Capture in stars - > accretion - > destruction.

⑰

ACCRETION

- * In principle, a common astrophysical phenomenou (gravity being an attractive force). Still, a very controversial subject. gravity being on
Still, a very ce
Multiple models.
	- In our context a number of simplifications:
		- PBH are very small its vicinity is, to a good approximation, a homogeneous medium
		- for the same reason (small size) angular momentum is not important at least at 1
for the same
first stages.
in the the

In these conditions there is a simple solution known as Bondi accretion - a spherically symmetric incoming adiabatic flow .

- * characterized by variables only depending g(r) · T(r) , P(r) , U(r). on $r : \rho(r)$, $T(r)$, $\rho(r)$, $\nu(r)$.
- * adiabatic means there is no energy exchange between layers of different r (no diffusion).

Bondi solution for accretion

\n* The flow is governed by two equations:

\n\n- matter conservable by two equations:
\n- matrix law (how-relativistic can) known as the parameter
\n- Matrix's law (how-relativistic can) known in this context as Euler equation:
\n- (1)
$$
v \frac{dv}{dr} = -\frac{1}{s} \frac{dp}{dr} - \frac{sm}{r^2}
$$
\n- We have 2 equations and 3 unknown: $p_1 p_2 d v$
\n- Substituting the equation:
\n
\n(2) $v \frac{dv}{dr} = -\frac{1}{s} \frac{dp}{dr} - \frac{sm}{r^2}$

\nUse have 2 equations and 3 unknown: $p_1 p_2 d v$

\nSubstituting the values of the equation:

\n\n- (a) $p = k g^p$
\n- (b) $p = k g^p$
\n- (c) $p = k g^p$
\n- (d) $e^2 = \frac{dp}{dp} = P \frac{p}{g}$
\n- Using (s) one may integrate eq(2):
\n- (l) $\frac{1}{2} v^2 + \frac{1}{r-1} C_s^2 - \frac{sm}{r} = \frac{1}{r-1} C_s^2$
\n- by amplitude of the equation:
\n

* From these equations one can show (see problems) that there is one particular value of in for which the flow velocity monotonically grows from 0 to the free-fall velocity $(2Gm/r)^{1/2}$ as r decreases from as to 0 . This value is

 (19)

$$
\mathring{M} = 4\pi \lambda \cdot \frac{6^2 m^2}{c_{\infty}^3} \rho_{\omega} \qquad \lambda = \text{const} = 0(1)
$$

* The floro becomes supersonic at the value of r called Bondi radius,

$$
r_B = \frac{s-3\Gamma}{4} = \frac{Gm}{c_{\infty}^2}
$$

* Assume Bondi accretion. Then

P3.3

accretion

time

$$
\dot{m} = 4\pi\lambda \frac{G^{2}m^{2}}{C_{\infty}^{3}} \quad \text{So}
$$
\n
$$
t_{\text{acc}} = \frac{C_{\infty}^{3}}{4\pi G_{\text{pu}}} m \approx 5 \times 10^{6} \text{ yr} \quad (\frac{C_{\infty}}{500 \text{ yr}}) \left(\frac{150 \text{ g/c}^{3}}{\text{p}}\right) \left(\frac{10^{2} \text{ g}}{\text{m}}\right)
$$
\n
$$
\text{short time compared to the Onu.}
$$

- * Lifetime is determined by the <u>initial</u> initial · stages -
- * At final stages Bondi regime may break . What happens then-nobody knows for sure . This is not important for destruction time , but is important for other observational signatures apart from destruction.

้2o

* Validity of Bondi regime : photon mean free path is angular momentum relative motion of BH and medium

⑪ CAPTURE

- From time to time PBHs from DM halo A collide with stars
- * PBH passing through ^a star does not stop , PBH passing through a star does not
but it gets slowed down (see below)
- * As a result, it may become gravitationally As a result, it may become quink the PBH continues to cross the star, every time Cooting energy unfit it is completely inside the star. After that it accretes the star
as discussed above.

Consider this capture mechanism in more \parallel detail. Consider this capture mechanism in more
detail. We will see that it is <u>not</u> efficient
but we will learn a few wetul thinge.

- $*$ In order to get captured by a star, a PBH has to look more energy than it has at In orde
has to
infinity.
	- => consider energy losses

ENERGY LOSSES

There are two ways how a PBH boses energy when crossing a star:

\n① Accretion of star markan. In the star frame the PBH total momentum does not change, while the mass increases
$$
\Rightarrow
$$
 velocity decreases. This is equivalent to the drag force.\n

$$
F_{acc} = -\dot{m}v
$$

2 ω hat is \dot{m} ?

PBH velocity is mildly expersonic (750 kg vs 500 kg) => collection with free particles should be a reogonable approximation. Then

$$
\hat{m} = \int_{\mathcal{F}} \sqrt{B_{\theta H}} \cdot \mathcal{V}
$$
\n
$$
\int_{\mathcal{F}} \sqrt{B_{\theta H}} \cdot \mathcal{V}
$$
\n
$$
= 16\pi \frac{G^{2} m^{2}}{\pi^{2}} \quad \text{L1 vel 2}
$$
\n
$$
\Rightarrow \boxed{F_{acc}} = -16\pi \int_{\mathcal{F}} G^{2} m^{2}
$$
\n
$$
= 16\pi \int_{\mathcal{F}} G^{2} m^{2}
$$
\n
$$
= 16\pi \int_{\mathcal{F}} G^{2} m^{2}
$$

$$
① Dynamic $4r$ **From**\n
$$
5 \qquad 98H
$$
\n
$$
7 \qquad 7 \qquad 1
$$
$$

- (Chandrasckhar '49)
- perpendicular momentum overages out - Congitudinal momenta add $\mathbf{\psi}$ L BH looks momentum \Rightarrow force.

Simple calculation gives:
\n
$$
F_{df} = -4\pi \rho_* g^2 n^2 \frac{a \Lambda}{\sigma^2}
$$

\n Q_{th}
\n Q_{th} = Coulomb logarithm
\n Q_{th} = Coulomb logarithm
\n Q_{th} = $(R_{th}) \approx 30$

5) F_{df} is parametrically larger than F_{acc}
at small velocity v < 1
\n
$$
\Rightarrow
$$
 neglect F_{acc}

* Average energy loss (asuming uniform distribution in the impact place) :

$$
E_{\text{loss}} = \frac{1}{\pi R_{*}^{2}} \int ds \, d\ell \, F_{\text{dyn}} = \frac{4 M_{*} G^{2} m^{2}}{R_{*}^{2} \, \sigma^{2}} \, \ln \Lambda
$$

Here v is the velocity with which the PBH passes through the star. To a good approximation this is the escape velocity

$$
v^2 \simeq v_{esc}^2 = \frac{2GM_{*}}{R_{*}}
$$

③

Thus we have

we have
\n
$$
\frac{E_{\text{Cov}}}{m} = \frac{R_{g}}{R_{*}} \cdot \frac{m}{M_{*}} \cdot l \cup \Lambda
$$
\n
$$
V_{*} = \frac{10^{-13}}{10^{13}} \text{ for } m = 10^{20} q
$$
\n
$$
understand how small is the equation of the equation $l = 10^{20} q$.
$$

* To understand how small is the energy loss let us rewrite it in terms of the acymptotic kinetic energy of the PBH by equating \mathbf{r}

$$
\frac{1}{2} m v_{\infty}^2 \sim E \, \epsilon_{0 \epsilon_1}
$$

From here we find

$$
\upsilon_{\infty} \sim \left(\frac{E_{\text{conv}}}{m}\right)^{1/2} \sim 10^{-3} = 0.003 \text{ km/s}
$$
\n
\n(compare to typical
\nGaloctic velocity -200 km/s)

equating
\n
$$
\frac{1}{2} m v_{\infty}^2 \sim E \log
$$
\nFrom here ax find
\n
$$
v_{\infty} \sim \left(\frac{E_{\infty}}{m}\right)^{1/2} \sim 10^{-3} = 0.003 \text{ km/s}
$$
\n(compare to typical
\nGaleckic velocity - 200² m/2)
\n
$$
= 0.003 \text{ km/s}
$$
\n(compare to typical
\nGaleckic velocity - 200² m/2)
\n
$$
= 0.003 \text{ km/s}
$$
\n
$$
= 0.003 \text{ km/s}
$$
\n(compare to typical
\nGaleckic velocity - 200² m/2)
\n
$$
= 0.003 \text{ km/s}
$$
\n
$$
= 0.003 \text
$$

$$
r_{in} = \frac{GM_{*}m}{E_{eov}} = \frac{M_{*}}{2m}R_{*}
$$

⑭

CAPTURE RATE

* Assume Maxwellian distribution in 0 :

CAPTURE RATE
\nassume Maxwellian distribution in D
\n
$$
dn = \frac{\rho_{\text{DM}}}{m} \left(\frac{3}{2\pi\sigma^2}\right)^{\frac{3}{2}} \exp\left(-\frac{3\sigma^2}{2\sigma^2}\right) d^3v
$$

\n $\frac{1}{2}\pi\sigma^2$
\nL velocity dispersion
\n $\sim 270 \text{ km/s}$

x Assume. Maxwellian distribution in 0
\n
$$
dn = \frac{\rho_{\text{DW}}}{m} \left(\frac{3}{2\pi\sigma^2}\right)^{2/2} exp\left(-\frac{3\sigma^2}{2\sigma^2}\right) d^3v
$$
\n
$$
\Rightarrow \text{Capfunc rate} \left(\text{formal}\right)
$$
\n
$$
\Rightarrow \text{Capfunc rate} \left(\text{formal}\right)
$$
\n
$$
\frac{d\nu}{dt} \approx 6\sqrt{6\pi} \frac{\rho_{\text{DW}}}{\sigma^3} \frac{GM_xR_x}{m^2} E_{\text{dyn}}
$$
\n
$$
\frac{d\nu}{dt} \propto \frac{\rho_{\text{DW}}}{\sigma^3}
$$
\n
$$
= 24\sqrt{6\pi} \left(\frac{\rho_{\text{DW}}}{\sigma^3}\right) G^2 M_x \text{ (a A)}
$$
\n
$$
= 0.5 \text{ Gyr}^{-1} \left(\frac{\pi_{\text{low}}}{\sigma}\right)^3 \left(\frac{\rho_{\text{DW}}}{\sigma^0}\right)
$$

^A very small rate , can only capture ^a few over the age of the Universe Immuch smaller !

But the real rate is even

23

- * For a successful capture two more conditions have to be satisfied :
	- $11)$ cooling time $($ = time to shrink the orbit to the star radius R_{*}) is smaller than the age of the Universe
	- (2) trajectories are not perturbed by nearby stars

Consider what do these conditions imply.

(1) COOLING

· Between star crossings the PBH moves on a Keplerian orbit. The fime it star crossings the PBH m
Keplerian orbit. The time it takes is a Keplerian orbit. The
es is
 $\Delta t = \pi \frac{a^{3/2}}{\sqrt{R_g}}$ $\left[a = \frac{1}{\sqrt{R_g}}\right]$ apastron]

$$
After the crossing the energy changyby - Eeoss, so that the apastoonchanges by
$$
\Delta A = -\frac{a^2}{GM*m} \cdot E_{box}
$$
$$

$$
\Rightarrow \frac{da}{dt} \approx \frac{aa}{a} = -\frac{2E_{\text{cov}}}{\pi m \sqrt{R_g}} \sqrt{a}
$$

Solving this equation we find (27 $t_{core}(a_{\circ})$ = $\frac{\pi \sqrt{R_g} \cdot m}{E_{\text{eiss}}}\sqrt{a_o} = \frac{\pi M_{*} R_{*}}{m \sqrt{R_g} \ln \Lambda} \sqrt{a_o}$ 1368 10 . Solving this equation we find
 $t_{cool}(a_0) = \frac{\pi \sqrt{R_g} m}{E_{obs}} \sqrt{a_0} = \frac{\pi M_{*} R_{*}}{m \sqrt{R_g}} \sqrt{a_0}$

Take: $m = 10^{20} g$
 $M_{*} = M_{0} = 10^{27} km = 3.40$
 $M_{*} = M_{0} = 10^{27} m$
 $M_{*} = M_{0} = 10^{27} m$
 $M_{*} = M_{0} = 10^{27} m$ $f_{cool}(a_{0}) = \frac{\pi \sqrt{R_{g} m}}{E_{loss}} \sqrt{a_{0}} = \frac{\pi \sqrt{R_{g}} \ln \sqrt{a_{0}}}{m \sqrt{R_{g}} \ln \sqrt{a_{0}}}$
 $= \frac{10^{27} \text{ km/s}}{10^{10} \text{ m}} \approx 3.40^{21} \text{ s}$
 $= 10^{27} \text{ km} \approx 3.40^{21} \text{ s}$
 $= 10^{27} \text{ km} \approx 3.40^{21} \text{ s}$ $m = 10^{20} g$
 $\therefore m = 10^{27} km = 3.40^{21} s$
 $\therefore 10^{14} yr = 3.40^{21} s$ M_{*} = M_{\odot} = 10 g 5 R _{*} = 7·10³ km $R_g = 3 km$ $\mathsf{M}_{\bm{\star}}$ $a_{\mathtt{o}}$ = 7.0^{5} km
= 3 km
= $\frac{M_{*}}{2m \ln \sqrt{R_{*}}} = 4$ kpc $\left(\frac{10^{20}}{m}\right)^{20}$
= $\frac{M_{*}}{2m \ln \sqrt{R_{*}}} = 4$ kpc $\left(\frac{10^{20}}{m}\right)^{20}$ \simeq 10¹⁷ km \Rightarrow $\left(t_{\text{cos}\ell} \sim 2 \times 10^{13} \text{ yr} \left(\frac{10^{20} g}{m}\right)^{3/2}\right)$ L_D too large, unless m210 g! (2) PERTURBATIONS * Gravitational perturbations **&** r_{max} From nearby stars should not make PBH to miss star the star

perturber

9

* We want periastron to be inside the star, that is

⑳

$$
r_{min} < R_{*}
$$

* For large nearly radial orbits we have **6** rge nearly ra
min = $\frac{J^2}{m^2 R_0}$ $\kappa_{\bm{g}}$ J ⁼ angular momentum

 \Rightarrow r_{min} < R_{*} translates into $J< J_{max}$ with

$$
\frac{J_{max}}{m} = \sqrt{R_{*}R_{g}}
$$

 \star Perturbations change J . Suppore the perturber grav. potential is $U(\tilde{x})$ acting in the plane (xy) , rbations change J . Suppore the perturbe
potential is $U(\bar{x})$ acting in the plane (xy) , and the trajectory is $x(t)$, i.e. along x. Then and the trajectory is $x(t)$, i.e. along x. Then
the change of J over one fall from r_{max} to $\sim R_{*}$ is

change of J over one fall from
$$
r_{max}
$$
 to
\n
$$
\frac{\Delta J}{m} = \int_{0}^{7/4} x^{2}(t) U_{xy} dt \qquad [U_{xy} = 0, 0, U_{xy}]
$$

Assume U_{xy} = const, then

$$
sum = U_{xy} = const, the
$$

$$
\frac{\Delta J}{m} = \frac{5\pi}{16} \cdot \frac{r_{max}}{R_3^{y_2}} \cdot U_{xy}
$$

$$
m = 76 \sqrt{R_g^{3/2}}
$$

We require that

$$
\frac{\Delta J}{m} \le \frac{J_{max}}{m} = \sqrt{R_{*}R_{g}}
$$

4 Assume U(s) is the gravitational potential of a star of the same man
$$
M_x
$$
 at a distance of x max. Then we get the condition

\n
$$
\frac{R_x}{d}
$$
\n
$$
r_{max} < d \left(\frac{R_x}{d} \right)^{1/2}
$$
\n
$$
r_{max} < d \left(\frac{R_x}{d} \right)^{1/2}
$$
\n
$$
r_{max} < d \left(\frac{R_x}{d} \right)^{1/2}
$$
\n
$$
r_{infty} < d \left(\frac{R_x}{d} \right)^{1/2}
$$
\n
$$
r_{infty} < d \left(\frac{R_x}{d} \right)^{1/2}
$$
\n
$$
r_{infty} + \frac{r_{infty}r_{infty}}{r_{infty}}
$$
\n
$$
r_{infty} \left(\frac{R_x}{d} \right)^{1/2} \sim 0.4 pc
$$
\nOn the other hand, after 1 star covering

\nthe PBH orbit has

\n
$$
l.h.s; \quad r_{max} \sim 4 kpc \left(\frac{10^{20} \cdot \theta}{m}\right)^{3/2}
$$
\n
$$
r_{infty} \sim 4 kpc \left(\frac{10^{20} \cdot \theta}{m}\right)^{3/2}
$$

⑬

CAPTURE AT BIRTH

* There is an alternative mechanism where PBH are captured in the process of the star formation. Stars are formed from giant molecular

clouds . Some PBH are gravitationally bound to these clouds.

profile : some trajectories are contained in the star some pass through the star and may get captured later

⑳

x One may calculate analytically the number of captured PBH anumning
\nplane-space density conservation during
\nadiabatic contraction of the gas cloud.
\nBefore count reaction,
\n
$$
Q = \frac{\rho_{DM}}{m} \left(\frac{3}{2\pi\sigma^2}\right)^{3/2} \propto \frac{\rho_{DM}}{\sigma^3}
$$
\nAssuming Q is preserved, after antraction
\n
$$
N = \int Q d^2r d^2\sigma
$$
\n
$$
\frac{Q}{m} = \frac{\rho_{DM} \left(\frac{3}{2\pi\sigma^2}\right)^{3/2}}{\rho^3}
$$
\n
$$
N = \frac{\rho_{DM} \rho_{DM}}{\rho^3}
$$
\n
$$
N = \frac{\rho_{DM}}{\rho^3}
$$
\n
$$
N = \frac{\rho_{DM}}{\rho^
$$

⑪

The integral diverges at large orbit sizes . It reads

$$
N = \frac{\rho_{DM}}{m \sigma^3} \left(3\pi R_g \right)^{3/2} R_* \sqrt{2} r_{max}
$$

* We now have to apply the cooling time condition and the constraint from perturbers. It turns out that for marry m ~ 10 g the cooling condition is stronger. If we recall that

$$
t_{cool} = \frac{\pi M_{*}R_{*}}{m \sqrt{R_{g}} ln \sqrt{r_{max}}}
$$

we may rewrite the captured number as follows:

$$
N = 3\sqrt{6t} R_g^2 \frac{\ln\Lambda}{M_*} \cdot \frac{\rho_{av}}{\sigma^3} t_{\infty} \ell
$$

$$
N = 2.3 \left(\frac{P_{DM}}{100 \text{ Gev/}cm^{3}} \right) \left(\frac{7 \text{ km/s}}{\sigma} \right)^{3} \frac{t_{\text{core}}}{106 \text{ yr}}
$$
\n
$$
4 \text{pical captured} \text{``merit factor''}
$$
\n
$$
1 \text{``merit factor''}
$$

③

* Most promising objects - ultra-faint dwarf galaxies

* What is the best strategy to detect/exclude disappearance of stars in UFDs ?

^A promising idea is to use the fact that the probability of capture depends on the probability of capture depends on
the star man [see our analytic formula]
Numerically, this dependence is as follows: Numerically, this dependence is as follows:

=> PBH modify the dwarf galaxy star man function

$$
\star
$$
 The following numerical experiment shows
that this is a prominence of
permonic and the second
with no PBH effects
-\n- definite the likelihood that depends
on the standard max function
parameter in the fraction of PBH
 \pm in the total amount of DM
 \pm in the total amount of DM
sample to recover the man function
parameter and the fraction \pm
Marginalize over all parames except \pm
 \Rightarrow p.d.f. for \pm

⑮

If if was real data, this plot would $ercleide$ $f \ge 0.7$ at 3σ confidence 0.5

0.0 0.2 0.4 0.6 0.8 1.0

1 1 it was real data, this plot we exclude f > 0.7 at 35 confid
 \Rightarrow READY TO 60 TO REAL DATA !