10.7. Derive this expression for two-loop effective action and show cancellation of the dumbbell diagram.
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Lecture 11. Quantization of gauge theories

� Canonical Faddeev-Popov path integral

� Gauge independence of the canonical path integral

� The Lagrangian form of the path integral in gauge theories

� The relation between canonical and Lagrangian gauge transformations

� Closure of the gauge algebra and gauge independence of the Lagrangian path integral

Let us now apply the above functional formalism to quantization of gauge theories. As we know from
the �rst �ve lectures, the physical sector of a gauge invariant theory arises after performing a gauge �xing
procedure which consists of imposing unitary gauge conditions and solving the full set of constraints � original
�rst class constraints and imposed gauges. We solve these constraints with respect to original phase space
variables (𝑞𝑖, 𝑝𝑖) and Lagrange multipliers 𝜆𝜇 in terms of physical degrees of freedom, that is physical phase
space variables (𝜉𝐴, 𝜋𝐴). In terms of these variables the action of the theory takes a usual canonical form with
some physical Hamiltonian 𝐻(𝜉, 𝜋, 𝑡) which, depending on the choice of gauge conditions, can be explicitly time
dependent and in �eld theory almost always nonlocal in space,

𝑆phys[ 𝜉, 𝜋 ] =

∫︁
𝑑𝑡
(︀
𝜋𝐴𝜉

𝐴 −𝐻(𝜉, 𝜋, 𝑡)
)︀
. (11.1)

Then the theory can be quantized along standard rules of canonical quantization and canonical commutation
relations. Quantum theory can be described by the generating functional for chronological products of physical
operators 𝜉𝑎(𝑡), as it was done before. The canonical path integral representation for this generating functional
reads

𝑍[ 𝐽 ] =

∫︁
𝐷𝜉𝐷𝜋 exp

(︁
𝑖𝑆phys[ 𝜉, 𝜋 ] + 𝑖

∫︁
𝑑𝑡 𝐽𝐴(𝑡)𝜉𝐴(𝑡)

)︁
, (11.2)

where the phase space integration runs with boundary conditions discussed above.
In this form, however, the theory is not su�ciently manageable, because it poses many questions which

stay without answers. To begin with, in this formalism many original symmetries become hidden, like Lorentz
invariance � the corner stone of pioneering progress in quantum electrodynamics � which gets lost in the canonical
formalism. The theory is spatially nonlocal, which makes its renormalization properties very complicated and
again not manifest. Everything in this reduced phase space method explicitly depends on a particular choice of
gauge �xing procedure, and a natural question arises how do quantum e�ects in di�erent gauges, but in one and
the same physical theory, are related to one another. Another problem is how one can reformulate the theory
in initial gauge �eld variables � �elds of the Lagrangian action 𝑔𝑎 = (𝑞𝑖(𝑡), 𝜆𝜇(𝑡)) � without explicitly solving
the constraints (which is practically impossible to do exactly).

11.1 Canonical Faddeev-Popov path integral

The reformulation of the above type, which can be a step forward to the resolution of the above questions, is
possible via transition in the path integral (11.2) to the original phase space variables and Lagrange multipliers
of the canonical formalism of a gauge theory. As we remember from Lecture 4 the Liouville integration measure
in the physical phase space,

𝐷𝜉𝐷𝜋 =
∏︁
𝑡

𝑑𝜉(𝑡) 𝑑𝜋(𝑡), (11.3)

is the result of reduction of the range of integration over the original phase space of canonical coordinates 𝑞𝑖

and conjugated momenta 𝑝𝑖 to the subspace of �rst class constraints 𝑇𝜇(𝑞, 𝑝) = 0 and auxiliary gauge conditions
𝜒𝜇(𝑞, 𝑝) = 0. If one formally denotes the dimensionality of phase space by 2𝑛, 𝑖 = 1, 2, ...𝑛, and the number of
�rst class constraints 𝑚, 𝜇 = 1, 2, ...𝑚 (𝑚 and 𝑛 are actually in�nite and correspond to continuous ranges in
�eld theories), then the 2(𝑛−𝑚) dimensional measure of physical phase space, 𝐴 = 1, 2, ...𝑛−𝑚, is the following
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projection of the original Liouville measure to the Liouville measure on this subspace by delta functions of �rst
class constraints 𝑇𝜇 and gauge conditions 𝜒𝜇,

𝑑𝑛−𝑚𝜉 𝑑𝑛−𝑚𝜋⏟  ⏞  
2(𝑛−𝑚)

= 𝑑𝑛𝑞 𝑑𝑛𝑝⏟  ⏞  
2𝑛

𝛿(𝜒) 𝛿(𝑇 ) 𝐽, (11.4)

𝛿(𝜒) =
∏︁
𝜇

𝛿(𝜒𝜇), 𝛿(𝑇 ) =
∏︁
𝜇

𝛿(𝑇𝜇), 𝐽 = det 𝐽𝜇
𝜈 , 𝐽𝜇

𝜈 = {𝜒𝜇, 𝑇𝜈}. (11.5)

Here 𝐽𝜇
𝜈 is the canonical Faddeev-Popov operator � the matrix of Poisson brackets of �rst class constraints and

gauge condition functions � which should be nondegenerate and therefore invertible.
On the other hand, the physical action is a restriction to the constraint subspace of the original canonical

action of the theory,

𝑆phys[ 𝜉, 𝜋 ] = 𝑆[ 𝑞, 𝑝, 𝜆 ]
⃒⃒
𝑇=0, 𝜒=0

, (11.6)

𝑆[ 𝑞, 𝑝, 𝜆 ] =

∫︁
𝑑𝑡
(︀
𝑝𝑖 𝑞

𝑖 −𝐻0 − 𝜆𝜇𝑇𝜇
)︀
. (11.7)

Therefore, the generating functional (11.2) can be rewritten as canonical Faddeev-Popov path integral

𝑍[ 𝐽 ] =

∫︁
𝐷𝑞𝐷𝑝𝐷𝜆 𝛿[𝜒 ] Det 𝐽 exp

(︁
𝑖𝑆[ 𝑞, 𝑝, 𝜆 ] + 𝑖

∫︁
𝑑𝑡 𝐽𝐴(𝑡)𝜉𝐴(𝑡 | 𝑞, 𝑝)

)︁
, (11.8)

where the functional delta function of the �rst class constraints 𝛿[𝑇 ] is represented as the following integral
over the Lagrange multipliers,

𝛿[𝑇 ] =
∏︁
𝑡

𝛿
(︀
𝑇 (𝑞(𝑡), 𝑝(𝑡))

)︀
=

∫︁
𝐷𝜆 exp

(︁
− 𝑖
∫︁
𝑑𝑡 𝜆𝜇𝑇𝜇

)︁
. (11.9)

The physical coordinates in the source term 𝜉𝐴(𝑡 | 𝑞, 𝑝) are some functions of 𝑞 and 𝑝. Similarly to (11.9)
functional delta functions of gauge conditions and functional canonical Faddeev-Popov determinant are de�ned
as products over the moments of time of their ultralocal instantaneous values

𝛿[𝜒 ] =
∏︁
𝑡

𝛿
(︀
𝜒(𝑞(𝑡), 𝑝(𝑡))

)︀
, (11.10)

Det 𝐽 =
∏︁
𝑡

det 𝐽𝜇
𝜈 (𝑞(𝑡), 𝑝(𝑡)). (11.11)

11.2 Gauge independence of the canonical path integral

Note that the relation (11.4) between the integration measures was derived in Lecture 4 for a particular set
coordinate gauge conditions 𝜒𝜇 = 𝜒𝜇(𝑞), but in fact it holds for a wider class of generic canonical gauges
𝜒𝜇(𝑞, 𝑝) and, moreover, underlies the main property of the Faddeev-Popov path integral � its on-shell gauge
independence. For the sources switched o� one has for small changes of gauge conditions functions,

𝑍𝜒[ 0 ] = 𝑍𝜒+𝛿𝜒[ 0 ], (11.12)

To prove this consider in�nitesimal change of gauge conditions

𝜒𝜇 → 𝜒𝜇 + 𝛿𝜒𝜇. (11.13)

It can be generated by the canonical transformation of phase space variables with the in�nitesimal generating
function 𝛿𝛷 given by a linear combination of �rst class constraints, 𝛿𝛷 = 𝑇𝜇ℱ𝜇, with some in�nitesimal gauge
parameters ℱ𝜇

𝜑 = (𝑞, 𝑝)→ 𝜑′ = (𝑞′, 𝑝′) = (𝑞 + 𝛿𝑞, 𝑝+ 𝛿𝑝), 𝛿𝜑 = {𝜑, 𝛿𝛷(𝜑)} (11.14)
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This transformation is ultralocal in time, and it should simulate the change of the gauge conditions functions

𝜒𝜇(𝜑′) = 𝜒𝜇(𝜑) + {𝜒𝜇, 𝑇𝜈}ℱ𝜈 , (11.15)

whence its identi�cation with 𝜒𝜇(𝜑) + 𝛿𝜒𝜇(𝜑) gives (remember that 𝐽𝜇
𝜈 = {𝜒𝜇, 𝑇𝜈} is invertible)

ℱ𝜈 = 𝐽−1𝜈𝜇 𝛿𝜒𝜇. (11.16)

Note that this relation is ultralocal in time, 𝛿𝜒𝜇(𝑡) generates ℱ𝜇(𝑡) at the same moment in time, because the
functional matrix 𝐽𝜇

𝜈 and its inverse, if treated as spacetime operators are proportional to undi�erentiated time
delta function, 𝐽𝜇

𝜈 (𝑡, 𝑡′) = 𝐽𝜇
𝜈 𝛿(𝑡 − 𝑡′). Therefore, if we assume that the gauge conditions in the de�nition of

S-matrix are not varied at 𝑡± → ±∞ (what we will do for a time being) then ℱ𝜈(𝑡±) = 0.
Now make the change of integration variable (11.14) in the generating functional (11.8) where we prefer to

write the quantum integration measure in terms of the delta function of constraints,

𝐷𝜉𝐷𝜋 = 𝐷𝑞𝐷𝑝 𝛿[𝜒 ] 𝛿[𝑇 ] 𝐽𝜒, (11.17)

and explicitly indicate by the subscript that the Faddeev-Popov determinant is calculated in the gauge 𝜒𝜇.
First we just relabel the phase space variables by 𝜑′ = (𝑞′, 𝑝′),

𝑍𝜒[ 0 ] =

∫︁
𝐷𝑞′𝐷𝑝′ 𝛿[𝜒(𝑞′, 𝑝′) ] 𝛿[𝑇 (𝑞′, 𝑝′) ]𝐽𝜒[ 𝑞′, 𝑝′ ] exp 𝑖

∫︁
𝑑𝑡
(︁
𝑝′ 𝑞′ −𝐻0(𝑞′, 𝑝′)

)︁
, (11.18)

and then carefully transform everything to the original (𝑞, 𝑝). Let us show that the result will be just a
replacement (11.13) of gauge conditions functions.

We have for the exponentiated classical action

𝑡+∫︁
𝑡−

𝑑𝑡
(︁
𝑝′ 𝑞′ −𝐻0(𝑞′, 𝑝′)

)︁ ⃒⃒⃒
𝑇𝜇=0

=

𝑡+∫︁
𝑡−

𝑑𝑡
(︁
𝑝 𝑞 −𝐻0(𝑞, 𝑝)

)︁ ⃒⃒⃒
𝑇𝜇=0

, (11.19)

because under a canonical transformation the symplectic form transforms by the surface term at 𝑡±, which van-
ishes in view of ℱ𝜈(𝑡±) = 0, and 𝐻0(𝑞′, 𝑝′) |𝑇=0 = 𝐻0(𝑞, 𝑝)+{𝐻0, 𝑇𝜇}ℱ𝜇 |𝑇=0 = 𝐻0(𝑞, 𝑝) since the Hamiltonian
weakly commutes with �rst class constraints, {𝐻0, 𝑇𝜇} = 𝑉 𝜈

𝜇 𝑇𝜈 . Liouville integration measure under canonical
transformations is invariant and the delta function of gauge conditions by construction goes over into that of
the new ones,

𝐷𝑞′𝐷𝑝′ = 𝐷𝑞𝐷𝑝, 𝛿[𝜒(𝑞′, 𝑝′) ] = 𝛿[𝜒(𝑞, 𝑝) + 𝛿𝜒(𝑞, 𝑝) ]. (11.20)

Problem 11.1. Show the above properties of the canonical transformation for symplectic form and Liouville integration
measure.

The transformation of the quantum measure is trickier,

𝛿(𝑇 (𝜑′)) 𝐽𝜒(𝜑′) = 𝛿(𝑇 (𝜑)) 𝐽𝜒(𝜑) + { 𝐽𝜒, 𝛿𝛷 } 𝛿(𝑇 ) + 𝐽𝜒

[︁ 𝜕

𝜕𝑇𝜆
𝛿(𝑇 )

]︁
{𝑇𝜆, 𝛿𝛷 }. (11.21)

Consider the �rst two terms and use the variational formula for det 𝐽𝛼
𝛽 , { 𝐽, 𝛿𝛷 } = 𝐽 𝐽−1𝛼𝛽 { 𝐽𝛽

𝛼 , 𝛿𝛷 } =

𝐽𝜒 𝐽
−1𝛼

𝛽 { {𝜒𝛽 , 𝑇𝛼}, 𝛿𝛷 } and the cyclic Jacobi identity for the double Poisson bracket. The result is

𝛿(𝑇 ) 𝐽𝜒 + { 𝐽, 𝛿𝛷 } 𝛿(𝑇 ) = 𝛿(𝑇 )
[︁
𝐽𝜒 + 𝐽𝜒 𝐽

−1𝛼
𝛽 { {𝜒

𝛽 , 𝛿𝛷}, 𝑇𝛼}⏟  ⏞  
𝐽𝜒+𝛿𝜒

−𝐽𝜒 𝐽−1𝛼𝛽 {{𝑇𝛼, 𝛿𝛷}, 𝜒
𝛽}
]︁

= 𝛿(𝑇 )
[︁
𝐽𝜒+𝛿𝜒 + 𝐽𝜒𝛺

𝛼
𝛼

]︁
, (11.22)
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where we took into account that {𝜒𝛽 , 𝛿𝛷} = 𝛿𝜒𝛽 and denoted by 𝛺𝜇
𝛼 the coe�cient of the constraints in the

following commutator

{𝑇𝛼, 𝛿𝛷} = 𝛺𝜇
𝛼𝑇𝜇, 𝛺𝜇

𝛼 = 𝑈𝜇
𝛼𝜆ℱ

𝜆 + {𝑇𝛼,ℱ𝜇}. (11.23)

(remember the �rst class nature of constraints 𝑇𝜇 weakly commuting with each other, {𝑇𝜇, 𝑇𝜈} = 𝑈𝛼
𝜇𝜈 𝑇𝛼).

Problem 11.2. Check Eq.(11.22).

The third term in (11.21) reads

𝐽𝜒

[︁ 𝜕

𝜕𝑇𝛼
𝛿(𝑇 )

]︁
{𝑇𝛼, 𝛿𝛷 } = 𝐽𝜒

[︁
𝑇𝜇

𝜕

𝜕𝑇𝛼
𝛿(𝑇 )⏟  ⏞  

−𝛿𝛼𝜇 𝛿(𝑇 )

]︁
𝛺𝜇

𝛼 = −𝐽𝜒𝛺𝛼
𝛼 𝛿(𝑇 ) (11.24)

and cancels the second term of (11.22), so that we �nally have for the quantum measure on the phase space of
𝜑 = (𝑞, 𝑝) the transformation

𝛿(𝑇 (𝜑′)) 𝐽𝜒(𝜑′) = 𝛿(𝑇 (𝜑)) 𝐽𝜒+𝛿𝜒(𝜑). (11.25)

Altogether Eq.(11.18) becomes

𝑍𝜒[ 0 ] =

∫︁
𝐷𝑞𝐷𝑝𝐷𝜆 𝛿[𝜒+ 𝛿𝜒 ] Det 𝐽𝜒+𝛿𝜒 𝑒

𝑖𝑆[ 𝑞,𝑝,𝜆 ] = 𝑍𝜒+𝛿𝜒[ 0 ]. (11.26)

On-shell Faddeev-Popov path integral is gauge independent at least in the class of gauge conditions functions
related by sequence of �small� gauge transformations with nondegenerate canonical Faddeev-Popov operators.

This theorem can be easily extended to o�-shell generating functionals if the sources 𝐽𝐼 are turned on for
some gauge-invariant observables 𝒪𝐼 whose canonical gauge transformation weakly vanishes on the constraint
surface in phase space, that is

{𝒪𝐼 , 𝑇𝜇} = 𝑉 𝜈
𝐼 𝜇 𝑇𝜈 . (11.27)

Then the proof of gauge independence of such generating functional of correlators ⟨𝒪𝐼1 ...𝒪𝐼𝑛⟩,

𝑍[ 𝐽 ] =

∫︁
𝐷𝑞𝐷𝑝𝐷𝜆 𝛿[𝜒 ] Det𝐽𝜒 𝑒

𝑖 𝑆[ 𝑞,𝑝,𝜆 ]+𝑖
∫︀
𝑑𝑡 𝐽𝐼(𝑡)𝒪𝐼(𝑡), (11.28)

obviously goes without di�culty in view of gauge invariance of the source term on the subspace of constraints in
phase space of the theory, 𝛿ℱ𝒪𝐼 |𝑇=0 = 0. Below we will see that weakly vanishing sources in the path integral
representation of S-matrix actually represent the example of such gauge-invariant observables.

11.3 The Lagrangian form of the path integral in gauge theories

Transition to the Lagrangian form of the path integral is achieved, as in the non-gauge theory case, by
integrating out the canonical momenta. When the Hamiltonian in the canonical action is quadratic in momenta,
this can be done exactly by taking the Gaussian integral. For the class of coordinate gauge conditions 𝜒𝜇(𝑞)
the result reads ∫︁

𝐷𝑝𝑒 𝑖 𝑆[ 𝑞,𝑝,𝜆 ] = const
[︀

Det𝐺𝑖𝑗
]︀−1/2

𝑒 𝑖 𝑆[ 𝑔 ], (11.29)

where 𝑆[ 𝑔 ] = 𝑆[ 𝑞, 𝜆 ] is the Lagrangian action which follows from the canonical action by the substitution of
the momentum 𝑝 = 𝑝0(𝑞, 𝑞, 𝜆) as a function of coordinates 𝑞, their time derivatives and Lagrange multipliers 𝜆

𝑆[ 𝑔 ] ≡ 𝑆[ 𝑞, 𝜆 ] =

∫︁
𝑑𝑡𝐿(𝑞, 𝑞, 𝜆) = 𝑆[ 𝑞, 𝑝0(𝑞, 𝑞, 𝜆), 𝜆 ], (11.30)

𝐺𝑖𝑗 =
𝜕2

𝜕𝑝𝑖 𝜕𝑝𝑗

(︀
𝐻0 + 𝜆𝜇 𝑇𝜇

)︀
=
(︀
𝐺𝑖𝑗

)︀−1
, 𝐺𝑖𝑗

⃒⃒
𝑝=𝑝0

=
𝜕2𝐿

𝜕𝑞𝑖 𝜕𝑞𝑗
. (11.31)
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The equation for 𝑝0(𝑞, 𝑞, 𝜆) is8

𝛿𝑆[𝑞, 𝑝, 𝜆]

𝛿𝑝𝑖(𝑡)

⃒⃒⃒
𝑝=𝑝0

= 𝑞𝑖 − 𝜕

𝜕𝑝𝑖

(︀
𝐻0 + 𝜆𝜇 𝑇𝜇

)︀ ⃒⃒⃒
𝑝=𝑝0

= 0. (11.32)

Thus, the generating functional takes the Lagrangian form

𝑍[ 𝐽 ] =

∫︁
𝐷𝑔 𝜇[ 𝑔 ] 𝛿[𝜒(𝑔) ] Det𝑄[ 𝑔 ] 𝑒 𝑖 𝑆[ 𝑔 ]+𝑖𝐽𝑎𝑔

𝑎

, (11.33)

𝐷𝑔 = 𝐷𝑞𝐷𝜆, 𝜇[ 𝑔 ] =
∏︁
𝑡

(︀
det𝐺𝑖𝑗

)︀1/2
=
(︀

Det𝐺𝑖𝑗

)︀1/2
, (11.34)

𝑄[ 𝑔 ] ≡ 𝑄𝜇
𝜈 [ 𝑔 ] = 𝐽𝜇

𝜈

⃒⃒
𝑝=𝑝0

, (11.35)

where 𝜇[ 𝑔 ] is the contribution of the local measure and 𝑄𝜇
𝜈 [ 𝑔 ] is the Lagrangian form of the Faddeev-Popov

operator. In contrast to the original canonical path integral, the sources are included here to the full set of
gauge �elds 𝑔𝑎 = (𝑞𝑖(𝑡), 𝜆𝜇(𝑡)) including the Lagrange multipliers in order to have the possibility of generating
the correlation functions of all gauge �elds 𝑔𝑎,

𝐽𝑎 𝑔
𝑎 =

∫︁
𝑑𝑡
(︀
𝐽𝑖(𝑡) 𝑞

𝑖(𝑡) + 𝐽𝜇(𝑡)𝜆𝜇(𝑡)
)︀
. (11.36)

We remind that we use both the spacetime condensed notations (as in 𝑔𝑎) and canonical condensed notations
in which indices contractions involve spacetime and space integrations respectively.

Let us brie�y discuss the contributions of the local measure 𝜇[ 𝑔 ] and the Faddeev-Popov determinant
Det𝑄𝜇

𝜈 [ 𝑔 ]. As it was discussed before, the matrix of local measure 𝐺𝑖𝑗 is ultralocal in time, so that in spacetime
condensed notations

𝐺𝑖𝑗 = 𝐺𝑖𝑗(𝑡) 𝛿(𝑡− 𝑡′), 𝑖 ↦→ (𝑖, 𝑡), 𝑗 ↦→ (𝑗, 𝑡′), (11.37)

𝜇[ 𝑔 ] =
(︀
Det𝐺𝑖𝑗

)︀1/2
=
(︁∏︁

𝑡

det𝐺𝑖𝑗(𝑡)
)︁1/2

= exp
(︁1

2
𝛿(0)

∫︁
𝑑𝑡 ln det𝐺𝑖𝑗(𝑡)

)︁
. (11.38)

The local measure contribution is always divergent and serves to cancel the strongest volume divergences of
Feynman graphs. In the dimensional regularization these divergences and the measure contribution altogether
vanish and, therefore, physically are unimportant (modulo the subtleties of the regularization mechanism which
might lead to quantum anomalies which we will not discuss here).

11.4 The relation between canonical and Lagrangian gauge transformations

To interpret the Faddeev-Popov operator 𝑄𝜇
𝜈 [ 𝑔 ] note that for coordinate gauge conditions 𝜒𝜇(𝑞) it describes

their canonical gauge transformation generated by the �rst class constraints (remember the material of Lectures
4 and 5)

𝑄𝜇
𝜈 [ 𝑔 ]ℱ𝜈 = {𝜒𝜇, 𝑇𝜈}

⃒⃒
𝑝=𝑝0

ℱ𝜈 = 𝛿ℱ𝜒𝜇
⃒⃒
𝑝=𝑝0

. (11.39)

On the other hand, there is a map between these Hamiltonian formalism gauge transformations 𝛿ℱ𝑔𝑎 and
their Lagrangian counterparts ∆𝑓𝑔𝑎, 𝛿ℱ𝑔𝑎 = ∆𝑓𝑔𝑎 under a certain relation between the Hamiltonian gauge
parameters ℱ𝜇 and the Lagrangian ones 𝑓𝛼. The structure of 𝛿ℱ𝑔𝑎 is di�erent for 𝑞𝑖 and 𝜆𝜇 � for coordinates

8The restriction to coordinate gauge conditions 𝜒𝜇(𝑞) allows one to avoid the contribution of 𝛿[𝜒(𝑞) ] to the equation for 𝑝0, but
for theories with constraints nonlinear in momenta extra dependence on momenta enters through the Faddeev-Popov determinant
Det 𝐽𝜇

𝜈 [ 𝑞, 𝑝 ] and makes the integral non-Gaussian. Still, for theories with at most one (per spatial point) constraint 𝑇𝜇 quadratic
in momenta (the case of Einstein gravity with the Hamiltonian constraint 𝐻⊥ among 𝑇𝜇 ≡ 𝐻𝜇, see Lecture 4) the integral over
𝑝𝑖 can be exactly taken and reduces to the substitution of 𝑝0 in the action. This was shown in E.S.Fradkin and G.A.Vilkovisky,

Quantization of Relativistic Systems with Constraints: Equivalence of Canonical and Covariant Formalisms in Quantum Theory

of Gravitational Field, preprint CERN-TH-2332, 1977. For generic local theories the deviation from this rule reduces to extra
perturbative contributions to the local measure ∼ 𝛿(0) discussed below.
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𝑞𝑖 they are just canonical ones, that is generated by the constraints 𝑇𝜈 and ultralocal in time, whereas for 𝜆𝜇

they involve time derivatives of ℱ𝜇

𝛿ℱ𝑞𝑖
⃒⃒
𝑝=𝑝0

=
𝜕𝑇𝜇
𝜕𝑝𝑖

⃒⃒⃒⃒
𝑝=𝑝0

ℱ𝜇, (11.40)

𝛿ℱ𝜆𝜇 = ℱ̇𝜇 − 𝑈𝜇
𝜎𝜈 𝜆

𝜎ℱ𝜈 − 𝑉 𝜇
𝜈 ℱ𝜈 . (11.41)

In the Lagrangian formalism they both can be represented in terms of gauge generators 𝑅𝑎
𝜇 as spacetime

di�erential operators with the entries 𝑎 and 𝜇 � spacetime condensed indices. In both spacetime condensed and
canonical condensed (with explicit integration over time) this reads as

∆𝑓𝑔𝑎 = 𝑅𝑎
𝜇 𝑓

𝜇 ≡
∫︁
𝑑𝑡′𝑅𝑎

𝜇(𝑡, 𝑡′) 𝑓𝜇(𝑡′), (11.42)

𝑅𝑖
𝜇 ≡ 𝑅𝑖

𝜇(𝑡, 𝑡′) =
𝜕𝑇𝜇
𝜕𝑝𝑖

⃒⃒⃒⃒
𝑝=𝑝0

𝛿(𝑡− 𝑡′), 𝑖 ↦→ (𝑖, 𝑡), 𝜇 ↦→ (𝜇, 𝑡′) (11.43)

𝑅𝜎
𝜇 ≡ 𝑅𝜎

𝜇(𝑡, 𝑡′) =
(︁
𝛿𝜎𝜇

𝑑

𝑑𝑡
− 𝑈𝜎

𝜌𝜇 𝜆
𝜌 − 𝑉 𝜎

𝜇

)︁
𝛿(𝑡− 𝑡′), 𝜎 ↦→ (𝜎, 𝑡), 𝜇 ↦→ (𝜇, 𝑡′). (11.44)

We know how ℱ𝜇 is related to 𝑓𝛼 in concrete examples of relativistic particle, Yang-Mills theory and Einstein
gravity, and generally ℱ𝜇 ̸= 𝑓𝜇. In what follows we will assume for simplicity that they coincide, which in
principle can be attained by a reparametrization of the group manifold, or if necessary in relevant equations
additional factors of the matrix 𝜕𝑓𝛼(ℱ)/𝜕ℱ𝜇 will appear.9 Then the Faddeev-Popov matrix in (11.39) can be
written down as Lagrangian gauge transformation of the gauge conditions functions

𝑄𝜇
𝜈 [ 𝑔 ] =

𝛿𝜒𝜇

𝛿𝑔𝑎
𝑅𝑎

𝜈 . (11.45)

For coordinate gauges 𝜒𝜇(𝑞) this is an ultralocal in time operator 𝑄𝜇
𝜈 = 𝐽𝜇

𝜈 (𝑞, 𝑝) | 𝑝=𝑝0
𝛿(𝑡− 𝑡′). We now want

to extend the notion of the Lagrangian path integral to a wider class of gauges and claim that it will be gauge
independent (on shell or for gauge-invariant source terms) and, therefore, coincide with the path integral in
unitary gauges.

11.5 Closure of the gauge algebra and gauge independence of the Lagrangian path
integral

So we de�ne the Faddeev-Popov path integral (11.33) in a generic gauge 𝜒𝜇(𝑔) = 𝜒𝜇(𝑞, �̇�) � local functions
of gauge �elds 𝑔𝑎 and their spacetime derivatives � with the nontrivial quantum measure 𝛿[𝜒(𝑔) ] Det𝑄𝜇

𝜈 [ 𝑔 ],
where the Faddeev-Popov operator de�ned by Eq.(11.45) is no longer ultralocal in time. Successful choice
of gauge conditions will manifestly restore such symmetries as Lorentzian symmetry of the formalism and will
guarantee unitarity because the starting point was canonical quantization in the physical sector with a Hermitian
Hamiltonian. This is the logic of recovering manifest covariance simultaneously retaining unitarity of the theory.

We will see now that the critical point of this strategy � gauge independence of the path integral � will rely
on locality of the theory and the closure of the algebra of gauge transformations in Lagrangian formalism. This
means that it forms the representation of the group algebra closed with respect to the Lie bracket of gauge
generators 𝑅𝑎

𝜇 on the con�guration space of gauge �elds 𝑔𝑎. In spacetime condensed notations this property
reads as

𝑅𝑏
𝜇

𝛿𝑅𝑎
𝜈

𝛿𝑔𝑏
−𝑅𝑏

𝜈

𝛿𝑅𝑎
𝜇

𝛿𝑔𝑏
= 𝐶𝜆

𝜇𝜈 𝑅
𝑎
𝜆, (11.46)

where 𝐶𝜆
𝜇𝜈 are the structure constants of the gauge algebra.

The proof of gauge independence of (11.33) proceeds along the lines very similar to those in the canonical
formalism. We imitate the change of gauge conditions 𝜒𝜇(𝑔)→ 𝜒𝜇(𝑔) + 𝛿𝜒𝜇(𝑞) by the gauge transformation

𝑔′𝑎 = 𝑔𝑎 +𝑅𝑎
𝜇 𝑓

𝜇, 𝛿𝜒𝜇 =
𝛿𝜒𝜇

𝛿𝑔𝑎
𝑅𝑎

𝜈 𝑓
𝜈 = 𝑄𝜇

𝜈 𝑓
𝜈 ⇒ 𝑓𝜇 = 𝑄−1𝜇𝜈 𝛿𝜒𝜈 , (11.47)

9For example, 𝐽𝜇
𝜈 = 𝑄𝜇

𝛼 𝛿𝑓
𝛼/𝛿ℱ𝜇, or Det𝐽𝜇

𝜈 = Det𝑄𝜇
𝛼 ×Det

(︀
𝛿𝑓𝛼/𝛿ℱ𝜇

)︀
with the last factor contributing to the local measure.
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where 𝑄−1𝜇𝜈 is the inverse of 𝑄𝜇
𝜈 � the Green's function which is supposed to exist because 𝑄𝜇

𝜈 is of course
non-degenerate.10 Under this transformation we have

𝑆[ 𝑔′ ] = 𝑆[ 𝑔 ], 𝛿[𝜒(𝑔′) ] = 𝛿[𝜒(𝑔) = 𝛿𝜒(𝑔) ], 𝐷𝑔′ = 𝐷𝑔

⃒⃒⃒⃒
𝐷𝑔′

𝐷𝑔

⃒⃒⃒⃒
, (11.48)⃒⃒⃒⃒

𝐷𝑔′

𝐷𝑔

⃒⃒⃒⃒
= Det

𝛿𝑔′𝑎

𝛿𝑔𝑏
= 1 +

(︀
𝑅𝑎

𝜇𝑄
−1𝜇

𝜈 𝛿𝜒
𝜈
)︀
,𝑎

= 1 +𝑅𝑎
𝜇,𝑎 𝑓

𝜇 +𝑅𝑎
𝜇𝑄
−1𝜇

𝜈 𝛿𝜒
𝜈
,𝑎 −𝑅𝑎

𝜇𝑄
−1𝜇

𝛼

(︀
𝜒𝛼
,𝑏𝑎𝑅

𝑏
𝛽 + 𝜒𝛼

,𝑏𝑅
𝑏
𝛽,𝑎

)︀
𝑓𝛽 , (11.49)

where comma denotes the functional derivative with respect to the gauge �eld, 𝛿𝜒𝜇
,𝑎 = 𝛿𝜒𝜇/𝛿𝑔𝑎, 𝜒𝛼

,𝑏𝑎 =

𝛿2𝜒𝛼/𝛿𝑔𝑎𝛿𝑔𝑏, etc., and we used the formula of variation of the determinant. Similarly

𝑄𝜒[ 𝑔′ ] = 𝑄𝜒[ 𝑔 ]
[︁

1 +𝑄−1𝜇𝛼 𝑅
𝑏
𝜇 𝛿𝜒

𝛼
,𝑏𝑎𝑅

𝑏
𝛽 𝑓

𝛽 +𝑄−1𝜇𝛼 𝑅
𝑏
𝜇,𝑎 𝜒

𝛼
,𝑏𝑅

𝑎
𝛽 𝑓

𝛽
]︁
. (11.50)

Problem 11.3. Check Eqs.(11.49)-(11.50)

Combining together Eqs.(11.49)-(11.50) one �nds that the terms with 𝜒𝛼
,𝑏𝑎 = 𝜒𝛼

,𝑎𝑏 cancel out, whereas the
underlined terms form the Lie bracket of gauge generators

𝑄𝜒[ 𝑔′ ]

⃒⃒⃒⃒
𝐷𝑔′

𝐷𝑔

⃒⃒⃒⃒
= 𝑄𝜒

[︁
1 +𝑄−1𝜇𝜈 𝑅

𝑎
𝜇 𝛿𝜒

𝜈
,𝑎

]︁
+ 𝑄𝜒

[︁
𝑅𝑎

𝜇,𝑎 𝑓
𝜇 +𝑄−1𝜇𝛼 𝜒

𝛼
,𝑏

(︀
𝑅𝑎

𝛽 𝑅
𝑏
𝜇,𝑎 −𝑅𝑎

𝜇𝑅
𝑏
𝛽,𝑎

)︀
𝑓𝛽
]︁

= 𝑄𝜒+𝛿𝜒 +𝑄𝜒

[︂
𝛿𝑅𝑎

𝜇

𝛿𝑔𝑎
+ 𝐶𝜈

𝜇𝜈

]︂
𝑓𝜇. (11.51)

Finally, the transformation of the local measure reads

𝜇[ 𝑔′ ] = 𝜇[ 𝑔 ]

[︂
1 + 𝑓𝜇𝑅𝑎

𝜇

ln𝜇

𝛿𝑔𝑎

]︂
. (11.52)

Therefore, if we assume that the local measure transforms like

𝑅𝑎
𝜇

ln𝜇

𝛿𝑔𝑎
= −

[︂
𝛿𝑅𝑎

𝜇

𝛿𝑔𝑎
+ 𝐶𝜈

𝜇𝜈

]︂
, (11.53)

then the total quantum measure has under the transformation (11.47) simulating the change of the gauge the
needed form

𝜇[ 𝑔′ ] 𝛿[𝜒(𝑔′) ] Det𝑄𝜒[ 𝑔′ ]

⃒⃒⃒⃒
𝐷𝑔′

𝐷𝑔

⃒⃒⃒⃒
= 𝜇[ 𝑔 ] 𝛿[𝜒(𝑔) + 𝛿𝜒(𝑔) ] Det𝑄𝜒+𝛿𝜒[ 𝑔 ]. (11.54)

This �nally proves that, similarly to (11.26) the on-shell path integral is gauge independent in the class of gauge
conditions functions related by �small� gauge transformations with nondegenerate Faddeev-Popov operators,

𝑍𝜒[ 0 ] = 𝑍𝜒+𝛿𝜒[ 0 ]. (11.55)

Note that the gauge transformation of the measure (11.53) is consistent in the sense that both right and
left hand sides in �eld theories are 𝛿(0)-type divergences, which vanish in the dimensional regularization and
can be discarded from the very beginning because they do not lead to visible physical e�ects. Indeed, for
di�eomorphism group structure constants

𝐶𝜆,𝑦
𝜇,𝑥 𝜈,𝑥′ = 𝛿𝜆𝜇𝛿(𝑥, 𝑦)𝜕𝜈𝛿(𝑥, 𝑥

′)− (𝜇, 𝑥↔ 𝜈, 𝑥′), 𝐶𝜈
𝜇𝜈 = 𝜕𝜇𝛿(𝑥, 𝑥

′) | 𝑥′=𝑥.

10Below we will see that in a wide class of gauges 𝑄𝜇
𝜈 is a second order differential operator, and its Green’s function is consistently

defined by the same boundary conditions as those of physical degrees of freedom – positive/negative frequency boundary conditions
at future/past infinities.
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Similarly 𝑅𝑎
𝜇,𝑎 ∝ 𝜕𝛿(0) and ln𝜇[ 𝑔 ] ∝ 𝛿(0) in view of (11.38). The analogue of this measure in the �nite-

dimensional context (when the ranges of 𝑖 = 1, ...𝑛 and 𝜇 = 1, ...𝑚 are really �nite) is the Haar measure
of integration over the 𝑚-dimensional group manifold. Usually the Lagrangian (or covariant) version of the
Faddeev-Popov integral is introduced via the procedure of integration over the group and factorization of the
group volume factor. This is rigorous only in the �nite-dimensional case and for compact groups with a �nite
group volume. To avoid both of these di�culties we chose another procedure � derivation of the covariant
Faddeev-Popov integral from its Hamiltonian version, which in its turn originates from manifestly unitary
quantization in the physical sector.

Lecture 12. Relativistic gauge conditions and gauge ghost fields

� On-shell source term

� t'Hooft trick and gauge breaking term

� Feynman-DeWitt-Faddeev-Popov ghosts

� Boundary conditions for gauge and ghost �elds

� Recovery of classical theory, initial conditions and counting physical degrees of freedom

Here we continue the discussion of gauge independence of the Faddeev-Popov path integral and S-matrix,
consider various types of gauge-�xing procedure and reinterpret the quantum path integral measure in terms of
ghost �elds.

12.1 On-shell source term

As in the case of unitary gauges, the gauge independence property (11.55) can be extended o� shell if the
sources are turned on for gauge invariant observables, 𝐽𝑎𝑔

𝑎 → 𝐽𝐼𝒪𝐼 [ 𝑔 ], satisfying 𝑅𝑎
𝜇 𝛿𝒪𝐼/𝛿𝑔𝑎 = 0. A particular

case of such gauge invariant is the on-shell weakly vanishing source term which arises in the construction of
S-matrix via the generating functional (8.47), that is 𝑍[ 𝐽 ] with 𝐽 given by (8.38). To generate S-matrix in the
physical sector, the source term of (11.2) should read (see Eq.(8.39))

−
+∞∫︁
−∞

𝑑𝑡 𝜉𝐼(𝑡)
→
𝑆 𝜉𝜉

(︁ 𝑑
𝑑𝑡

)︁
𝜉(𝑡) =

[︁
𝜉𝐼 𝜋 − 𝜋𝐼 𝜉

]︁ 𝑡=+∞

𝑡=−∞
, (12.1)

where 𝜋 = 𝜋0(𝜉(𝑡), 𝜉(𝑡)) and 𝜋𝐼 = 𝜋0(𝜉𝐼(𝑡), 𝜉𝐼(𝑡)) are the Lagrangian values of canonical momenta for the
quantum (integration) physical �eld 𝜉(𝑡) and the interaction picture �eld 𝜉𝐼(𝑡) repectively. We remind that
the latter is a solution of linearized equation 𝑆𝜉𝜉(𝑑/𝑑𝑡)𝜉𝐼(𝑡) = 0 with the Hessian of the physical action 𝑆𝜉𝜉 ≡
𝛿2𝑆phys/𝛿𝜉𝛿𝜉, so that after integration by parts only the surface term at 𝑡 = ±∞ survives and equals the
symplectic form built in terms of the two �elds 𝜉 and 𝜉𝐼 . Natural question arises whether this source term can
be transformed to original Lagrangian variables 𝑔𝑎 = (𝑞𝑖, 𝜆𝜇) similarly to the transformation (𝜉, 𝜋) → (𝑞, 𝑝) in
(11.4)-(11.5) and whether it will be gauge invariant in terms of 𝑔𝑎.

It turns out that this is indeed possible because the source term (12.1) is at in�nity 𝑡 → ±∞ where
the integration �eld 𝜉(𝑡) satis�es positive/negative frequency boundary conditions and can be treated in the
linearized approximation. Therefore the reduction to physical sector becomes a linear problem which can be
universally solved. Let is show that (12.1) can be rewritten in terms of original Lagrangian �elds 𝑔𝑎 = (𝑞𝑖, 𝜆𝜇)
as

−𝜉𝐼
→
𝑆 𝜉𝜉 𝜉 = −𝑔𝐼

→
𝑆 𝑔𝑔 𝑔 = −

+∞∫︁
−∞

𝑑𝑡 𝑔𝑎𝐼 (𝑡)
→
𝑆𝑎𝑏

(︁ 𝑑
𝑑𝑡

)︁
𝑔𝑏(𝑡), (12.2)

where 𝑔𝑎𝐼 = (𝑞𝑖𝐼(𝑡), 𝜆𝜇𝐼 (𝑡)) is the set of interaction picture �elds � generic solutions of the linearized equations
of motion analogous to (8.46) composed of positive/negative frequency basis functions 𝑢𝑎𝐴(𝑡) ∼ 𝑒−𝑖𝜔𝐴𝑡 and
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𝑢𝑎*𝐴 (𝑡) ∼ 𝑒𝑖𝜔𝐴𝑡, 𝜔𝐴 > 0, | 𝑡 | → ∞,

𝑆𝑎𝑏𝑔
𝑏
𝐼 = 0, 𝑔𝑎𝐼 = 𝑢𝑎𝐴𝛼𝐴 + 𝑢𝑎*𝐴 𝛼

*
𝐴, 𝑢𝑎𝐴 ∼ 𝑒−𝑖𝜔𝐴𝑡, 𝜔𝐴 > 0. (12.3)

Here the operator 𝑆𝑎𝑏 is the Hessian of the classical action on the empty and �at space background 𝑔0,

𝑆𝑎𝑏 =
𝛿2𝑆[ 𝑔 ]

𝛿𝑔𝑎 𝛿𝑔𝑏

⃒⃒⃒⃒
𝑔0

, (12.4)

and (𝛼*𝐴, 𝛼𝐴) are the c-number arguments of the S-matrix normal symbol, which get replaced by creation/annihilation
operators in S-matrix and scattering amplitudes (cf. Eqs.(8.51)-(8.52)).

From the form of the action (11.30) with the Lagrangian 𝐿(𝑞, 𝑞, 𝜆) it is obvious that in the block structure
of this Hessian,

𝑆𝑎𝑏 =

[︂
𝑆𝑖𝑗 𝑆𝑖𝜈

𝑆𝜇𝑗 𝑆𝜇𝜈

]︂
, (12.5)

the block 𝑆𝜇𝜈 = (𝜕2𝐿/𝜕𝜆𝜇𝜕𝜆𝜈) 𝛿(𝑡− 𝑡′) is an ultralocal in time operator, whereas 𝑆𝑖𝑗 is a second order operator
in time derivatives and o�-diagonal blocks are the �rst order operators. Therefore in the Wronskian relation of
footnote 4, obtained by integrating over time by parts, 𝑆𝜇𝜈-block does not contribute at all and the rest takes
the form

−𝑔𝑎𝐼
→
𝑆𝑎𝑏 𝑔

𝑏 = −
+∞∫︁
−∞

𝑑𝑡
[︁
𝑔𝑎𝐼 (𝑡)

→
𝑆𝑎𝑏 𝑔

𝑏(𝑡)− 𝑔𝑎𝐼 (𝑡)
←
𝑆𝑎𝑏 𝑔

𝑏(𝑡)
]︁

=
[︁
𝑞𝑖𝐼
(︀ →
𝑊 𝑔

)︀
𝑖
− 𝑞𝑖

(︀ →
𝑊 𝑔𝐼

)︀
𝑖

]︁+∞
−∞

, (12.6)

where (︀ →
𝑊 𝑔

)︀
𝑖

=
→
𝑊 𝑖𝑏 𝑔

𝑏 = 𝛿𝑔

(︂
𝜕𝐿

𝜕𝑞𝑖

)︂
≡ 𝛿𝑔 𝑝0𝑖 (𝑞, 𝑞, 𝜆) (12.7)

is the linearized (in the variable 𝑔) canonical momentum as a function of 𝑔 and �̇� (and similarly for 𝑔𝐼 and �̇�𝐼).
11

Problem 12.1. Check (12.6) and prove that

→
𝑊 𝑖𝑏 𝑔

𝑏 =
(︁
𝑎𝑖𝑗

𝑑

𝑑𝑡
+

𝜕2𝐿

𝜕𝑞𝑖𝜕𝑞𝑗

)︁
𝑔𝑗 +

𝜕2𝐿

𝜕𝑞𝑖𝜕𝜆𝜇
𝑔𝜇, 𝑎𝑖𝑗 ≡

𝜕2𝐿

𝜕𝑞𝑖𝜕𝑞𝑗
.

Therefore, (12.6) becomes a symplectic form built at 𝑡→ ±∞ in terms of the linearised quantum �elds (𝑞𝑖, 𝑝𝑖)

and linear interaction picture �elds 𝑞𝑖𝐼 and 𝑝𝐼𝑖 = (�⃗�𝑔𝐼)𝑖

−𝑔𝑎𝐼
→
𝑆𝑎𝑏 𝑔

𝑏 =
[︁
𝑞𝑖𝐼 𝑝𝑖 − 𝑞𝑖 𝑝𝐼𝑖

]︁+∞
−∞

. (12.8)

Here we disregard the linearization notation for variables (𝑞𝑖, 𝑝𝑖) because they are anyway linearized due to
boundary conditions on integration �eld 𝑔.

Now, we substitute this source term in the integrand of the canonical or Lagrangian path integral (11.33),

𝑍
[︀
− 𝑔𝑎𝐼

→
𝑆𝑎𝑏

]︀
=

∫︁
𝐷𝑔 𝜇[ 𝑔 ] 𝛿[𝜒(𝑔) ] Det𝑄[ 𝑔 ] 𝑒 𝑖 𝑆[ 𝑔 ]−𝑖 𝑔𝑎

𝐼

→
𝑆𝑎𝑏𝑔

𝑏

. (12.9)

Then in the coordinate gauge 𝜒(𝑔) = 𝜒(𝑞), if we recollect the reduction to physical sector in Lecture 5, we have
for linearized �elds 𝑞𝑖 = 𝑒𝑖𝐴𝜉

𝐴 and 𝜋𝐴 = 𝑒𝑖𝐴 𝑝𝑖 (and similar relations for interaction picture variables (𝜉𝐼 , 𝜋𝐼)).
Here 𝑞𝑖 = 𝑒𝑖(𝜉) are the embedding functions of the physical con�guration space into the space of coordinates

11In other words, the interpretation of Eq.(12.6) is that the canonical momentum conjugated to 𝜆𝜇 is identically vanishing and(︀ →
𝑊 𝑔

)︀
𝜇
= 0.

71



𝑞𝑖, and 𝑒𝑖𝐴 = 𝜕𝑒𝑖/𝜕𝜉𝐴. Therefore the symplectic form (12.8) exactly coincides with the the physical symplectic
form in Eq.(12.1),

−𝑔𝑎𝐼
→
𝑆𝑎𝑏 𝑔

𝑏 =
[︁
𝜉𝐴𝐼 𝑒

𝑖
𝐴 𝑝𝑖 − 𝜉𝐴𝑒𝑖𝐴 𝑝𝐼𝑖

]︁+∞
−∞

=
[︁
𝜉𝐴𝐼 𝜋𝐴 − 𝜉𝐴 𝜋𝐼

𝐴

]︁+∞
−∞

. (12.10)

Thus the Faddeev-Popov path integral in the canonical coordinate gauge exactly recovers the unitary S-matrix
construction in the physical sector.

In order to go beyond this class of gauges we have to perform the procedure of changing the gauge conditions
by means of gauge transformations under the path integral sign. Gauge independence will hold if the symplectic
source term (12.8) is gauge invariant. To prove this consider

−∆ℱ
(︀
𝑔𝑎𝐼
→
𝑆𝑎𝑏 𝑔

𝑏
)︀

=
[︁
𝑞𝑖𝐼
(︀
∆ℱ𝑝𝑖

)︀
−
(︀
∆ℱ𝑞𝑖

)︀
𝑝𝐼𝑖

]︁+∞
−∞

(12.11)

(note that only quantum �elds are transformed). We have

∆ℱ𝑞𝑖 =
𝜕𝑇𝜇
𝜕𝑝𝑖
ℱ𝜇, ∆ℱ𝑝𝑖 = −𝜕𝑇𝜇

𝜕𝑞𝑖
ℱ𝜇, (12.12)

whence it follows that

∆ℱ
(︀
𝑔𝑎𝐼
→
𝑆𝑎𝑏 𝑔

𝑏
)︀

=
[︁ 𝜕𝑇𝜇
𝜕𝑞𝑖

𝑞𝑖𝐼 +
𝜕𝑇𝜇
𝜕𝑝𝑖

𝑝𝐼𝑖

]︁+∞
−∞

= 𝑇 (1)
𝜇 (𝑞𝐼 , 𝑝𝐼)

⃒⃒⃒+∞
−∞

= 0, (12.13)

where 𝑇
(1)
𝜇 (𝑞𝐼 , 𝑝𝐼) = −𝑆𝜇𝑎𝑔

𝑎
𝐼 = 0 is the linearized constraint which is just a 𝜇-component of equations of motion

for interaction picture �elds. Thus this weakly vanishing source term is gauge invariant and, therefore, admits
the transition of the Faddeev-Popov path integral to other gauges without changing S-matrix.

Problem 12.2. There is a subtlety in using the second of equations (12.12). Point is that 𝑝 here is actually the Lagrangian
expressions for momentumt 𝑝 = 𝑝0(𝑞, 𝑞, 𝜆). Therefore, Δℱ𝑝0𝑖 should be understood as the result of gauge transformation of all of
its arguments 𝑞, 𝑞 and 𝜆 by the first class constraints (and special transformation of Lagrange multipliers (11.44)). Show, however,
that Δℱ𝑝0𝑖 (𝑞, 𝑞, 𝜆) differs from (12.12), Δℱ𝑝0𝑖 (𝑞, 𝑞, 𝜆) ̸= 𝛿ℱ𝑝𝑖 |𝑝=𝑝0 , by the terms proportional to dynamical equation of motion for
𝑞,

Δℱ𝑝0𝑖 (𝑞, 𝑞, 𝜆) = −
𝜕𝑇𝜇

𝜕𝑞𝑖
ℱ𝜇 −𝐺𝑖𝑗

𝜕2𝑇𝜇

𝜕𝑝𝑗𝜕𝑝𝑘

𝛿𝑆

𝛿𝑞𝑘
ℱ𝜇,

𝛿𝑆

𝛿𝑞𝑘
= −�̇�𝑘 −

𝜕𝐻0

𝜕𝑞𝑘
− 𝜆𝜈

𝜕𝑇𝜈

𝜕𝑞𝑘
, 𝐺𝑖𝑗 =

(︂
𝜕2𝐻0

𝜕𝑝𝑖𝜕𝑝𝑗
− 𝜆𝜈

𝜕2𝑇𝜈

𝜕𝑝𝑖𝜕𝑝𝑗

)︂−1

.

Hint. From the equation 𝛿𝑆/𝛿𝑝 = 0 find the derivatives of 𝑝0(𝑞, 𝑞, 𝜆) with respect to all of its arguments. Use them to derive

Δℱ𝑝0 = 𝜕𝑝0
𝜕𝑞

Δℱ𝑞 + .... Employ the commutator relations for constraints, {𝑇𝜇, 𝑇𝜈} = 𝑈𝜎
𝜇𝜈𝑇𝜎 , {𝐻0, 𝑇𝜈} = 𝑉 𝜎

𝜈 𝑇𝜎 , and their

derivatives with respect to canonical momenta. Find the modification of the above relations for exotic theories with the structure
functions 𝑈𝜎

𝜇𝜈 and 𝑉 𝜎
𝜈 depending on momenta.

This extra term, of course, does not change the above proof of gauge invariance, because the source term is on-shell with 𝛿𝑆/𝛿𝑞 = 0.

12.2 t’Hooft trick and gauge breaking term

Delta function type gauge conditions in the Faddeev-Popov integral can be replaced by an additional term
in the classical action, which is called gauge breaking term. This can be done according to the following t'Hooft
trick. Using the gauge independence of the path integral we shift the gauge conditions functions 𝜒𝜇 by a �eld
independent quantity 𝑏𝜇, 𝜒𝜇 → 𝜒𝜇 − 𝑏𝜇, so that 𝑍𝜒 = 𝑍𝜒−𝑏 (in what follows we imply that we are on shell
and omit the source argument of 𝑍). Then, by noting that 𝑄𝜒−𝑏 = 𝑄𝜒, we insert in the integrand of the
path integral for 𝑍𝜒−𝑏 the unity represented by the Gaussian integral over 𝑏𝜇 and take this integral by using

72



𝛿[𝜒(𝑔)− 𝑏 ]. This leads to

1 =
(︀

Det 𝑐𝜇𝜈 [ 𝑔 ]
)︀1/2 ∫︁

𝐷𝑏 𝑒−
𝑖
2 𝑏𝜇 𝑐𝜇𝜈 [ 𝑔 ] 𝑏𝜈⏟  ⏞  ⇓⃦

𝑍𝜒−𝑏 =

∫︁
𝐷𝑔 𝜇[ 𝑔 ] 𝛿[𝜒(𝑔)− 𝑏 ] Det𝑄𝜒−𝑏[ 𝑔 ] 𝑒 𝑖 𝑆[ 𝑔 ]

=

∫︁
𝐷𝑔 �̃�[ 𝑔 ] Det𝑄𝜒[ 𝑔 ] 𝑒 𝑖

(︀
𝑆[ 𝑔 ]− 1

2𝜒
𝜇(𝑔)𝑐𝜇𝜈 [ 𝑔 ]𝜒𝜈(𝑔)

)︀
. (12.14)

As a result we get instead of the delta function of gauge conditions extra term in the total gauge-fixed action
𝑆gf , which is quadratic in 𝜒𝜇(𝑔),

𝑆gf = 𝑆 − 1

2
𝜒𝜇𝑐𝜇𝜈𝜒

𝜈 , (12.15)

and additional modi�cation of the integration measure 𝜇[ 𝑔 ]→ �̃�[ 𝑔 ],

�̃�[ 𝑔 ] =
(︀

Det𝐺𝑖𝑗 [ 𝑔 ] Det 𝑐𝜇𝜈 [ 𝑔 ]
)︀1/2

. (12.16)

The invertible gauge fixing matrix 𝑐𝜇𝜈 [ 𝑔 ] is generally an arbitrary functional of the gauge �eld. When this
matrix is ultralocal in time and space, 𝑐𝜇𝜈 ↦→ 𝑐𝜇𝜈(𝑥)𝛿(𝑥𝜇−𝑥𝜈), the measure �̃�[ 𝑔 ] remains local and proportional
to 𝛿(4)(0). However, in many cases, like higher-derivative gravity theory or Horava gravity, it is useful to take
this functional matrix as a di�erential operator in spacetime.

12.3 Feynman-DeWitt-Faddeev-Popov ghosts

Fundamental step in the advancement of path integral method for gauge �eld models consists in the
observation that the Faddeev-Popov functional determinant can be rewritten as a Gaussian integral over anti-
commuting Grassmann �elds 𝐶𝜇 and 𝐶𝜈 with the algebra similar to the algebra of classical fermionic �elds

𝐶𝜇𝐶𝜈 = −𝐶𝜈𝐶𝜇, 𝐶𝜇𝐶𝜈 = −𝐶𝜈𝐶𝜇, 𝐶𝜇𝐶
𝜈 = −𝐶𝜈𝐶𝜇. (12.17)

By using the Gaussian integral (9.42)-(9.44) from the theory of bosonic-fermionic systems we see that the
Faddeev-Popov determinant can be represented as

Det𝑄[ 𝑔 ] =

∫︁
𝐷𝐶𝐷𝐶 𝑒 𝑖 𝐶𝜇𝑄

𝜇
𝜈 [ 𝑔 ]𝐶𝜈

. (12.18)

These Grassmann variables are called Feynman-DeWitt-Faddeev-Popov ghost fields. Therefore the path integral
acquires the form of the integral over the full con�guration space of gauge and ghost �elds with the exponentiated
total action,

𝑍 =

∫︁
𝐷𝑔𝐷𝐶 𝐷𝐶 �̃�[ 𝑔 ] exp 𝑖

(︁
𝑆 − 1

2
𝜒𝜇𝑐𝜇𝜈𝜒

𝜈 + 𝐶𝜇𝑄
𝜇
𝜈 𝐶

𝜈
)︁
. (12.19)

The total action consists of the classical gauge invariant part, gauge breaking part and ghost action.
Why is this form useful? Point is that in certain class of gauge conditions ghost �elds acquire dynamical

properties similar to ordinary physical �elds (except their statistics � despite their integer spin they are anti-
commuting, and spin-statistics relation is violated, because the energy positivity requirements do not apply to
ghost particles). This class of gauges is good because it can preserve Lorentz covariance and provides manifestly
covariant perturbation and renormalization theory for gauge models. For this reason these gauges are called
relativistic.

Let us consider several basic examples. We know from Lecture 5 examples of canonical gauge conditions on
phase space variables, which allowed us to disentangle the physical sector. For QED it was the Coulomb gauge
𝜒 = 𝜕𝑖𝐴

𝑖, for linearized gravity it was the set of gauges for spacetime di�eomorphisms 𝜒𝑖 = 𝜕𝑗ℎ
𝑖𝑗 , 𝜒⊥ = 𝛿𝑖𝑗𝜋

𝑖𝑗 .
All these gauges generate ultralocal in time Faddeev-Popov operator 𝐽𝜇

𝜈 ∝ 𝛿(𝑡𝜇 − 𝑡𝜈). These gauges exclude all
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gauge and other unphysical modes of the theory except those of the physical sector. Only physical sector modes
are propagating in these canonical gauges.

Relativistic gauges are di�erent. In electrodynamics this is, for example, the Lorentz gauge 𝜒 = 𝜕𝜇𝐴
𝜇.

Under a special choice of gauge-�xing 1 × 1 �matrix� 𝑐𝜇𝜈 = 1, which is just a number, the gauge �xed action
reads

𝑆gf [𝐴 ] = −1

4

∫︁
𝑑4𝑥𝐹 2

𝜇𝜈 −
1

2

∫︁
𝑑4𝑥 (𝜕𝜇𝐴

𝜇)2 = −1

2

∫︁
𝑑4𝑥 (𝜕𝜇𝐴𝛼)2. (12.20)

It describes the propagation of four components of the vector potential including the 𝐴0-component and the
unphysical spatially longitudinal component (𝐴0 is a ghost with a negative kinetic energy � here the term �ghost�
is used not in the gauge theory sense, but rather indicating its instability due to negative kinetic energy).

Relativistic gauge in linearized Einstein theory is the harmonic (or linearized DeDonder or DeWitt) gauge
𝜒𝜇 = 𝜕𝜈ℎ

𝜇𝜈 − (1/2)𝜕𝜇ℎ which yields the gauge-�xed linearized gravitational action

𝑆gf [ℎ𝜇𝜈 ] = 𝑆[ℎ𝜇𝜈 ]− 1

2

∫︁
𝑑4𝑥𝜒𝜇𝜂𝜇𝜈𝜒

𝜈 = −1

4

∫︁
𝑑4𝑥 (𝜂𝛼𝜆𝜂𝛽𝜎 + 𝜂𝛼𝜎𝜂𝛽𝜆 − 𝜂𝛼𝛽𝜂𝜆𝜎) 𝜕𝜇ℎ𝛼𝛽𝜕

𝜇ℎ𝜆𝜎, (12.21)

in which all ten metric �uctuations are dynamically propagating.
In both of the above cases relativistic gauge conditions contain Lagrange multipliers (𝜆 = 𝐴0 in electro-

magnetism and 𝜆𝜇 ∝ ℎ0𝜇 for linearized gravity) and their time derivatives. Generic structure of these gauge
conditions 𝜒𝜇 = 𝜒𝜇(𝑔, �̇�) is such that the matrix

𝑎𝜇𝜈 ≡ −
𝜕𝜒𝜇

𝜕�̇�𝜈
, det 𝑎𝜇𝜈 ̸= 0, (12.22)

is non-degenerate. Their Faddeev-Popov operator is no longer ultralocal in time. Indeed, it is of the second
order in time derivatives

𝑄𝜇
𝜈 =

𝛿𝜒𝜇

𝛿𝑔𝑎
𝑅𝑎

𝜈 =
𝛿𝜒𝜇

𝛿𝜆𝛼
𝑅𝛼

𝜈 + ...

=

(︂
𝜕𝜒𝜇

𝜕�̇�𝛼
𝑑

𝑑𝑡
+ ...

)︂ (︂
𝛿𝛼𝜈

𝑑

𝑑𝑡
+ ...

)︂
𝛿(𝑡− 𝑡′) + ... =

(︂
−𝑎𝜇𝜈

𝑑2

𝑑𝑡2
+ ...

)︂
𝛿(𝑡− 𝑡′). (12.23)

With this operator the ghost action contains the kinetic term for ghost �elds

𝐶𝜇𝑄
𝜇
𝜈 𝐶

𝜈 =

∫︁
𝑑𝑡𝐶𝜇

(︁
− 𝑎𝜇𝜈

𝑑2

𝑑𝑡2
+ ...

)︁
𝐶𝜈 =

∫︁
𝑑𝑡
(︁

˙̄𝐶𝜇 𝑎
𝜇
𝜈 �̇�

𝜈 + ...
)︁
≡
∫︁
𝑑𝑡𝐿ghost

(︀
𝐶,𝐶, �̇�, ˙̄𝐶

)︀
. (12.24)

Thus, all gauge and ghost �elds 𝛷 = ( 𝑔𝑎, 𝐶𝜇, 𝐶𝜇 ) on equal footing enter the total action and its total
Lagrangian

𝑆tot[𝛷 ] = 𝑆gf [ 𝑔 ] + 𝑆ghost[ 𝑔, 𝐶,𝐶 ] =

∫︁
𝑑𝑡𝐿tot

(︀
𝛷, �̇�

)︀
, (12.25)

and the Faddeev-Popov path integral (12.19) takes a very concise form

𝑍 =

∫︁
𝐷𝛷𝜇[𝛷 ] 𝑒 𝑖 𝑆tot[𝛷 ]. (12.26)

Interestingly, the local measure 𝜇[𝛷 ] also expresses via the (super)determinant of the Hessian matrix of the
total Lagrangian with respect to velocities of boson-fermion variables �̇�

𝜇[𝛷 ] =

[︃
SDet

(︃ −→
𝜕

𝜕�̇�
𝐿tot

←−
𝜕

𝜕�̇�

)︃]︃1/2
=

(︀
Det 𝑎𝑎𝑏

)︀1/2
Det 𝑎𝜇𝜈

. (12.27)

This follows from the block structure of the Hessian of the gauge-�xed Lagrangian

𝑎𝑎𝑏 =
𝜕2𝐿gf

𝜕�̇�𝑎 𝜕�̇�𝑏
=

[︂
𝑎𝑖𝑗 𝑎𝑖𝜈
𝑎𝜇𝑗 𝑎𝜇𝜈

]︂
, (12.28)

𝑎𝑖𝑗 = 𝐺𝑖𝑗 −
𝜕𝜒𝛼

𝜕𝑞𝑖
𝑐𝛼𝛽

𝜕𝜒𝛽

𝜕𝑞𝑗
, 𝑎𝑖𝜇 =

𝜕𝜒𝛼

𝜕𝑞𝑖
𝑐𝛼𝛽 𝑎

𝛽
𝜇, 𝑎𝜇𝜈 = −𝑎𝛼𝜇 𝑐𝛼𝛽 𝑎𝛽𝜈 , . (12.29)
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(𝐺𝑖𝑗 is de�ned by Eq.(11.31)) and its determinant

det 𝑎𝑎𝑏 = det𝐺𝑖𝑗 det 𝑐𝛼𝛽
(︀

det 𝑎𝜇𝜈
)︀2
, (12.30)

which implies that the local measure (12.16) in the path integral of Eq.(12.19) equals the total measure (12.27)
in the full gauge-ghost system of �elds

�̃�[ 𝑔 ] =
(︀
Det𝐺𝑖𝑗 Det 𝑐𝛼𝛽

)︀1/2
=

(︀
Det 𝑎𝑎𝑏

)︀1/2
Det 𝑎𝜇𝜈

= 𝜇[𝛷 ]. (12.31)

Problem 12.3. Derive Eqs.(12.28)-(12.31)

Eqs.(12.26) and (12.27) show that in relativistic gauge all the �elds become propagating and at the quantum
level (that is in the path integral) are treated nearly on equal footing. �Nearly� means here that we for a while
forget about the source term � for S-matrix no sources are turned on for ghost �elds and for gauge �elds 𝑔𝑎

the source is weakly vanishing in the sense of Eq.(12.9). So, modulo what is at the external lines of Feynman
diagrams (the lines that extend to 𝑡 = ±∞) all the �elds 𝛷 = (𝑞𝑖, 𝜆𝜇, 𝐶𝜇, 𝐶𝜇) contribute to the path integral
by the same rule � via the integral of exponentiated action and local measure.

The local measure for gauge �elds and ghosts is also built by the same pattern � via the Hessian of the
Lagrangian with respect to �eld velocities �̇�. The only di�erence is in statistics � the determinant of the
matrix of the kinetic term for bosons (that is 𝑎𝑎𝑏 in Eq.(12.28) and for Grassmann ghosts (that is 𝑎𝜇𝜈 =

(
−→
𝜕 /𝜕 ˙̄𝐶𝜇)𝐿ghost (

←−
𝜕 /𝜕�̇�𝜈) in Eq(12.24)) go respectively into the numerator and denominator of the expression

(12.31).
Note that in contrast to canonical gauges, in which all non-physical �elds were excluded as a result of

imposing the full set of constraints and auxiliary conditions (that is gauges), here all the �elds are propagating.
For ghost �elds this was already shown above � the wave operator in their equations of motion (12.23) is of
second order in time derivatives and demands imposing two boundary conditions per each ghost mode in order
to specify its time evolution. The same holds for all gauge �elds 𝑔𝑎 � not only equations for 𝑞𝑖 are dynamical,
but the Lsagrange multipliers are dynamical as well � they acquire the kinetic term quadratic in �̇�𝜇 from the
gauge breaking term in the total action,

𝑆gf [ 𝑔 ] =

∫︁
𝑑𝑡
(︁ 1

2
�̇�𝜇 𝑎𝜇𝜈 �̇�

𝜈 + ...
)︁
, (12.32)

where 𝑎𝜇𝜈 is de�ned by Eq.(12.29). Natural question arises, how all these 𝑛 + 𝑚 + 2𝑚 dynamical variables,
that is 𝑛 variables 𝑞𝑖, 𝑚 variables 𝜆𝜇, 2𝑚 ghosts 𝐶𝜇 and 𝐶𝜇, 𝑖 = 1, ...𝑛, 𝜇 = 1, ...𝑚, can correspond to 𝑛 −𝑚
physical degrees of freedom within the canonical gauge �xing procedure.

(𝑞𝑖, 𝜆𝜇) = 𝑔𝑎 ← 𝑛+𝑚 variables
𝐶𝜇 ← 𝑚 variables
𝐶𝜇 ← 𝑚 variables

Interpretation of this situation is that dynamical ghost �elds of opposite statistics e�ectively subtract 2𝑚 degrees
of freedom from the con�guration space of original gauge �elds 𝑔𝑎,

# DoF = 𝑛+𝑚− 2𝑚 = 𝑛−𝑚. (12.33)

This subtle mechanism of cancellation of quantum degrees of freedom is provided by the Feynman-DeWitt-
Faddeev-Popov gauge �xing procedure of the above type. It takes place in the quantum interaction domain
(or in the inner region of spacetime as opposed to the asymptotic future and past in�nities corresponding to
external lines of Feynman diagrams).

12.4 Boundary conditions for gauge and ghost fields

What has not yet been discussed yet is the imposition of boundary conditions on gauge and ghost �elds in the
Faddeev-Popov path integral. Implicitly, though, these boundary conditions have already been exploited in the
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proof of its gauge independence. Point is that, as we know now, the Faddeev-Popov operator 𝑄𝜇
𝜈 in relativistic

gauges is a di�erential operator, and its inversion requires the knowledge boundary conditions which would
�x its Green's function uniquely. At the same time, when proving gauge independence, we used this Green's
function and, moreover, varied it in Eq.(11.49) by using the variational equation from �nite dimensional linear
algebra,

𝛿𝑄−1𝜇𝜈 = −𝑄−1𝜇𝛼 𝛿𝑄𝛼
𝛽 𝑄
−1𝛽

𝜈 .

However, not all possible boundary conditions for nonlocal Green's functions are consistent with this variational
law.12 Fortunately, the positive/negative frequency boundary conditions at 𝑡 → ±∞, which were derived for
integration �elds in the physical sector, are consistent with this variational law. Therefore, it is natural to
assume that ghost �elds and their Green's function 𝑄−1𝜇𝜈 should satisfy the same Feynman boundary conditions
as the physical modes.

We also have to specify boundary conditions for Lagrange multipliers and nonphysical modes among the full
set of gauge �elds 𝑔𝑎 = (𝑞𝑖, 𝜆𝜇). Consistency of the formalism requires that they all have to satisfy the same
boundary conditions. Indeed, the proof of gauge independence uses the gauge transformation of 𝑔𝑎 imitating the
change of gauge conditions, ∆𝑔𝑎 = 𝑅𝑎

𝜇𝑄
−1𝜇

𝜈 𝛿𝜒
𝜈 , and this transformation should not spoil the needed boundary

conditions for 𝑔𝑎. Since 𝑅𝑎
𝜇 is a quasi-local di�erential operator, ∆𝑔𝑎 has the same boundary conditions at

𝑡 → ±∞ as the ghost Green's function 𝑄−1𝜇𝜈 , which con�rms this property. Later we will derive tree-level
Ward identities which establish a linear relation between the Green's function 𝐺𝑎𝑏 of 𝑔𝑎 and the ghost Green's
function 𝑄−1𝜇𝜈 , which will give additional justi�cation of this statement.

12.5 Recovery of classical theory, initial conditions and counting physical degrees
of freedom

Thus, at the quantum level the theory is described by the total action in which all gauge and ghost �elds
enter on equal footing,

𝑆tot[𝛷 ] = 𝑆[ 𝑔 ]− 1

2
𝜒𝜇[ 𝑔 ]𝑐𝜇𝜈 [ 𝑔 ]𝜒𝜈 [ 𝑔 ] + 𝐶𝜇𝑄

𝜇
𝜈 [ 𝑔 ]𝐶𝜈 . (12.34)

A natural question arises, how this action recovers the classical equations of motion which should hold in
the tree-level approximation. This action generates on shell (that is without external sources) the variational
equations which intertwine all the �elds. In the simpli�ed case when the gauge condition 𝜒𝜇(𝑔) is linear in the
gauge �eld and 𝑐𝜇𝜈 is a �eld-independent constant matrix these equations read

𝛿𝑆

𝛿𝑔𝑎
− 𝛿𝜒𝜇

𝛿𝑔𝑎
𝑐𝜇𝜈𝜒

𝜈 + 𝐶𝜇
𝛿𝑄𝜇

𝜈

𝛿𝑔𝑎
𝐶𝜈 = 0, (12.35)

𝑄𝜇
𝜈 𝐶

𝜈 = 0, (12.36)

𝑄𝜇
𝜈 𝐶𝜇 = 0. (12.37)

Homogeneity of linear equations for ghost �elds should not create an illusion that they should automatically
vanish, because the matrix 𝑄𝜇

𝜈 = 𝑄𝜇
𝜈 (𝑑/𝑑𝑡) and its functionally transposed one in (12.37) are second order

di�erential operators which have zero modes � propagating modes of ghost �elds. To rule them out we impose,
as was discussed above, positive/negative frequency boundary conditions at in�nity, so that classically they
indeed vanish. Particles of ghost �elds are not physical, and we do not include them into the initial and �nal
states of scattering amplitudes. With 𝐶𝜇 = 𝐶𝜇 = 0 we get the equation for gauge �elds

𝛿𝑆

𝛿𝑔𝑎
− 𝛿𝜒𝜇

𝛿𝑔𝑎
𝑐𝜇𝜈𝜒

𝜈 = 0, (12.38)

which is �spoiled" by the gauge breaking term � di�ers from the classical equation 𝛿𝑆/𝛿𝑔𝑎 = 0. We know that
the classical action is gauge invariant, that is it satis�es the Noether identity which is valid for all values of

12For example, retarded and advanced Green’s functions 𝐺± of the second order operator 𝐹 , 𝐹𝐺± = −1, satisfy this law
𝛿𝐺± = 𝐺± 𝛿𝐹 𝐺±, as can be easily checked by varying this equation and comparing boundary conditions on both sides of equations.
But the Green’s function 𝐺 = (𝐺+ +𝐺−)/2 fails to satisfy it.
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gauge �elds

𝛿𝑆

𝛿𝑔𝑎
𝑅𝑎

𝜇 = 0, (12.39)

so that any solution of 𝛿𝑆/𝛿𝑔𝑎 = 0 is unique only up to a gauge transformation � if 𝑔𝑎0 is some solution, then
𝑔𝑎0 +𝑅𝑎

𝜇(𝑔0)𝑓𝜇 is also a solution with a generic function of time 𝑓𝜇 = 𝑓𝜇(𝑡). Educated guess hints that Eq.(12.38)
would correspond to the classical equation of motion in the gauge 𝜒𝜇(𝑔) = 0 which is supposed to rule out this
ambiguity. Question is, how to enforce the second gauge breaking term to vanish and thus pick up the solution
in this concrete gauge. This is done as follows. Contract Eq.(12.38) with the the gauge generator 𝑅𝑎

𝛼 and use
the Noether identity (12.39). This immediately leads to

𝑄𝜇
𝛼 𝑐𝜇𝜈𝜒

𝜈 = 0. (12.40)

which in view of (12.23) is a homogeneous second order equation on the gauge conditions functions

𝑄𝜇
𝛼(𝑑/𝑑𝑡) 𝑐𝜇𝜈𝜒

𝜈 =
(︁
− 𝑑2

𝑑𝑡2
𝑎𝜇𝛼 + ...

)︁
𝑐𝜇𝜈𝜒

𝜈 = 0. (12.41)

For its solution to be zero at all moments of time this equation should have zero initial data at some initial
moment of time 𝑡− for both 𝜒𝜇 and �̇�𝜇. Let us see what does this mean from the viewpoint of counting the
number of physical degrees of freedom.

Equations (12.38) in the relativistic gauge form a set of second order equations for all 𝑔𝑎

𝛿𝑆

𝛿𝑔𝑎
− 𝛿𝜒𝜇

𝛿𝑔𝑎
𝑐𝜇𝜈𝜒

𝜈 = −𝑎𝑎𝑏 𝑔𝑏 + ... = 0 (12.42)

with a non-degenerate matrix 𝑎𝑎𝑏, (12.28)-(12.29), where the second order derivatives of Lagrange multipliers
𝑔𝜇 = 𝜆𝜇 are contributed from the gauge breaking term. Therefore initial conditions for this equation consist
of 2(𝑛 + 𝑚) initial values of 𝑔𝑎 and �̇�𝑎 at 𝑡−. Subtraction of 2𝑚 � the number of conditions 𝜒𝜇 | 𝑡− = 0 and
�̇�𝜇 | 𝑡− = 0 � brings us to 2𝑛 independent initial data13, which is still too much compared to the number
2(𝑛 − 𝑚) anticipated from the canonical formalism with a unitary gauge. However, there are also residual
gauge transformations. Remember that relativistic gauge conditions do not fully �x the freedom in gauge
transformations. These are those ∆𝑣𝑔𝑎 = 𝑅𝑎

𝜇𝑣
𝜇 with special gauge parameters 𝑣𝜇 which preserve the gauge

conditions and solve the equations

∆𝑣𝜒𝜇 = 𝑄𝜇
𝜈 (𝑑/𝑑𝑡)𝑣𝜈(𝑡) = 0. (12.43)

Since these are second order di�erential equations in time, their solutions are parameterized by 2𝑚 initial data,
𝑣 and �̇� at 𝑡−. This allows one to freely change more 2𝑚 initial conditions or reduce the number of physically
di�erent initial conditions by extra 2𝑚. Therefore, equation (12.42) plus initial conditions for gauge functions
𝜒𝜇 | 𝑡− = 0 and �̇�𝜇 | 𝑡− = 0 imply the overall counting of physical degrees of freedom which coincides with the
canonical one

2(𝑛+𝑚)− 2𝑚− 2𝑚 = 2(𝑛−𝑚) . (12.44)

Problem 12.4. Why in this counting we do not count nondynamical equations – first class constraints, 𝛿𝑆/𝛿𝜆𝜇 = −𝑇𝜇(𝑔, �̇�) = 0,
as an additional set of 𝑚 restrictions on the initial data?
Hint. Note that these constraints are no longer independent and follow from the already counted restrictions 𝜒, �̇� | 𝑡− = 0 in view
of equations of motion (12.42)

𝛿𝑆

𝛿𝜆𝜇
= −

𝛿𝜒𝛼

𝛿𝜆𝜇
𝑐𝛼𝛽𝜒

𝛽 ∝ 𝜒, �̇�.

13The time derivative �̇�𝜇 contains �̈�𝜇, but it can be expressed via equations of motion in terms of 𝑔𝑎 and �̇�𝑎, so that �̇�𝜇 = 0
forms 𝑚 restrictions on the inital 𝑔 and �̇�.
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Problem 12.5. Show that the result of the degrees of freedom counting is the same if we just consider the system of original
(non gauge-fixed) equations of motion plus relativistic gauge conditions{︂

𝛿𝑆/𝛿𝑔𝑎 = 0,

𝜒𝜇 = −𝑎𝜇𝜈 �̇�𝜈 + ... = 0
.

Note that in this case the number of first class constraints actually participates in the counting.

Lecture 13. Tree-level and one-loop approximations, Ward identities,
BRST symmetry

� Tree-level and one-loop approximations

� Ward identities for bare vertices

� BRST symmetry of the Faddeev-Popov path integral

� Ward-Slavnov identities

� Zinn-Justin equation for the e�ective action

13.1 Tree-level and one-loop approximations

Expand the action in the o�-shell generating functional (12.26)

𝑍[ 𝐽 ] =

∫︁
𝐷𝛷𝜇[𝛷 ] 𝑒 𝑖 𝑆tot[𝛷 ]+𝑖𝐽𝑎𝑔

𝑎

(13.1)

up to quadratic order in quantum perturbations around the stationary point 𝛷0 = (𝑔0, 𝐶0, 𝐶0) of 𝑆tot[𝛷 ]+𝐽𝑎𝑔
𝑎

and calculate it in the the-level and one-loop approximation. Here the sources to ghost �elds are not turned on
for reasons discussed above � absence of ghost particles in the external lines of scattering amplitudes. Therefore,
ghosts at the stationary point vanish, 𝐶0 = 0, 𝐶0 = 0, whereas 𝑔0 is an o�-shell solution of the equation of
motion with the gauge-�xed action (12.15),

𝛿𝑆gf

𝛿𝑔𝑎

⃒⃒⃒⃒
𝑔=𝑔0

=

[︂
𝛿𝑆

𝛿𝑔𝑎
− 𝛿𝜒𝜇

𝛿𝑔𝑎
𝑐𝜇𝜈𝜒

𝜈

]︂
𝑔=𝑔0

= −𝐽𝑎 (13.2)

Then the answer for the background �eld functional �̄� [ 𝑔0 ] or the e�ective action 𝛤 [ ⟨𝑔⟩ ], where ⟨𝑔⟩ is a notation
for the mean gauge �eld de�ned in analogy with (10.11)

⟨ 𝑔𝑎⟩ =
1

𝑍[ 𝐽 ]

𝛿𝑍[ 𝐽 ]

𝑖𝛿𝐽𝑎

⃒⃒⃒
𝐽 ̸=0

=
𝛿𝑊 [ 𝐽 ]

𝛿𝐽𝑎
, (13.3)

is given by the set of diagrams of Lecture 9. In these diagrams the loops are formed by the propagators of both
gauge and ghost �elds. The gauge �eld propagator is the Green's function of the Hessian of the gauge-�xed
action

𝐹𝑎𝑏 =
𝛿2𝑆gf

𝛿𝑔𝑎𝛿𝑔𝑏
=

𝛿2𝑆

𝛿𝑔𝑎𝛿𝑔𝑏
− 𝛿𝜒𝜇

𝛿𝑔𝑎
𝑐𝜇𝜈

𝛿𝜒𝜈

𝛿𝑔𝑏
(13.4)

(we again consider the most convenient case of gauge functions 𝜒𝜇 linear in the �eld and the constant gauge-
�xing matrix 𝑐𝜇𝜈) and the ghost propagator is the Green's function 𝑄−1𝜇𝜈 . Both gauge and ghost operators are
nontrivial functionals of the gauge �eld, 𝐹𝑎𝑏[ 𝑔 ] and 𝑄𝜇

𝜈 [ 𝑔 ], where 𝑔 is 𝑔0[ 𝐽 ] and ⟨ 𝑔𝑎⟩ respectively for �̄� [ 𝑔0 ]
and 𝛤 [ ⟨𝑔⟩ ].

Note that the operator (13.4), is nondegenerate including the on-shell con�gurations where the Hessian of
the classical action 𝑆𝑎𝑏 = 𝛿2𝑆/𝛿𝑔𝑎𝛿𝑔𝑏 has zero modes and not invertible. The latter property follows from
functional di�erentiation of the Noether identity (12.39)

𝑅𝑎
𝜇

𝛿2𝑆

𝛿𝑔𝑎𝛿𝑔𝑏
+
𝛿𝑆

𝛿𝑔𝑎
𝛿𝑅𝑎

𝜇

𝛿𝑔𝑏
= 0, (13.5)
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which means that on shell the gauge generators are zero eigenvalue eigenfunctions of 𝑆𝑎𝑏,

𝑅𝑎
𝜇

𝛿2𝑆

𝛿𝑔𝑎𝛿𝑔𝑏

⃒⃒⃒⃒
𝛿𝑆/𝛿𝑔=0

= 0. (13.6)

The gauge breaking term of (13.4) makes this operator invertible and having a well-de�ned Green's function
𝐺𝑎𝑏

𝐹𝑎𝑏𝐺
𝑏𝑐 = −𝛿𝑐𝑎. (13.7)

With all this at hand we can write down the answer for the e�ective action in the one-loop approximation

𝛤 [ 𝑔 ] = 𝑆[ 𝑔 ]− 1

2
𝜒𝜇[ 𝑔 ] 𝑐𝜇𝜈𝜒

𝜇[ 𝑔 ] + ~𝛤one−loop[ 𝑔 ] +𝑂(~2), (13.8)

𝛤one−loop[ 𝑔 ] = − 1

2𝑖
Tr ln𝐹𝑎𝑏[ 𝑔 ] +

1

𝑖
Tr ln𝑄𝜇

𝜈 [ 𝑔 ]. (13.9)

Problem 13.1. Reproduce Eqs.(13.8)-(13.9)

Here for brevity we omit brackets in the notation for mean �eld. Also we disregard the contribution of lo-
cal measure −(𝑖/2)Tr ln 𝑎𝑎𝑏 + 𝑖Tr ln 𝑎𝜇𝜈 ∝ 𝛿(0) responsible for cancellation of strongest volume divergences.14

13.2 Ward identities for bare vertices

Let us explicitly demonstrate on-shell gauge independence of e�ective action in the one-loop approximation
� the basic property of the Faddeev-Popov path integral. In the tree-level approximation this property is trivial.
Indeed, the on-shell condition

𝛿𝛤 [⟨𝑔⟩]
𝛿⟨ 𝑔𝑎⟩

= 0, (13.10)

for the tree-level e�ective action 𝛤tree = 𝑆gf + 𝑂(~) reads as Eq.(12.38) which after contraction with the
gauge generator results in (12.39). In view of boundary conditions at asymptotic in�nity gauge conditions are
enforced throughout the whole spacetime bulk, so that gauge breaking term in 𝑆gf vanishes and 𝛤tree = 𝑆,
which is obviously gauge independent.

In the one-loop approximation gauge independence of 𝛤 follows from Ward identities for bare propagators.
To derive them contract the equation for gauge Green's function (13.7) with the gauge generator,

𝑅𝑎
𝛼

(︀
𝑆𝑎𝑏 − 𝜒𝜇

𝑎𝑐𝜇𝜈𝜒
𝜈
𝑏

)︀
𝐺𝑏𝑐 = −𝑅𝑐

𝛼, (13.11)

and use the identity (13.6) to show that

𝑄𝜇
𝛼 𝑐𝜇𝜈𝜒

𝜈
𝑏 𝐺

𝑏𝑐
⃒⃒⃒
𝛿𝑆/𝛿𝑔=0

= 𝑅𝑐
𝛼, (13.12)

where we introduced the abbreviation

𝜒𝜇
𝑎 ≡

𝛿𝜒𝜇

𝛿𝑔𝑎
. (13.13)

Then, since 𝑄𝜇
𝛼 is invertible we have on shell the following relation between the gauge and ghost propagators

𝑐𝜇𝜈𝜒
𝜈
𝑏 𝐺

𝑏𝑐
⃒⃒⃒
𝛿𝑆/𝛿𝑔=0

= 𝑄−1𝛼
𝜇 𝑅

𝑐
𝛼

⃒⃒⃒
𝛿𝑆/𝛿𝑔=0

. (13.14)

14With the inclusion of local measure the one-loop answer retains the same structure, but with the forms 𝐹𝑎𝑏 and 𝑄𝜇
𝜈 replaced

respectively by the operators 𝐹𝑎
𝑏 = (𝑎−1)𝑎𝑐𝐹𝑐𝑏 = −𝛿𝑎𝑏 𝑑

2/𝑑𝑡2 + ... and (𝑎−1)𝜇𝛼𝑄
𝛼
𝜈 = −𝛿𝜇𝜈 𝑑2/𝑑𝑡2 + ... with unit coefficients in kinetic

terms.
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This identity is usually known as a statement that the longitudinal part of the gauge propagator is given by
the ghost propagator. Consider the example from the theory of electromagnetic �eld (12.20), but with another
choice of the gauge �xing parameter � 1× 1 �matrix� 𝑐𝜇𝜈 ↦→ 1/2𝛼,

𝑆gf [𝐴 ] = −1

4

∫︁
𝑑4𝑥𝐹 2

𝜇𝜈 −
1

2𝛼

∫︁
𝑑4𝑥 (𝜕𝜇𝐴

𝜇)2. (13.15)

We have the following set of corresponding relations

𝑔𝑎 ↦→ 𝐴𝜇, 𝑅
𝑎
𝛼𝑓

𝛼 ↦→ 𝜕𝜇𝑓, 𝜒
𝜇 ↦→ 𝜒 = 𝜕𝛼𝐴

𝛼, 𝑆𝑎𝑏 ↦→ 𝐹𝜇𝜈 = �𝜂𝜇𝜈 − 𝜕𝜇𝜕𝜈 , (13.16)

𝐺𝑎𝑏 ↦→ 𝐺𝜇𝜈 = − 1

�

[︁
𝜂𝜇𝜈 − (1− 𝛼)

𝜕𝜇𝜕𝜈
�

]︁
, 𝑄−1𝛼

𝜇 ↦→ 𝑄−1 =
1

�
, (13.17)

𝜒𝜇
𝑎 ↦→

𝛿𝜒(𝑥)

𝛿𝐴𝜇(𝑦)
= 𝜕𝜇𝛿(𝑥, 𝑦), (13.18)

𝑐𝜇𝜈𝜒
𝜈
𝑏 𝐺

𝑏𝑐 ↦→ 1

𝛼
𝜕𝜇𝐺𝜇𝜈 =

1

�
𝜕𝜈 ↦→ 𝑄−1𝛼

𝜇 𝑅
𝑐
𝛼 (13.19)

Problem 13.2. Check these relations and interpret the meaning of the limit 𝛼 = 0 in the expression for the propagator.

Now we are ready to prove on-shell gauge independence of the one-loop e�ective action. Perform in Eq.(13.9)
in�nitesimal variation of the gauge matrix 𝜒𝜇

𝑎 and use (13.14)

𝑖𝛿𝜒𝛤one−loop[ 𝑔 ] = −1

2
𝛿𝜒Tr ln𝐹𝑎𝑏[ 𝑔 ] + 𝛿𝜒Tr ln𝑄𝜇

𝜈 [ 𝑔 ]

=
[︁
−𝐺𝑎𝑏𝜒𝜇

𝑏 𝑐𝜇𝜈 +𝑄−1𝜇
𝜈 𝑅

𝑎
𝜇

]︁
𝛿𝜒𝜈

𝑎 ∝
𝛿𝑆

𝛿𝑔
. (13.20)

On-shell condition (13.10) in the one-loop order should be retained up to terms 𝑂(~2), 𝛿𝜒𝛤one−loop ∝ ~𝛿𝑆/𝛿𝑔 =
~𝛿𝛤/𝛿𝑔+𝑂(~2), so that it reduces to 𝛿𝑆/𝛿𝑔 = 0. Therefore the above result indeed implies gauge independence
of the e�ective action.

Problem 13.3. Generalize Eq.(13.14) to off-shell configurations with 𝛿𝑆/𝛿𝑔 ̸= 0 and similarly to (13.20) prove that one-loop
effective action is independent of the choice of the gauge-fixing matrix 𝑐𝜇𝜈 .

13.3 BRST symmetry of the Faddeev-Popov path integral

Great advantage of the Feynman-DeWitt-Faddeev-Popov path integral is that its quantum integration
measure, which follows from gauge �xing procedure, has a representation in terms of additional ghost integration
variables whose Lagrangian is local and manifestly covariant in spacetime. Renormalization of ultraviolet
divergences by local counterterms critically depends on local nature of all �elds � both physical and unphysical.
This statement is a part of Bogolyubov-Parasyuk-Hepp-Zimmerman (BPHZ) theory, which goes beyond this
course and will be considered later. Without the ghost �elds representation of the quantum measure application
of BPHZ theory in gauge-invariant models would be impossible. Therefore, even though particles of ghost �elds
do not appear in physical states of scattering amplitudes, which was the reason why we included the sources in
(13.1) only for gauge �elds 𝑔𝑎, the studies of the ultraviolet renormalization of gauge models requires to treat
gauge and ghost �elds on equal footing. It turns out that this treatment reveals another symmetry which plays
a cruical role for renormalization of gauge theories. This is the Becchi-Rouet-Stora-Tyutin symmetry which
we will study now and derive the Ward-Slavnov-Taylor identities for the generating functional and Zinn-Justin
equation for e�ective action underlying this renormalization. We restrict ourselves in this course with the class of
theories with closed algebra of gauge transformations. Extension beyond this class to open algebras also exists
in the canonical framework, known as Batalin-Fradkin-Vilkovisky (BFV) formalism, and in the Lagrangian
framework known as Batalin-Vilkovisky (BV) theory.

80



We begin by repeating that the action of the theory 𝑆[ 𝑔 ] is invariant under local gauge transformations
with the generators 𝑅𝑎

𝛼 forming the linear in�nite-dimensional representation of the group and satisfying the
Lie algebra (11.46) with structure constants 𝐶𝛾

𝛼𝛽

𝑅𝑎
𝛼

𝛿𝑆

𝛿𝑔𝑎
= 0, (13.21)

𝑅𝑏
𝛼

𝛿𝑅𝑎
𝛽

𝛿𝑔𝑏
−𝑅𝑏

𝛽

𝛿𝑅𝑎
𝛼

𝛿𝑔𝑏
= 𝐶𝛾

𝛼𝛽 𝑅
𝑎
𝛾 . (13.22)

The generators 𝑅𝑎
𝛼 are linear local functions of the gauge �elds as in all the examples considered above, and

the structure constants of their gauge algebra satisfy a standard Jacobi identity.

𝐶𝛼
𝛽[ 𝛾𝐶

𝛽
𝜆𝜇 ] = 0 , (13.23)

where square brackets mean total anisymmetrization over three indices inside them. As everywhere above we
assume that gauge �elds 𝑔𝑎 are bosonic, the parameter 𝑓𝛼 of the gauge transformation ∆𝑓𝑔 is also bosonic, so
that Faddeev-Popov ghosts are Grassmann variables

𝜖(𝑔𝑎) ≡ 𝜖𝑎 = 0, 𝜖(𝑓𝛼) ≡ 𝜖𝛼 = 0, 𝜖(𝐶𝛼) = 𝜖(𝐶𝛼) = 𝜖𝛼 + 1 = 1. (13.24)

Let us now make in the generating functional (12.19) the transformation opposite to the t'Hooft trick �
represent the gauge breaking term in the form of the Gaussian path integral over the auxiliary �eld 𝑏𝛼 which
we will call the Lagrange multiplier for gauge conditions functions

𝑒
𝑖
2 𝜒𝛼𝑐𝛼𝛽𝜒

𝛽 (︀
Det𝑐𝛼𝛽

)︀1/2
=

∫︁
𝐷𝑏 𝑒 𝑖

(︀
𝑏𝛼𝜒𝛼− 1

2 𝑐𝛼𝛽 𝑏𝛼𝑏𝛽

)︀
, 𝑐𝛼𝛽 =

(︀
𝑐𝛼𝛽
)︀−1

. (13.25)

Then, if we extend the full set of quantum �elds by this extra boson variable,

𝛷𝐼 = 𝑔𝑎, 𝐶𝛼, 𝐶𝛼 → 𝛷𝐼 = 𝑔𝑎, 𝐶𝛼, 𝐶𝛼, 𝑏𝛼, 𝜖𝑏 = 0, (13.26)

then the generating functional takes the form of the path integral

𝑒 𝑖𝑊 [ 𝐽 ] =

∫︁
𝐷𝛷𝑒 𝑖𝛴[𝛷 ]+𝑖𝐽𝑎𝑔

𝑎

, (13.27)

where the new action of boson-fermion set of �elds has the form

𝛴[𝛷 ] = 𝑆[ 𝑔 ] + 𝑏𝛼

(︁
𝜒𝛼(𝑔)− 1

2
𝑐𝛼𝛽 𝑏𝛽

)︁
− 𝐶𝛼

(︀
𝜒𝛼
𝑎 𝑅

𝑎
𝛽

)︀
𝐶𝛽 (13.28)

Consider now the following Grassmann parity BRST transformation on the space of �elds (13.26) � here
Grassmann means that this transformation by the fermionic BRS operator 𝑠,

𝑠 =
(︀
𝑠𝛷𝐼

)︀ 𝛿

𝛿𝛷𝐼
, (13.29)

converts the bosonic variable into some other Grassmann parity variable and vice versa, 𝜖(𝑠𝛷) = 𝜖(𝛷) + 1.15

The BRST transformation of the original gauge �eld coincides with its gauge transformation in which the gauge
parameter is identi�ed with the ghost �eld, 𝑓𝛼 ↦→ 𝐶𝛼, and the full list of transformations 𝑠𝛷𝐼 reads

𝑠𝑔𝑎 = ∆𝐶𝑔𝑎 = 𝑅𝑎
𝛼 𝐶

𝛼, (13.30)

𝑠𝐶𝛼 =
1

2
𝐶𝛼

𝛾𝛽 𝐶
𝛽𝐶𝛾 , 𝑠𝐶𝛼 = 𝑏𝛼, 𝑠𝑏𝛼 = 0 . (13.31)

This transformation is nilpotent,

𝑠2 = 0, (13.32)

15Otherwise, it maybe regarded as the transformation of the field 𝛿𝜀𝛷 = 𝜀𝑠𝛷 with an infinitesimal global anti-commuting parameter
𝜀. Therefore, the BRST transformation is not local, but rather global transformation with a Grassmann parameter constant in
spacetime.
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as can be seen by applying again the action of 𝑠 and using the Leibnitz rule. For example, acting by 𝑠 on
(13.29) one has

𝑠2𝑔𝑎 =
(︀
𝑠𝑔𝑏
)︀ 𝛿𝑅𝑎

𝛼

𝛿𝑔𝑏
𝐶𝛼 +𝑅𝑎

𝛼

(︀
𝑠𝐶𝛼

)︀
, (13.33)

which vanishes in virtue of (13.22). Similarly, 𝑠2𝐶𝛼 = 0 in virtue of the Jacobi identity (13.23) and so on.
In terms of this BRST operator the full action (13.28) can be rewritten as

𝛴[𝛷 ] = 𝑆[ 𝑔 ] + 𝑠𝛹 [𝛷 ], (13.34)

where 𝛹 [𝛷 ] is the so-called gauge fermion � Grassmann parity object, 𝜖(𝛹) = 1, containing all gauge-�xing
information, that is the gauge conditions 𝜒𝛼(𝑔) = 𝜒𝛼

𝑎𝑔
𝑎 and gauge-�xing matrix 𝑐𝛼𝛽 ,

𝛹 [𝛷 ] = 𝐶𝛼

(︁
𝜒𝛼(𝑔)− 1

2
𝑐𝛼𝛽 𝑏𝛽

)︁
. (13.35)

In this form the full action 𝛴[𝛷 ] is explicitly BRST-invariant under the transformations (13.30)-(13.31)

𝑠𝛴[𝛷 ] = 0, (13.36)

because the �rst classical term in (13.34) is gauge invariant and the second BRS-exact term is identically
annihilated by the action of the nilpotent operator 𝑠 for any choice of 𝛹 [𝛷 ].

13.4 Ward-Slavnov identities

Our next task is to derive the consequences of this BRST-invariance for the generating functional 𝑍 =
exp(𝑖𝑊 ) and for the e�ective action 𝛤 of the theory. These consequences are Ward-Slavnov-Taylor identities
which are special functional di�erential equations in variational derivatives with respect to the sources and mean
�eld � the arguments of 𝑊 and 𝛤 . These equations underlie the renormalization properties of gauge theories,
their counterterms and relations between their various Green's functions. To make their analysis manageable
these equations should be simple enough, that is not higher than of the �rst order in functional derivatives.
An obvious di�culty with this requirement is that the BRST transformations (13.30)-(13.31) are nonlinear in
�elds. For example, the transformation (13.30) of 𝑔𝑎 is bilinear in 𝑔 and 𝐶, because the generator 𝑅𝑎

𝛼 is linear
in the �eld, and so is the ghost �eld transformation. This means that relevant terms in these identities canot
be generated by �rst-order functional derivatives in sources dual to the �elds 𝛷.

To circumvent this di�culty, let us introduce sources not only for the basic set of quantum �elds 𝛷𝐼 , but
also to their BRST-transformations 𝑠𝛷𝐼 . To begin with, it su�ces to introduce the sources 𝐽𝑎, 𝜉𝛼, 𝜉

𝛼, 𝑦𝛼 dual
respectively to 𝑔𝑎, 𝐶𝛼, 𝐶𝛼, 𝑏𝛼 and the sources 𝛾𝑎, 𝜁𝛼 for the BRST-transformations of the �elds 𝑔𝑎 and 𝐶𝛼

belonging to the so-called minimal sector. These sources, of course, have the same statistics as their duals.
Thus we have the full set of the sources,

𝒥 = 𝐽𝑎, 𝜉𝛼, 𝜉
𝛼, 𝑦𝛼, 𝛾𝑎, 𝜁𝛼, 𝜖(𝐽𝑎) = 𝜖(𝑦𝛼) = 𝜖(𝜁𝛼) = 0, 𝜖(𝜉𝛼) = 𝜖(𝜉𝛼) = 𝜖(𝛾𝑎) = 1, (13.37)

in the generating functional

𝑒 𝑖𝑊 [𝒥 ] =

∫︁
𝐷𝛷 exp 𝑖

{︁
𝛴[𝛷 ] + 𝐽𝑎𝑔

𝑎 + 𝜉𝛼𝐶
𝛼 + 𝜉𝛼𝐶𝛼 + 𝑦𝛼𝑏𝛼 + 𝛾𝑎 (𝑠𝑔𝑎) + 𝜁𝛼(𝑠𝐶𝛼)

}︁
. (13.38)

Functional di�erentiations with respect to these sources will generate the correlators of their duals.
Now, it is easy to see that a long tail of source terms here can be absorbed into the modi�ed BRS-exact

term of the action by a simple generalization of the BRS-operator and gauge fermion. For this purpose let us
include the sources 𝐽𝑎, 𝜉𝛼, 𝜉

𝛼 into the following extended BRS-operator,

𝑠→ 𝑄 = 𝑠− 𝐽𝑎
𝛿

𝛿𝛾𝑎
+ 𝜉𝛼

𝛿

𝛿𝜁𝛼
+ 𝜉𝛼

𝛿

𝛿𝑦𝛼
, 𝑄2 = 0, (13.39)

and the sources 𝛾𝑎 and 𝜁𝛼 and 𝑦𝛼 � into the extended gauge fermion

𝛹 [𝛷 ]→ 𝛹 [𝛷, 𝛾, 𝜁, 𝑦 ] ≡ 𝛹 [𝛷 ]− 𝛾𝑎𝑔𝑎 + 𝜁𝛼𝐶
𝛼 + 𝑦𝛼𝐶𝛼. (13.40)
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Note that this new BRS-operator is also nilpotent as it follows from the Grassmann parity of ghost �elds and
anti-commutativety of their derivatives.

Problem 13.4. Prove that 𝑄2 = 0

Then, non-classical part of the exponential in the integrand of (13.38) again takes the BRS-exact form with
this new BRS-operator. Indeed, the action of 𝑄 on 𝛹 easily yields

𝑄𝛹 = 𝑠𝛹 [𝛷 ] + 𝐽𝑎𝑔
𝑎 + 𝜉𝛼𝐶

𝛼 + 𝜉𝛼𝐶𝛼 + 𝑦𝛼𝑏𝛼 + 𝛾𝑎 (𝑠𝑔𝑎) + 𝜁𝛼(𝑠𝐶𝛼) . (13.41)

Thus, �nally

𝑒 𝑖𝑊 [𝒥 ] =

∫︁
𝐷𝛷𝑒 𝑖𝛴[𝛷,𝒥 ], (13.42)

𝛴[𝛷,𝒥 ] = 𝑆[ 𝑔 ] + 𝑄𝛹 [𝛷,𝒥 ], (13.43)

where the new BRST action is obviously BRS-invariant with respect to the extended BRS-operator depending
on sources

𝑄𝛴[𝛷,𝒥 ] = 0. (13.44)

Then the derivation of Ward identities is straightforward. We have

0 =

∫︁
𝐷𝛷𝑄 𝑒 𝑖𝛴 =

∫︁
𝐷𝛷

(︂
𝑠− 𝐽 𝛿

𝛿𝛾
+ 𝜉

𝛿

𝛿𝜁
+ 𝜉

𝛿

𝛿𝑦

)︂
𝑒 𝑖𝛴

=

(︂
−𝐽 𝛿

𝛿𝛾
+ 𝜉

𝛿

𝛿𝜁
+ 𝜉

𝛿

𝛿𝑦

)︂
𝑒 𝑖𝑊 +

∫︁
𝐷𝛷 𝑠 𝑒 𝑖𝛴 , (13.45)

where the variables inside the parenthesis do not participate in integration (and therefore can be extracted
from under the sign of integration) and the last term can be transformed via functional integration by parts as
follows, ∫︁

𝐷𝛷 𝑠 𝑒 𝑖𝛴 ≡
∫︁
𝐷𝛷

(︀
𝑠𝛷𝐼

)︀ 𝛿

𝛿𝛷𝐼
𝑒 𝑖𝛴 = −

∫︁
𝐷𝛷

(︁ 𝛿

𝛿𝛷𝐼
𝑠𝛷𝐼(𝛷)

)︁
𝑒 𝑖𝛴 , (13.46)

and either disregarded since it is proportional to 𝛿(0) or cancelled by the local measure 𝜇[ 𝑔 ], whose contribution
we were omitting for brevity throughout the above derivation (if included back, 𝐷𝛷→ 𝐷𝛷𝜇[ 𝑔 ]). Cancellation
takes place due to its transformation (11.53),

𝑠𝜇[ 𝑔 ] = −𝜇[ 𝑔 ]

[︂
𝛿𝑅𝑎

𝛼

𝛿𝑔𝑎
+ 𝐶𝛽

𝛼𝛽

]︂
𝐶𝛼. (13.47)

Therefore, equation (13.45) gives a �nal rather simple form of Ward identities for the generating functional of
connected diagrams [︂

− 𝐽𝑎
𝛿

𝛿𝛾𝑎
+ 𝜉𝛼

𝛿

𝛿𝜁𝛼
+ 𝜉𝛼

𝛿

𝛿𝑦𝛼

]︂
𝑊 [𝒥 ] = 0. (13.48)

To remember the structure of the di�erential operator here note that it is built by the following rule. The rule
is the contraction of the sources dual to quantum �elds (𝑔𝑎, 𝐶𝛼, 𝐶𝛼) with the functional derivatives with respect
to the sources dual to the BRST transformations of these fields (𝑠𝑔𝑎, 𝑠𝐶𝛼, 𝑠𝐶𝛼) � the last one 𝑠𝐶𝛼 = 𝑏𝛼 and
its source is 𝑦𝛼.

There is another important equation for 𝑊 [𝒥 ] which follows from the equation of motion for the Lagrange
multiplier 𝑏𝛼. It reads ∫︁

𝐷𝛷
𝛿

𝑖 𝛿𝑏𝛼
𝑒 𝑖𝛴 =

[︂
𝜒𝛼
𝑎

𝛿

𝛿𝐽𝑎
− 𝑐𝛼𝛽 𝛿

𝛿𝑦𝛽
+ 𝑦𝛼

]︂
𝑒 𝑖𝑊 [𝒥 ] = 0, (13.49)
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or [︂
𝜒𝛼
𝑎

𝛿

𝛿𝐽𝑎
− 𝑐𝛼𝛽 𝛿

𝛿𝑦𝛽

]︂
𝑊 [𝒥 ] + 𝑦𝛼 = 0, (13.50)

where we took into account Eqs.(13.28) and (13.38) and generated the linear �eld dependence of the pre-
exponential factor in the integrand by the �rst order functional derivatives 𝛿/𝛿𝐽𝑎 and 𝛿/𝛿𝑦𝛽 . Note that the last
derivation essentially relies on the property that the gauge-�xing conditions are linear in the quantum �eld and
the gauge-�xing matrix 𝑐𝛼𝛽 is �eld independent.

13.5 Zinn-Justin equation for the effective action

Ward identities derived above can be reformulated in terms of the e�ective action 𝛤 � the generating func-
tional of one-particle irreducible diagrams or full quantum vertices of the theory. This functional is important
because it actually serves as a generalization of the classical action to the quantum level, it generates the e�ec-
tive equations of motion for the mean �eld ⟨ 𝑔𝑎 ⟩ � the argument of 𝛤 [ ⟨ 𝑔𝑎 ⟩ ] � and its UV divergent part gives
the counterterms which renormalize divergent scattering amplitudes and quantum expectation values.

As was discussed in Lecture 9, e�ective action follows from the generating functional of connected graphs
by the Legendre transform (10.12) with respect to the sources. In the case of gauge �eld theory we will assume
that �extra� sources 𝛾𝑎 and 𝜁𝛼 do not participate in the Legendre transform 𝑊 [𝒥 , 𝛾, 𝜁 ]→ 𝛤 [ ⟨𝛷 ⟩, 𝛾, 𝜁 ] which
only parametrically depends on them,

𝛤
[︀
⟨𝛷⟩, 𝛾, 𝜁

]︀
= 𝑊 [𝒥 , 𝛾, 𝜁 ]− 𝒥𝐼⟨𝛷𝐼⟩, 𝒥𝐼 = (𝐽𝑎, 𝜉𝛼, 𝜉

𝛼, 𝑦𝛼). (13.51)

Here the sources 𝒥 = 𝒥 [ ⟨𝛷⟩, 𝛾, 𝜁 ] are expressed as functionals of the mean �elds and extra sources from the
equations

⟨𝛷𝐼⟩ =
𝛿

𝛿𝒥𝐼
𝑊 [𝒥 , 𝛾, 𝜁 ], 𝒥𝐼 = − 𝛿

𝛿⟨𝛷𝐼⟩
𝛤
[︀
⟨𝛷⟩, 𝛾, 𝜁

]︀
, (13.52)

while the 𝛾 and 𝜁-derivatives of both functionals coincide,

𝛿

𝛿𝛾
𝑊 [𝒥 , 𝛾, 𝜁 ]

⃒⃒⃒
𝒥=𝒥 [ ⟨𝛷⟩,𝛾,𝜁 ]

=
𝛿

𝛿𝛾
𝛤
[︀
⟨𝛷⟩, 𝛾, 𝜁

]︀
, (13.53)

𝛿

𝛿𝜁
𝑊 [𝒥 , 𝛾, 𝜁 ]

⃒⃒⃒
𝒥=𝒥 [ ⟨𝛷⟩,𝛾,𝜁 ]

=
𝛿

𝛿𝜁
𝛤
[︀
⟨𝛷⟩, 𝛾, 𝜁

]︀
. (13.54)

Problem 13.5. Prove that Eqs.(13.53)-(13.54) follow from (13.51)-(13.52)

Let us now use the relations (13.52)-(13.54) in Ward identities (13.48) and 𝑏-equations of motion (13.50). For
brevity from now on we will discard the averaging symbol in the notation for mean �elds, ⟨𝛷 ⟩ → 𝛷, ⟨ 𝑔𝑎⟩ → 𝑔𝑎,
etc. Then we get for 𝛤 = 𝛤 [ 𝑔, 𝐶,𝐶, 𝑏, 𝛾, 𝜁 ] the following two equations

𝛿𝛤

𝛿𝛾𝑎

𝛿𝛤

𝛿𝑔𝑎
+
𝛿𝛤

𝛿𝜁𝛼

𝛿𝛤

𝛿𝐶𝛼
+ 𝑏𝛼

𝛿𝛤

𝛿𝐶𝛼
= 0 , (13.55)

𝜒𝛼
𝑎𝜙

𝑎 − 𝑐𝛼𝛽𝑏𝛽 −
𝛿𝛤

𝛿𝑏𝛼
= 0 . (13.56)

Integration of the second of these equations immediately gives

𝛤 = 𝛤 + 𝑏𝛼
(︀
𝜒𝛼 − 1

2
𝑐𝛼𝛽𝑏𝛽

)︀
, (13.57)

where 𝛤 = 𝛤 [ 𝑔, 𝐶,𝐶, 𝛾, 𝜁 ] is independent of the Lagrange multiplier 𝑏𝛼 reduced action

𝛿𝛤

𝛿𝑏𝛼
= 0. (13.58)
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Equation (13.57) actually implies disentangling from the full e�ective action the gauge breaking part written in
terms of the gauge conditions functions 𝜒𝛼 and their Lagrange multiplier 𝑏𝛼 (cf. this part of Eq.(13.28)).

Then, substitution of (13.57) into (13.55) shows that it splits into two equations for 𝛤 . One of them,

𝜒𝛼
𝑎

𝛿𝛤

𝛿𝛾𝑎
+

𝛿𝛤

𝛿𝐶𝛼
= 0 , (13.59)

shows that 𝛤 depends on the mean ghost �eld 𝐶𝛼 in a special combination 𝛾𝑎 = 𝛾𝑎 − 𝐶𝛼 𝜒
𝛼
𝑎 with extra source

𝛾𝑎,

𝛤 = 𝛤 [ 𝑔, 𝐶, 𝛾, 𝜁 ], 𝛾𝑎 = 𝛾𝑎 − 𝐶𝛼 𝜒
𝛼
𝑎 . (13.60)

Another equation �nally leads to the long-sought Zinn-Justin equation for reduced action in the minimal sector

𝛿𝛤

𝛿𝛾𝑎

𝛿𝛤

𝛿𝑔𝑎
+
𝛿𝛤

𝛿𝜁𝛼

𝛿𝛤

𝛿𝐶𝛼
= 0. (13.61)

Problem 13.6. Check the derivation of (13.59)-(13.61) from (13.55). Derive from (13.28) the expression for the tree-level

(“classical” or prior to functional integration) reduced action 𝛤 by subtracting the gauge fixing part and adding the source terms
for the BRST transformations of 𝑔𝑎 and 𝐶𝛼.

This equation is very important in renormalization theory of gauge models because it allows one to establish
the BRST structure of UV counterterms and renormalized action of the theory. As one can see either from Eqs.
(13.27) and (13.34) or from Eqs.(13.42) and (13.43), the BRST structure of the action in the path integral is
rather universal. It is the sum of the classical gauge-invariant action 𝑆[ 𝑔 ] � the functional of the single original
�eld � and the BRST exact term in the form of the nilpotent BRST-operator acting on the gauge fermion which
is the object containing all gauge-�xing information.

However, actual calculation of the path integral leads to UV divergences which can be cancelled by local
counterterms. This is guaranteed by the BPHZ theory, but these counterterms are some general local functionals
of all �elds � original gauge �elds 𝑔, ghosts 𝐶,𝐶, and the Lagrange multipliers 𝑏, and a priori there is no guarantee
that these counterterms will have have the same BRST structure. If not, then this structure gets broken, BRST
symmetry violated together with the original gauge invariance. The theory becomes inconsistent, because
the physical results for gauge-invariant observables start depending on arbitrary element of the calculational
procedure � choice of gauge conditions and gauge-�xing matrix. The corner stone of the original construction
� gauge independence of the path integral and on-shell scattering amplitudes � gets lost.

Fortunately, it turns out that Ward identities of the above type and Zinn-Justin equation for e�ective
action con�rm the preservation of the BRST structure also for renormalized theory. Physically meaningful
and gauge invariant counterterms � local functionals of the original gauge �eld � renormalize the classical
action 𝑆[ 𝑔 ] in Eqs.(13.42)-(13.43), other ghost-�eld dependent counterterms renormalize the gauge fermion
but leave the structure of BRST-exact term intact. All this can be perturbatively attained in the form of
the loop expansion in powers of ~ along with a special (generally nonlinear) renormalization of all quantum
�elds 𝛷. This renormalization (or in�nite reparametrization) converts the renormalized integrand of the path
integral to the BRST form of the above type. This can be done iteratively, loop by loop, within semiclassical
expansion in ~ by �nding the so-called cohomologies of the nilpotent BRST-operator. The cohomology method
coming from pure math on supermanifolds � con�guration spaces of boson-fermion variables � serves as an
e�cient tool of perturbative solution of Ward and Zinn-Justin equations for the UV divergent part of e�ective
action. Modern and su�ciently self-contained presentation of this renormalization theory can be found in [A. O.
Barvinsky, D. Blas, M. Herrero-Valea, S. M. Sibiryakov, C. F. Steinwachs, Renormalization of gauge theories
in the background-field approach, JHEP 07 (2018) 035, arXiv:1705.03480.].

The above method of BRST-symmetry and Ward identities has led us to the structures which actually
go beyond the class of gauge theories restricted by several simplicity assumptions � the closure of the gauge
algebra of generators, their linearity in gauge �elds and their linear independence (irreducibility), etc. These
assumptions can be removed within BFV and BV framework mentioned above � the formalism based on the
introduction of anti-bracket acting on the space of �elds and anti-fields. This formalism allows to go beyond
the main limitation of the Faddeev-Popov method � its restriction to closed generator algebras. Open algebras,
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in addition to the linear combinations of generators in the right-hand side of (11.46) with no longer constant
structure functions, also have the terms proportional to the classical extremal 𝛿𝑆/𝛿𝑔𝑎. For these algebras the
path integral becomes more complicated than the Faddeev-Popov one. The total action becomes of higher power
than two in ghost �elds, and the BV technique (or BFV technique within Hamiltonian formalism) suggests a
systematic way to �nd the coe�cients of this ghost polynomial � the higher-order structure functions of the
gauge algebra.

Interestingly, the anti-bracket structure of the BV method actually appears already in the Zinn-Justin
equation with extra sources 𝛾𝑎 and 𝜁𝛼 for BRST-transformations of gauge and ghost �elds. Therefore we �nish
this lecture course by a very brief comment about it. This comment looks useful, in particular, because the
equations generalizing the notions of BRST-operator 𝑠 and gauge fermion 𝛹 to the extended ones 𝑄 and 𝛹 in
(13.39)-(13.40) do not look systematic, while the anti-bracket formalism puts it in an orderly fashion. In this
formalism the con�guration space of �elds 𝛷 is supplemented by the set of anti-fields 𝛷*𝐼 of opposite statistics,
𝜖(𝛷*𝐼) = 𝜖(𝛷𝐼) + 1, and for any two functions 𝐴 and 𝐵 on the space of 𝛷 and 𝛷*, the anti-bracket is de�ned as

(𝐴,𝐵) = 𝐴

←−
𝛿

𝛿𝛷𝐼

−→
𝛿

𝛿𝛷*𝐼
𝐵 −𝐴

←−
𝛿

𝛿𝛷*𝐼

−→
𝛿

𝛿𝛷𝐼
𝐵 . (13.62)

In fact, this is a modi�cation of the super-Poisson bracket (9.27) in which, however, 𝛷* is conjugated to 𝛷 not in
the canonical sense, but in the sense of Grassmann parity, and the derivatives together with their contractions
are the spacetime rather than the canonical ones,

←−
𝛿

𝛿𝛷𝐼

−→
𝛿

𝛿𝛷*𝐼
≡
∫︁
𝑑𝑡

←−
𝛿

𝛿𝛷𝐼(𝑡)

−→
𝛿

𝛿𝛷*𝐼(𝑡)
. (13.63)

In the above BRST construction the anti-�elds 𝛷*𝐼 are just the sources for BRST-transformations of the �elds
𝛷𝐼 ,

𝛷𝐼 = 𝑔𝑎, 𝐶𝛼, 𝐶𝛼, 𝑏𝛼, (13.64)

𝛷*𝐼 = 𝛾𝑎, 𝜁𝛼, 𝑦
𝛼, (13.65)

(the anti-�eld for the Lagrange multiplier is absent because for theories with closed gauge algebras its BRST
transformation is vanishing 𝑠𝑏𝛼 = 0). In terms of these notations Eqs.(13.39)-(13.40) for extended BRST
operator and gauge fermion take a readable form

𝑄 = 𝑠− (−1)𝜖𝐼𝒥𝐼
𝛿

𝛿𝛷*𝐼
, 𝛹 = 𝛹(𝛷)− (−1)𝜖𝐼𝛷*𝐼𝛷

𝐼 , (13.66)

whereas Zinn-Justin equation becomes after the transition to the minimal sector, 𝛤 = 𝛤 [𝛷min, 𝛷
*
min], 𝛷min =

(𝑔𝑎, 𝐶𝛼), 𝛷*min = (𝛾𝑎, 𝜁𝛼),

(𝛤 , 𝛤 )min = 0. (13.67)

This is a famous master equation of BV formalism which reveals the sequence of structure functions of gauge
algebra. These structure functions for closed algebras are exhausted by 𝑅𝑎

𝛼, 𝐶
𝛼
𝛽𝛾 and form the basis for Feynman-

DeWitt-Faddeev-Popov path integral, while in theories with open algebras they extend to higher orders and
become coe�cients of higher-order powers of ghost �elds in the full action of the theory.
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