PRIMORDIAL BLACK HOLES

P.Tinyakov

Content:

- PRIMORDIAL BLACK HOLES
P.Tinyakou
Content:
x Octection of BH in the early Unive
x Detection of BH & conctraints * Creation of BH in the early Universe
	- ^a Detection of BH & contraints
	- * Capture of PBH by stars
	- * Capture at star birth
	- ^a Perspectives for observations/constraints

Lecture 1.

^① Dark Matter (DM) - main motivation for PBH - DM is needed to explain many observational facts of different nature : - rotation curves

- " gas temperature in clusters of galaxie
- * CMB anisotropy data
- · structure formation
- ↳ Bullet cluster

 \Rightarrow all this can be explained by DM

BUT UT : only indirect evidence ⁺ only of gravitational origin [no direct detection so far] \Rightarrow no clue what is the DM mass.

PBH are an attractive candidate for DM

- basically invisible
- only interacting gravitationally, including with ordinary matter
- no new stable particle is required if constitute all of the DM

 $\left(\overline{\mathbf{1}}\right)$

(4) BH = remainder

\n
$$
= \frac{1}{2} \cdot \frac{1}{2} \cdot
$$

 \circledS

^① BH formation in the early Universe

 $*$ flat FRWL metric $ds^2 = c^{\frac{1}{2}} + c^{\frac{3}{2}}(t) dz^2$ $a =$ scale factor; $a=1$ today * Standard cosmology :

③

$$
x
$$
 There is a characteristic length
\n
$$
scale = \frac{horizon}{T^{2}}
$$

\n
$$
R_{H} \sim \frac{1}{H} \sim \frac{M_{P}}{T^{2}}
$$

\n
$$
R_{H} \propto a^{2} \propto t
$$

\n
$$
R_{H} \propto a^{2} \propto t
$$

④

At the radiation stage the horizon size is
\nthe maximum size of a usually-connected
\nregion
$$
\Rightarrow
$$
 (maximum mass of a BH.)

* Total max iuride horicon:
\n
$$
M_H \sim \rho R_H^3 \sim T^4 \left(\frac{M_P}{T^2}\right)^3 = \frac{M_P^3}{T^2}
$$

 \Rightarrow maximum mass of a BH formed at temperature T is

maximum mass of a BH for
\ntemperature T is
\n
$$
m \le M_{H} = 0.02 \frac{M_{PL}^{3}}{T^{2}}
$$

$$
M_{H} = 0.02 \frac{M_{pc}^{3}}{T^{2}}
$$

$$
M_{H} \sim m
$$

$$
M_{\odot} = 6 \cdot 10^{27} g
$$

$$
100 \text{ GeV}
$$

$$
3 \times 10^{-6} M_{\odot} = 6 \cdot 10^{27} g
$$

$$
M_{\odot} = 2 \cdot 10^{33} g
$$

$$
M_{\odot} = 2 \cdot 10^{33} g
$$

$$
M_{\odot} = 6 \cdot 10^{33} g
$$

⑤

 \Rightarrow to form a BH require $r_s \geq R$ (Hoof conjecture)

$$
r_s = \frac{\delta \rho \cdot R^3}{M_p^2}
$$

m a BH require

$$
\frac{\delta \rho \cdot R^2}{M_p^2} \approx 1
$$

$$
3 \text{ smaller } \text{sp. current, plot the tangent R is R1 R2 R1 R2 R2 R3 R4 R5 R6 R7 R8 R1 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R2 R1 R2 R
$$

Hubs a lingth scale 1/4

$$
x inflation\nand\nthe the first step\nfrom and\nthe the first step\ntherefore\nthe threshold $\delta p/\rho \sim 1$
\nthe the form a BH after
\nwe are a set of the
\nthe first odd $\delta p/\rho \sim 1$
\nthe first odd $\delta p/\rho \sim 1$
\nthe first odd $\delta p/\rho \sim 1$
\nthe first end of the second line
\nwe are not a right.
$$

① Because we want to convert into BH only a small fraction of Hubble volumes ot the time of production, we do not Because we want to connect into
only a small fraction of Hubble
at the time of production, we do
need $\frac{8f}{f} \sim 1$ on average. Then only
fluctuations will reach $\frac{8f}{f} \sim 1$ and
In fact, one should have need $\delta f / \rho \sim 1$ on average. Then only rave fluctuations will reach 8g/y -1 and form BH. In fact, one should have රි
ර $\frac{9}{9}$ 2 10

⑧

4 The exact threshold of BH formation depends on the equation of state, $p = w p$

Pressure opposes collapse =) the smaller w , the lower the threshold.

4

Softening at the QCD phase transition T ~ 100 Meu => enhanced production at of $\sim M_{\odot}$ PBHs.

CONCLUSION: No real constraints from theory on
the mass spectrum of PBH and their
abundance \mathcal{A} ০

্বি

- Hauhing radiation
- leusing
- LIGD/VIRGO

$$
-\quad CD
$$

$$
\frac{dm}{d\pm} = -\frac{\frac{1}{15360 \pi \frac{1}{1000}} \cdot \frac{m^3}{m^4} \cdot m^2 d m \cdot dt}{15360 \pi \frac{m}{m^6} \cdot m^2} = \frac{15360 \pi \frac{1}{m^6} \cdot m^3 d m \cdot dt}{16ke m \cdot 10^3 g \cdot 5.3 \times 10^{43} \text{GeV}}
$$
\n
$$
\frac{1000 \text{ m} \cdot m^3}{m^4} \cdot T \leftarrow \frac{c}{6eV} \cdot \frac{1}{1520 \pi \cdot 10^3 g \cdot 5.3 \times 10^{43} \text{GeV}}}{16ke m \cdot 10^3 g \cdot 5.3 \times 10^{43} \text{GeV}}
$$
\n
$$
= 1.3 \cdot 10^{59} \frac{1}{6eV} = 3 \times 10^{23} \text{ yr}
$$

$$
\Rightarrow
$$
 * PBH lighter than ~ 10¹⁵ g completely
eraporate by now and cannot be
o DM

* Moreover, the lifetime must be larger than ~ $10^{27} s \sim 10^{20} yr$, otherwise the produced radiation overshoots the experimental limits.

P2.1 DM Lifetime

 $P2, 2.$

Amplification

$$
\theta_{\epsilon} = \sqrt{\frac{2R_{g} \cdot d_{ls}}{d_{s}d_{l}}}
$$
\n
$$
\theta_{\epsilon} \sim 3.10^{3} \text{ arcsec}
$$

Ideal Earth-based observations - 0.4 ances

* Time duration

$$
t_{E} = \frac{R_{E}}{v} = \frac{1}{v} \sqrt{\frac{2R_{g} \cdot d_{e}d_{Ls}}{d_{s}}}
$$

\n
$$
= 44 \text{ days } \left(\frac{m}{M_{o}}\right)^{1/2} \left(\frac{de}{d_{s} \cdot 4k_{pc}}\right)^{1/2} \left(\frac{220 \text{ km/s}}{v}\right)
$$

\n
$$
*Amplification factor A
$$

\n
$$
d_{e}f_{c} = \frac{40}{\theta_{E}} \leftarrow minimum
$$

\n
$$
A = \frac{u^{2} + 2}{u \sqrt{u^{2} + 1}}
$$

LISO/VIRSO
$$
\left\{ m \sim \text{few} \leftrightarrow 10^{\circ} s \notin M_{\odot} \right\}
$$
 (14)
PBH formation is a random process: at

* PBH formation is a random process : at the tome of formation collapse happens in only a few Hubble volumes

* As the Universe expands, the Hubble volume
grows and some of the PBH find themselver
P2.3 close enough to form a bound pair. They
formation start to orbit each other and finally grows and some of the PBH find themselves close enough to form a bound pair. They Binary
formation formation start to orbit each other and finally close en
start to
coallsce,

P2.

* Once the formation time (equivalently , the PBH mass) is fixed, the only free parameter in this process is the fraction of PBH in the DM :

$$
\begin{pmatrix}\n\text{coalelance rate} \\
\text{today} \\
\text{L+his is measured} \\
\text{by LIGO/VIRGO} \\
\text{(countrain+ on f)}\n\end{pmatrix} = \text{function of } f = \frac{9 \text{psu}}{90 \text{m}}
$$

-
- CMB distortions [2 IOM₀]
PBH are formed at in the radiation * PBH are formed at in the radiation era at temperatures eV
	- => they must have been present at and after recombination , at the time of CMB formation.

⑮

* Accretion of gas on these PBH after recombination produces radiation that leads to ionisation before the star formation , which is excluded/constrained from CMB is excluded
observations.

Note : accretion is a complicated proces => potentially large

uncertainties

SUMMARIZE :

* With larger or smaller confidence in all mass ranges except from \sim 10¹⁷ g t_o \sim 10²³ g PBH are excluded as the only component of DM

16

This mass range goes under the name of "asteroid-man window"

