

Nuclotron-based Ion Collider fAcility

Эксперименты на ускорительном комплексе NICA

В.Г. Рябов

NICA Nuclotron-based Ion Collider fAcility (NICA)

✤ Polarized beams of protons and deuterons in the collider (up to L = 10³² cm⁻²s⁻¹, √s_{NN} = 12.6 (d) 27 (p) GeV)
 → nucleon spin structure research and clarification of the spin origin

LU-20 SPD (Detector) Nuclotron

- Applied Research Infrastructure for Advanced Developments at NICA fAcility (ARIADNA)
 - \rightarrow beam channels and irradiation stations for applied research with heavy-ion beams
- ✤ NICA project is approaching its full commissioning:
 - \checkmark already running in the fixed-target mode BM@N, ARIADNA
 - \checkmark start of operation in collider mode in 2025 MPD and later SPD

Heavy-ion program

NICA is a bridge to neutron stars

- Heavy-ion collisions are used to:
 - ✓ study QCD under extreme conditions of high temperatures and densities
 - \checkmark explore the QCD phase diagram, search for the QGP and study its properties

Why Quark-gluon plasma is of interest?

- primordial form of QCD matter at high temperatures and/or (net)baryon densities
- present during the first microseconds after Big Bang and in cores of the compact neutron stars / mergers
- \checkmark provides important insights on the origin of mass for matter, and how quarks are confined into hadrons

- ✤ Heavy-ion collisions at NICA create extremely dense matter at moderate temperatures:
 - ✓ net baryon density (*n*) up to 10 times that in normal nuclear matter (n_0)
 - ✓ baryonic chemical potential μ_B = (300 600) MeV, T_{ch} ~ (120-150) MeV
- Comparable baryon density may exist in cores of compact neutron stars and in neutron star mergers
- ✤ Two experiments at NICA:
 - ✓ fixed-target BM@N
 - ✓ fixed-target and collider MPD

High baryon density: Inner structure of compact stars

Baryonic Matter *a* **Nuclotron**

Nucl.Instrum.Meth.A 1965 (2024) 169352

BM@N

FSD, GEM, CSC, DCH: charged particle tracking + momentum measurements TOF400, TOF700: charged particle identification by m^2/β FQH, FHCAL: event geometry, event centrality

Several technical runs since 2015

First physical run in 2022/2023: ¹²⁴Xe + CsI at 3 and 3.8 AGeV, > 5.5.10⁸ events

H. Карпушкин, Высокогранулярный нейтронный детектор и система передних детекторов эксперимента BM@N, 18 февраля, 14:45-15:00 D. Idrisov, Comparison of different methods for centrality determination in Xe+CsI collisions at 3.8 A GeV in the BM@N experiment, 21 февраля, 14:00-14:15 A. Demanov, Определение центральности столкновений тяжелых ионов в эксперименте BM@N, 21 февраля, 14:15-14:30

Production of \pi^+ and K⁺ mesons in argon-nucleus interactions at 3.2 AGeV

✤ Technical run with Ar beam at 3.2 AGeV and C/Al/Cu/Sn/Pb targets

BM@N

BM@N Production of protons and deuterons in argon-nucleus interactions at 3.2 AGeV

✤ Technical run with Ar beam at 3.2 AGeV and C/Al/Cu/Sn/Pb targets

Preliminary results

- ✤ dN/dy spectra are softer in interactions with heavier targets
- * Models describe the shape of rapidity dependences, but underestimate yields by a factor of ~ 5

В. Колесников, Изучение рождения протонов, дейтронов и тритонов в столкновениях аргон-ядро в эксперименте ВМ@N на ускорительном комплексе NICA, 17 февраля, 16:30 - 16:45

BM@N

Collective flow of protons and deutrons in Xe + CsI collision energy

- * Physics run with Xe beam at 3.8 AGeV and CsI target off plane squeeze-out Azimuthal angle distribution of particles w/r to event plane: bounce off reaction plane $dN/d\phi \sim (1 + 2v_1 \cos \phi + 2v_2 \cos 2\phi)$ 🖊 b = 3fm **Preliminary results** bounce of 5 5 off plane squeeze-out BM@N Preliminary **BM@N Preliminary** 10-30%; 0.5 < y_{cm} < 0.8 10-30%; 0.8 < p₁ < 1.6 (GeV/c) 0.6 0.6E 0.5 0.5 deuteron dv {dy|_{y=0} 1.4 BM@N Preliminary proton 0.4 0.4 FOPI Au+Au midcentral 0.3 0.3E STAR-FXT Au+Au 5-40% 0.2 0.2E BM@N Xe+Csl 10-30% 0. 0.1 0.8 0 Δ Δ 0.6 -0. -0.1 0.4 -0.2 0.5 0.5 1.5 p_ (GeV/c) y_{cm} 0.2 2.5 3.5 3
- Direct flow v_1 vs. rapidity and transverse momentum **
- Slope of v_1 is in good agreement with the world data
- Analysis of charged pions and Λ hyperon flow is in progress

V. Troshin, Измерение анизотропных потоков лямбда-гиперонов в экспериментах MPD и BM@N, 17 февраля, 16:00-16:15

М. Матаеv, Направленный поток протонов в столкновениях Xe+CsI при энергии 3.8А ГэВ на установке BM@N, 17 февраля, 16:15-16:30

И. Жаворонкова, Первые результаты по измерению v, для d в столкновениях Xe+Cs(I) при энергии 3.8А ГэВ на ВМ@N, 17 февраля, 16:45-17:00

√S_{NN}

Near future

✤ Many ongoing analyses for identified hadrons and light nuclei

Work in progress

• Rapidity and transverse mass spectra of Λ and K_s^0

• Observation of signals from vector mesons and (hyper)nuclei ${}_{\Lambda}H^3$, ${}_{\Lambda}H^4$

Physics run in 2025 with new silicon micro-strip detectors and extended ToF-400 acceptance

Multi-Purpose Detector

TPC: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.6$; TOF, EMC: $|\Delta \phi| < 2\pi$, $|\eta| \le 1.4$ FFD: $|\Delta \phi| < 2\pi$, $2.9 < |\eta| < 3.3$; FHCAL: $|\Delta \phi| < 2\pi$, $2 < |\eta| < 5$

NICA

MPD magnet

Magnet yoke

Cryogenic platform

Strings for cryogenic pipes and cables hold

- First cooling if the magnet to below LN2 temperature of ~ 70° K in February-March 2024
- Start of cooling to LHe temperature in October \rightarrow cooled to 4.5^o K in December 2024

Magnetic field mapper

Novosibirsk BINP magnetic field mapper

	Along radius (R)	Along azimuth angle (ϕ)	Along beam (z)
Step size, см	5	21	10
Total length, см	220	360 ⁰ (1380 см at max. R)	700
Number of measurements	44	64	70

Single 3D Hall probe moves in 3 directions: z , R, ϕ Accuracy: 0.1 – 0.3 Gs Number of points: ~ 2.10⁵ (90 hours) Fields to measure: 0.3 – 0.57 T (5-6 points) Number of tunes per field: 5 Total time of measurements: ~ 3-4 months

MPD subsystems

Support frame - READY

ECAL – 83% READY

ECAL ~ 38400 towers (2400 modules) produced by Chinese Universities (SDU, THU, FDU, SCUT, HZU) and JINR (IHEP (Protvino) and Tenzor (Dubna))

83% of calorimeter modules (~2000) is ready, remaining baskets to be ready by April 2025

TOF - READY

All 28 (100%) TOF modules are assembled, tested, stored and ready for installation. Spare modules in production

TPC - ASSEMBLY

24+ ROC ready; 100+ % FE cards manufactured TPC gas volume assembly and HV/leakage tests – ongoing TPC + ECAL cooling systems under commissioning

Forward subsystems - READY

FHCAL in the Pole (modules are equipped with FEE)

Cherenkov counters (FFD) (tests with cosmics and lasers)

MPD strategy

- ✤ High-luminosity scans in <u>energy</u> and <u>system size</u> to measure a wide variety of signals
- Scans to be carried out using the <u>same apparatus</u> with all the advantages of collider experiments
- ✤ MPD-CLD and MPD-FXT operation modes approved from start-up:

- ✓ Collider mode: two heavy-ion beams, $\sqrt{s_{NN}} = 4-11$ GeV
- ✓ Fixed-target mode: one beam + thin wire as a target (~ 50-100 μ m) :
 - extends energy range to $\sqrt{s_{NN}} = 2.4-3.5$ GeV (overlap with HADES, BM@N, CBM)
 - high event rate at lower collision energies

MPD physics program

↔ A comprehensive physics program: ions from **p** to Au and collision energies $\sqrt{s_{NN}} = 2.4-11$ GeV

 G. Feofilov, P. Parfenov Global observables Total event multiplicity Total event energy Centrality determination Total cross-section measurement Event plane measurement at all rapidities Spectator measurement 	 V. Kolesnikov, Xianglei Zhu Spectra of light flavor and hypernuclei Light flavor spectra Hyperons and hypernuclei Total particle yields and yield ratios Kinematic and chemical properties of the event Mapping QCD Phase Diag. 		 K. Mikhailov, A. Taranenko Correlations and Fluctuations Collective flow for hadrons Vorticity, Λ polarization E-by-E fluctuation of multiplicity, momentum and conserved quantities Femtoscopy Forward-Backward corr. Jet-like correlations
D. <u>Peresunko</u> , Chi Yang		Wangmei Zha, A. Zinchenko	
 Electromagnetic probes Electromagnetic calorimeter meas. Photons in ECAL and central barrel Low mass dilepton spectra in-medium modification of resonances and intermediate mass region 		 Heavy flavor Study of open charm production Charmonium with ECAL and central barrel Charmed meson through secondary vertices in ITS and HF electrons Explore production at charm threshold 	

G. Feofilov, First physics studies planned with the MPD experiment at NICA in Bi+Bi collisions at 9.2 GeV, 17 февраля, 14:45 - 15:00

Р. Gordeev, Измерение анизотропного потока и спектра нейтральных пионов в столкновениях Bi+Bi при энергии 9.2 ГэВ в MPD, 17 февраля, 15:00 - 15:15

А. Тараненко, Исследование зависимости коллективных потоков в А-А столкновениях от энергии с помощью скейлинговые соотношений, 20 февраля, 14:30-14:45

P. Parfenov, Измерение анизотропных потоков адронов в эксперименте MPD в NICA, 21 февраля, 13:45-14:00

D. Ivanishchev, Study of production of $\phi(1020)$ and charged K*(892) and Sigma(1385) in Bi+Bi collision at 9.2 GeV in the MPD at NICA, 21 февраля, 14:30-14:45

MPD feasibility studies

Physics feasibility studies using large-scale Monte Carlo productions

BM@N and MPD Collaborations

♦ BM@N: ~210 members from 13 institutions from 5 countries

- JINR
- Bulgaria
- China
- Kazakhstan
- Russia
- Uzbekistan

✤ MPD: ~500 members from 39 institutions from 12 countries

- JINR
- Armenia
- Belarus
- Bulgaria
- China
- Georgia
- Kazakhstan

- Mexico
- Moldova
- Mongolia
- Russia
- Serbia
- Slovakia

Summary

- ♦ Heavy-ion program at NICA → study of the QCD phase diagram in the region of maximum net-baryon density
- * A comprehensive physics program to be studied for different ions (from p to Au) and collision energies ($\sqrt{s_{NN}}$ from 2.4 to 11A GeV):
 - \checkmark event-by-event fluctuation of multiplicity, momentum and conserved quantities
 - \checkmark femtoscopic correlation
 - \checkmark multiparticle correlations
 - ✓ differential collective flow (v_n) for various hadrons
 - \checkmark strange meson (including resonances) and (multi)strange hyperon production
 - \checkmark light nuclei production including hypernuclei
 - \checkmark (direct)photon and (di)electron probes
 - \checkmark charge asymmetry
 - ✓ heavy flavor production
- Flagship project in the world on the study of heavy-ion collisions at intermediate energies
- More information can be found at <u>http://bmn.jinr.ru</u> and <u>http://mpd.jinr.ru</u>

Program with polarized p\uparrow and d \uparrow beams

Spin Physics Detector

The Spin Physics Detector (SPD) at the NICA collider is a universal facility for comprehensive study of polarized and unpolarized gluon content of proton and deuteron in polarized high-luminosity p-p and d-d collisions

Study the contribution of partons to the nucleon and deuteron spins

especially their gluon component!

Gluon TMD PDFs via asymmetries and angular modulations in the cross sections

SPD and gluon structure of nucleon

Not only J/ψ!

Physics goal	Observable	Experimental conditions
Gluon helicity $\Delta g(x)$	A_{LL} asymmetries	$p_L - p_L, \sqrt{s} = 27 \text{ GeV}$
Gluon Sivers PDF $f_{1T}^{\perp g}(x, k_T^2)$,	A_N asymmetries,	p_T - p , $\sqrt{s} = 27 \text{ GeV}$
Gluon Boer-Mulders PDF $h_1^{\perp g}(x, k_T^2)$	Azimuthal asymmetries	p - p , $\sqrt{s} = 27 \text{ GeV}$
TMD-factorization test	Diff. cross-sections,	p_T - p , energy scan
	A_N asymmetries	
Unpolarized gluon		<i>d-d</i> , <i>p-p</i> , <i>p-d</i>
density $g(x)$ in deuteron	Differential	$\sqrt{s_{NN}} = 13.5 \text{ GeV}$
Unpolarized gluon	cross-sections	р-р,
density $g(x)$ in proton		$\sqrt{s} \le 27 \text{ GeV}$
Gluon transversity $h_1^g(x)$	Double vector/tensor asymmetries	d_{tensor} - d_{tensor} , $\sqrt{s_{NN}} = 13.5 \text{ GeV}$
"Tensor porlarized" PDF $C_G^T(x)$	Single vector/tensor asymmetries	d_{tensor} - d , p - d_{tensor}

SPD setup

SPD and others

The SPD gluon physics program is complementary to the other intentions to study the gluon content of nuclei (RHIC, AFTER, LHC-Spin, EIC, JLab experiments, EICc, ...)

Physics of the first stage

Transition scan

Non-perturbative QCD

- Spin effects in hyperons production
- Multiquark correlations
- Dibaryon resonances
- Physics of light and intermediate nuclei collision
- Exclusive reactions
- ✤ Hypernucei
- Open charm and charmonia near threshold
- Auxiliary measurements for astrophysics

Perturbative QCD

 \sqrt{S}

- SPD physics program is available at:
 - https://arxiv.org/abs/2011.15005
 - https://arxiv.org/abs/2102.08477
- SPD Technical Design Report was presented firstly in Jan 2023, then was updated in 2024 and passed international expertise this year: <u>https://arxiv.org/abs/2404.08317</u>
- The first phase of the SPD project is included into the JINR's 7-year plan (2024-2030)
- The SPD international collaboration established in 2021 Currently it consists of 35 institutes from 15 countries and more than 400 participants
- ✤ More information can be found at <u>http://spd.jinr.ru</u>

Applied research with heavy-ion beams

The Applied Research Infrastructure for Advanced Developments at NICA fAcility

Ионные пучки низких энергий (инжектор HILAC), 3.2 МэВ/нуклон

Ионные пучки промежуточных энергий (Нуклотрон), 150-1000 МэВ/нуклон Ионные пучки высоких энергий (Нуклотрон), 4.5 ГэВ/нуклон

Радиационное материаловедение, науки о жизни и медицинские приложения; радиационные повреждения в микроэлектронике, новые технологии для задач ADS

Моделирование воздействия галактических космических лучей: протоны и ионы с Z от 2 до 92

Облучение микросхем с предварительно удаленным корпусом ионами низкой энергии ~ 3,2 МэВ/нуклон

Ионы ¹²С⁶⁺, ⁴⁰Аr¹⁸⁺, ⁵⁶Fe²⁶⁺, ⁸⁴Kr³⁶⁺, ¹³¹Xe⁵⁴⁺, ¹⁹⁷Au⁷⁹

Облучение инкапсулированных микросхем ионами с энергиями 150-350 МэВ/нуклон. Ионы вплоть до ¹⁹⁷Au⁷⁹⁺ замедляются в корпусе микросхемы до энергий 5-10 МэВ/нуклон.

Ионы с энергией 500-1000 МэВ/нуклон будут доступны для облучения биологических объектов.

Ионы ¹Н¹⁺, ²D¹⁺, ¹²С⁶⁺, ⁴⁰Ar¹⁸⁺, ⁷Li³⁺

Станция будет оборудована мишенями из материалов от С до Pb, системами диагностики пучка, позиционирования мишени, теромометрии, синхронизации, радиационного контроля, сбора и распределения данных.

Направления прикладных исследований с использованием пучков тяжелых ионов на NICA

Создание каналов и облучательных станций

В декабре 2021 года завершены работы по созданию Станции для облучения чипов (СОЧИ). Станция предназначена для облучения микросхем с предварительно уделённым корпусом пучками протонов и ускоренных ионов с *Z* от 2 до 92 низких энергий (3,2 МэВ/нуклон).

В декабре 2022 года на выходе из установки ВМ@N, был собран прототип **станции для длительного облучения образцов** ионами высоких энергий (~3,8 ГэВ/нуклон). Созданная станция позволяет использовать пучки ионов для прикладных исследований в режиме параллельной работы с установкой ВМ@N.

Научная коллаборация ARIADNA

В рамках проекта прикладные исследования на пучках комплекса NICA выполняются в соответствии с программами работ коллаборации ARIADNA, закрепленной в соглашениях о сотрудничестве (MoU) с заинтересованными организациями.

Организации, сотрудничающие в рамках коллаборации ARIADNA

- 1. Объединенный институт ядерных исследований (Дубна, Межд.)
- 2. Институт медико-биологических проблем РАН (Москва, Россия)
- Федеральный медицинский биофизический центр им. А.И. Бурназяна (Москва, Россия)

ARIADNA

- НИИ ядерной физики им. Д.В. Скобельцына Московского государственного университета им. М.В. Ломоносова (Дубна, Россия)
- 5. Санкт-Петербургский государственный университет (Санкт-Петербург, Россия)
- Медицинский радиологический научный центр имени А.Ф. Цыба (Обнинск, Россия)
- Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН (Москва, Россия)
- Институт теоретической и экспериментальной биофизики РАН (Москва, Россия)
- 9. Московский физико-технический институт (Долгопрудный, Россия)
- 10. Российский университет дружбы народов (Москва, Россия)

- 11. Институт общей и неорганической химии им. Н.С. Курнакова РАН (Москва, Россия)
- 12. Национальный исследовательский ядерный университет «МИФИ» (Москва, Россия)
- 13. Объединенный институт высоких температур РАН (Москва, Россия)
- 14. Северо-Осетинский государственный университет (Владикавказ, Россия)
- 15. Институт ядерных проблем Белорусского государственного университета (Минск, Белоруссия)
- Объединенный институт энергетических и ядерных исследований Сосны НАН Беларуси (Сосны, Белоруссия)
- 17. Институт ядерной физики АН РУз (Ташкент, Узбекистан)
- 18. Ереванский государственный университет (Ереван, Армения)
- 19. ИСИ CANDLE (Ереван, Армения)
- 20. ННЛА ЕрФИ (Ереван, Армения)
- 21. ООО «Научно-производственная компания «Квант-Р» (Москва, Россия)
- 22. ООО «С-Инновации» (Москва, Россия)
- 23. ООО «SOL-Instruments» (Минск, Беларусь)

Conclusions

- * NICA is a mega-science project, which approaches its full commissioning
- BM@N and MPD: heavy-ion program has been started in the fixed-target mode, collider collisions are expected in late 2025
- SPD: spin physics program with polarized beams is advancing to start in late 20-th
- * **ARIADNA**: applied research program is already running with new opportunities to come
- ★ Experiments at NICA are driven by international collaborations → new members are needed and welcome to fulfill the comprehensive research programs

NICA на конференции (экспериментальные доклады)

- ✤ Установки проекта NICA Андрей Бутенко
- Эксперименты на Ускорительном Комплексе NICA Виктор Рябов
- Спектры и корреляции прямых фотонов в тяжелоионных столкновениях при энергии NICA Vladislav Kuskov
- First physics studies planned with the MPD experiment at NICA in Bi+Bi collisions at 9.2 GeV Grigory Feofilov
- ♦ Измерение анизотропного потока и спектра нейтральных пионов в Bi+Bi @ 9.2 ГэВ в эксперименте MPD Pavel Gordeev
- ♦ Измерение анизотропных потоков лямбда-гиперонов в экспериментах MPD и BM@N Valerii Troshin
- ♦ Направленный поток протонов в столкновениях Xe+CsI при энергии 3.8А ГэВ на установке BM@N Mikhail Mamaev
- Изучение рождения протонов, d, t в столкновениях аргон-ядро в эксперименте BM@N на NICA Vadim Kolesnikov
- ✤ Первые результаты по измерению направленного потока дейтронов в столкновениях Xe+Cs(I) при энергии 3.8А ГэВ на эксперименте BM@N Ирина Жаворонкова
- Высокогранулярный нейтронный детектор и система передних детекторов эксперимента BM@N Николай Карпушкин
- Система сбора данных эксперимента SPD на коллайдере NICA Aleksandr Boikov
- Исследование зависимости коллективных потоков в ядро-ядерных столкновений от энергии столкновения с помощью скейлинговые соотношений - Аркадий Тараненко
- Измерение анизотропных потоков адронов в эксперименте MPD в NICA Petr Parfenov
- Comparison of different methods for centrality determination in Xe+CsI collisions at 3.8 A GeV in the BM@N experiment Dim Idrisov
- Определение центральности столкновений тяжелых ионов в эксперименте BM@N Alexander Demanov
- Study of production of phi(1020)- and charged K*(892)-mesons and charged Sigma(1385)-baryons In collision of bismuth nuclei at 9.2 GeV in the MPD experiment at NICA Dmitry Ivanishchev

BACKUP

NICA High-energy heavy-ion reaction data

- ✤ Galactic Cosmic Rays composed of nuclei (protons, ... up to Fe) and E/A up to 50 GeV
- ✤ These high-energy particles create cascades of hundreds of secondary, etc. particles

- ✤ Cosmic rays are a serious concern to astronauts, electronics, and spacecraft.
- * The damage is proportional to Z^2 , contribution of secondaries p, d, t, ³He, and ⁴He is also significant
- Need input information for transport codes for shielding applications (Geant-4, Fluka, PHITS, etc.):
 - \checkmark total, elastic/reaction cross section
 - ✓ particle multiplicities and coellecense parameters
 - ✓ outgoing particle distributions: $d^2N/dEd\Omega$

NICA High energy heavy ion reaction data

- ✤ NICA can deliver different ion beam species and energies:
 - ✓ Targets of interest (C = astronaut, Si = electronics, Al = spacecraft) + He, C, O, Si, Fe, etc.
- ♦ No data exist for projectile energies > 3 GeV/n

m² (GeV² / c⁴) 0.5 -0.5^{L}_{0} 0.52.5 1.5p/q (GeV/c) m² (GeV² / c⁴) He

1.5

 m^2 vs. momentum in TOF

MPD has excellent light fragment identification capabilities in a wide rapidity range \rightarrow <u>unique</u> <u>capability of the MPD</u> in the NICA energy range

В.Г. Рябов @ Научная сессия секции ядерной физики ОФН РАН, 2025

0.5

2.5

2

p/q (GeV/c)

Dilepton experiments

NICA Heavy-ion collisions with accelerators

BM@N Collaboration

5 Countries, 13 Institutions, 214 participants

- University of Plovdiv, Bulgaria
- St.Petersburg University
- Shanghai Institute of Nuclear and Applied Physics, CFS, China;
- Joint Institute for Nuclear Research;
- Institute of Nuclear Research RAS, Moscow
- NRC Kurchatov Institute, Moscow combined with Institute of Theoretical & Experimental Physics, NRC KI, Moscow

- Moscow Engineer and Physics Institute
- Skobeltsyn Institute of Nuclear Physics, MSU, Russia
- Moscow Institute of Physics and Technics
- Lebedev Physics Institute of RAS, Moscow
- Institute of Physics and Technology, Almaty
- Physical-Technical Institute
 Uzbekistan Academy of Sciences, Tashkent
- High School of Economics, National Research University, Moscow

Multi-Purpose Detector (MPD) Collaboration

MPD International Collaboration was established in **2018** to construct, commission and operate the detector

12 Countries, >500 participants, 38 Institutes and JINR

Organization

Acting Spokesperson: Deputy Spokespersons: Institutional Board Chair: Project Manager: Victor Riabov Zebo Tang, Arkadiy Taranenko Alejandro Ayala Slava Golovatyuk

Joint Institute for Nuclear Research, Dubna;

A.Alikhanyan National Lab of Armenia, Yerevan, Armenia; SSI "Joint Institute for Energy and Nuclear Research – Sosny" of the National Academy of Sciences of Belarus, Minsk, Belarus University of Plovdiv, Bulgaria; Tsinghua University, Beijing, China; University of Science and Technology of China, Hefei, China; Huzhou University, Huzhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; Shandong University, Shandong, China; University of Chinese Academy of Sciences, Beijing, China; University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China; Tbilisi State University, Tbilisi, Georgia; Institute of Physics and Technology, Almaty, Kazakhstan; Benemérita Universidad Autónoma de Puebla, Mexico; Centro de Investigación y de Estudios Avanzados, Mexico; Instituto de Ciencias Nucleares, UNAM, Mexico; Universidad Autónoma de Sinaloa. Mexico: Universidad de Colima, Mexico; Universidad de Sonora. Mexico: Universidad Michoacana de San Nicolás de Hidalgo, Mexico Institute of Applied Physics, Chisinev, Moldova; Institute of Physics and Technology, Mongolia;

Belgorod National Research University, **Russia**; Institute for Nuclear Research of the RAS, Moscow, **Russia**; High School of Economics University, Moscow, **Russia**; National Research Nuclear University MEPhI , Moscow, **Russia**; Moscow Institute of Science and Technology, **Russia**; North Osetian State University, **Russia**; National Research Center "Kurchatov Institute", **Russia**; Peter the Great St. Petersburg Polytechnic University Saint Petersburg, **Russia**; Plekhanov Russian University of Economics, Moscow, **Russia**; St.Petersburg State University, **Russia**; Skobeltsyn Institute of Nuclear Physics, Moscow, **Russia**; Vinča Institute of Nuclear Sciences, **Serbia**; Pavol Jozef Šafárik University, Košice, **Slovakia**