ОБЛИРАНИЯ НЕИТРОННОИ ЗВЕЗЛЬ

Никита Крамарев ГАИШ МГУ, НИЦ КИ

Доклад на конференции 70-летия В.А. Рубакова, 19 февраля 2025 года

содержание доклада

01

Модель обдирания НЗ

Последние стадии ЭВОЛЮЦИИ ДВОЙНЫХ систем НЗ-НЗ и НЗ-ЧД при разных начальных массах компонентов.

02

Наблюдательные проявления

Слабый гамма-всплеск, мощная килоновая и обильный нуклеосинтез при взрыве НЗ минимальной массы.

03

Событие 17 августа 2017 года

Первая всеканальная регистрация обдирания нейтронной звезды в двойной системе.

СЛИЯНИЕ И ОБДИРАНИЕ ДВОЙНЫХ НЗ

Blinnikov et al., Sov. Astr. Let. 10, 177-179 (1984) Blinnikov et al., Particles 5, 198-209 (2022)

ИЗМЕНЕНИЕ СТРУКТУРЫ МАЛОМАССИВНОЙ НЗ В ПРОЦЕССЕ ОБМЕНА ВЕЩЕСТВОМ

Параметры НЗ минимальной массы

 $M_{NS} \sim 0.1 M_{solar}$ $R_{NS} \sim 300 \text{ km}$

Blinnikov et al., Astr. Rep. 65, 385-391 (2021) Yudin et al., Particles 6, 784-800 (2023)

ЭНЕРГИЯ ВЗРЫВА НЗ МИНИМАЛЬНОЙ МАССЫ ~ 1 FOE

Blinnikov et al. (1990) (см. также Colpi et al. (1993) и Symiyoshi et al. (1998))	первый расчет взрыва НЗММ	$E_{exp} = 8.8 * 10^{50} erg$ $M_{min} = 0.095 M_{sol}$
Blinnikov et al. (2021)	расчет с современным УрС	$E_{exp} = 9.1 * 10^{50} erg$ $M_{min} = 0.089 M_{sol}$
Yudin (2022)	релятивистское описание	$E_{exp} = 8.7 * 10^{50} erg$ $M_{min} = 0.084 M_{sol}$
Yip et al. (2023)	учет ядерных реакций	$E_{exp} = 1.4 * 10^{50} erg$

ВЗРЫВ НЗ МИНИМАЛЬНОЙ МАССЫ

Yudin, Astr. Let. 48, 311-320 (2022)

НЕЙТРОННО-ИЗБЫТОЧНЫЕ ЯДРА ВНУТРИ НЗ

При взрыве НЗ минимальной массы также формируются:

сверхтяжелые элементы

оптический транзиент

нетепловая компонента гамма-всплеска

нейтринный сигнал

Yudin et al., Particles 6, 784-800 (2023)

КОНЕЧНАЯ РАСПРОСТРАНЕННОСТЬ ЭЛЕМЕНТОВ

МОДЕЛЬ ОБДИРАНИЯ И ПЕРВАЯ ВСЕКАНАЛЬНАЯ РЕГИСТРАЦИЯ СЛИЯНИЯ НЗ

Событие GW170817 – шестое из зарегистрированных гравитационно-волновыми антеннами LIGO-Virgo и первое, соответствующее слиянию нейтронных звезд, а не черных дыр. Гамма-всплеск GRB170817A наблюдался спустя 1.7 с после потери сигнала на GW-антеннах.

Тем самым впервые была непосредственно подтверждена связь между короткими гамма-всплесками и конечными стадиями эволюции двойных нейтронных звезд.

GRB170817A — **АНОМАЛЬНО СЛАБЫЙ ГАММА-ВСПЛЕСК**

Abbott et al., ApJL 848, L13 (2017)

ОБРЫВ СИГНАЛА GW170817 НА ~500 ГЦ

Frequency (Hz)

соответствие расстоянию между компонентами ~40 км

Abbott et al., ApJL 848, L13 (2017)

ЗАДЕРЖКА СИГНАЛА GW170817-GRB170817A B 1.7 СЕК

FIG. 7—Time evolution of a system with initial masses 0.8 and 1.3 M_{\odot} . (a) Neutrino and gravitational wave luminosities. (b) Frequency of gravitational wave. (c) Separation of components. (d) Masses of stars.

современные аналитические расчеты также предсказывают время устойчивого перетекания вещества порядка секунды

Inosities. Clark & Eardley, ApJ 215, 311-322 (1977) Kramarev & Yudin, MNRAS 525, 3306 (2023) Yudin et al., Particles 6, 784-800 (2023)

БОЛЬШАЯ МАССА ВЫБРОСА КРАСНОЙ КОМПОНЕНТЫ КИЛОНОВОЙ АТ2017GFO

Siegel, Eur. Phys. J. A 55, 203 (2019) Blinnikov et al., Astr. Rep. 65, 385-391 (2021)

СФЕРИЧЕСКАЯ СИММЕТРИЯ ВЫБРОШЕННОГО ВЕЩЕСТВА

$$\Upsilon = \frac{v_\perp - v_\parallel}{v_\perp + v_\parallel}$$

$\Upsilon = 0.00 \pm 0.02$ (1.4 день) $\Upsilon = -0.02 \pm 0.02$ (2.4 день)

Sneppen et al., Nature 614, 436-439 (2023)

ОСНОВНЫЕ ВЫВОДЫ И ПЕРСПЕКТИВЫ РАЗВИТИЯ

01

При близких массах компонентов реализуется сценарий слияния, а при большой асимметрии масс - сценарий обдирания.

02

С большой долей вероятности событие GW170817-GRB170817A произошло именно в результате обдирания H3.

03

Ожидание новых совместных регистраций гравитационных волн и электромагнитных транзиентов для улучшения теоретических моделей...

приложение

ГИДРОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ ОБДИРАНИЯ НЗ

Blinnikov et al., Particles 5, 198-209 (2022)

АККРЕЦИОННАЯ РАСКРУТКА МАССИВНОГО КОМПОНЕНТА

Blinnikov et al., Particles 5, 198-209 (2022)

МАССОВАЯ ГРАНИЦА МЕЖДУ СЦЕНАРИЯМИ **ДЛЯ ДВОЙНЫХ НЕЙТРОННЫХ ЗВЕЗД**

Ньютоновское приближение

учет коротации маломассивной НЗ

учет аккреционной раскрутки массивного компонента

Kramarev & Yudin, MNRAS 525, 3306 (2023)

МАССОВАЯ ГРАНИЦА МЕЖДУ СЦЕНАРИЯМИ ДЛЯ СИСТЕМ НЗ-ЧД: УЧЕТ ЭФФЕКТОВ ОТО

Kramarev et al., Astr. Let. 50, 302-316 (2024)

ПОПУЛЯЦИОННЫЕ РАСЧЕТЫ ДОЛИ ЧИСЛА СИСТЕМ, ГДЕ РЕАЛИЗУЕТСЯ МЕХАНИЗМ ОБДИРАНИЯ НЗ

Обдирание H3 реализуется в 50-90% случаев в зависимости от используемых модельных предположений эволюции тесных двойных систем.

Kramarev et al., Astr. Let. 50, 302-316 (2024)

РОТАЦИОННЫЙ МЕХАНИЗМ ИМШЕННИКА

Блинников и др., УФН 186, 879-890 (2016)