One-loop corrections to the E-type α -attractor models of inflation and primordial black hole production

based on arXiv:2502.00628v2

Daniel Frolovsky

Tomsk State University

February 17, 2025

PBHs may

- contribute to the dark matter in our universe [Carr, 1975; Chapline, 1975]
- generate the large-scale structure [Meszaros, 1975]
- provide seeds for the supermassive black holes [Carr & Rees, 1984]
- explain future gravitational wave observations [Acquaviva et al., 2004]

Starting from the 1980's, many PBHs formation mechanisms were proposed [Khlopov & Polnarev, 1980], [Berezin, Kuzmin, Tkachev, 1983], [Hawking, 1989], [Dolvgov & Silk, 1993].

In the most studied scenario PBHs come from large fluctuations generated by inflationary dynamics [Ivanov, Naselsky, Novikov, 1994].

Inflationary dynamics

The action for canonical single-field models of inflation reads

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left(\frac{1}{2} R - \frac{1}{2} \left(\partial_\mu \phi \right)^2 - V(\phi) \right) \ , \quad c = \hbar = M_{\mathsf{PI}} = 1 \ , \tag{1}$$

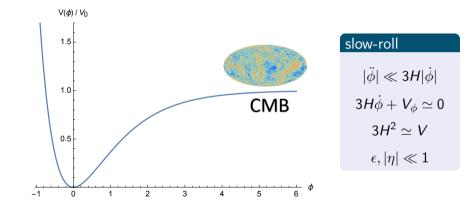
where ϕ is the inflaton field, and $V(\phi)$ is its potential. The Hubble rate, $H \equiv \dot{a}/a$, and ϕ satisfy the equations

$$\ddot{\phi} + 3H\dot{\phi} + V_{\phi} = 0$$
, $3H^2 = \frac{1}{2}\dot{\phi}^2 + V(\phi)$, (2)

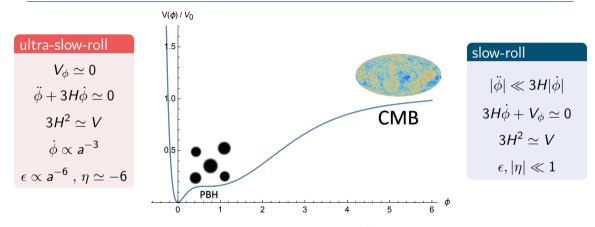
and the first and the second Hubble flow parameters are defined by

$$\epsilon \equiv -\frac{\dot{H}}{H^2} = \frac{1}{2} \frac{\dot{\phi}^2}{H^2} , \quad \eta \equiv \frac{\dot{\epsilon}}{H\epsilon} .$$
(3)

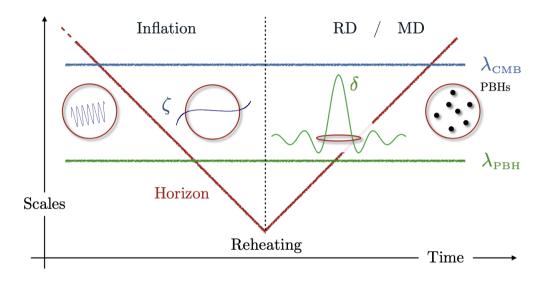
Inflationary dynamics I



Inflationary dynamics II



The curvature perturbation in the comoving gauge, $\zeta_k(t)$, can be expressed in terms of the Mukhanov–Sasaki variable, v_k , as $\zeta_k \equiv v_k/z$, where $z \equiv a\dot{\phi}/H$. Thus, $\zeta_k \propto a^3$.



[Franciolini, 2021]

Our model

The basic α -attractor models are divided into two types depending upon the global shape of the inflaton scalar potential,

E-type:
$$V \sim \left(1 - \exp\left(-\sqrt{\frac{2}{3\alpha}} \frac{\phi}{M_{\rm Pl}}\right)\right)^2$$
, and T-type: $V \sim \tanh^2 \frac{\phi/M_{\rm Pl}}{\sqrt{6\alpha}}$. (4)

The E-type potential can be modified to include PBH production [DF, Ketov, 2023] as

$$V(\phi) = \frac{3}{4} M^2 M_{\rm Pl}^2 \left[1 - y - \theta y^{-2} + y^2 (\beta - \gamma y) \right]^2, \quad y = \exp\left(-\sqrt{\frac{2}{3\alpha}} \phi/M_{\rm Pl}\right).$$
(5)

This potential can be rewritten in terms of the new dimensionless parameters

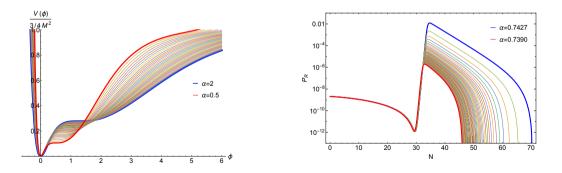
$$\beta = \frac{\exp\left(\sqrt{\frac{2}{3\alpha}}\phi_i\right)}{1 - \sigma^2} \quad \text{and} \quad \gamma = \frac{\exp\left(2\sqrt{\frac{2}{3\alpha}}\phi_i\right)}{3(1 - \sigma^2)} . \tag{6}$$

Two extrema are symmetrically located around the inflection point y_i as $y_{ext}^{\pm} = y_i (1 \pm \sigma)$.

The power spectrum of scalar perturbations in the slow-roll approximation is

$$\mathcal{P}_R = \frac{H^2}{8\pi^2\epsilon} \ . \tag{7}$$

It is of primary interest when calculating the observable predictions of an inflation model.



One-loop corrections (1LC)

The primordial power spectrum is related to the 2-point correlator of curvature perturbations in Fourier space,

$$\langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'} \rangle = (2\pi)^3 \delta(\mathbf{k} + \mathbf{k}') P_{\zeta}(k) , \quad \mathcal{P}_{\zeta}(k) = \frac{k^3}{2\pi^2} P_{\zeta}(k) .$$
 (8)

Contributions to $\mathcal{P}_{\zeta}(k)$ can be organized into the loop-expansion, where the n^{th} -loop term contains n unconstrained momentum integrations,

$$\mathcal{P}_{\zeta}(k) = \mathcal{P}_{\zeta}(k)_{\text{tree}} + \mathcal{P}_{\zeta}(k)_{1-\text{loop}} + \ldots + \mathcal{P}_{\zeta}(k)_{\text{n-loop}} .$$
 (9)

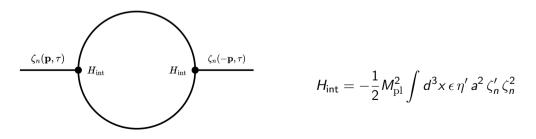
- [Kristiano, Yokoyama, Constraining PBH formation from single-field inflation, 2022]
- [Riotto, The PHB formation from single-field inflation is not ruled out, 2023]
- [Kristiano, Yokoyama, Note on the bispectrum and 1LC in single-field inflation with PBH formation, 2024]
- [Riotto, The PBH formation from single-field inflation is still not ruled out, 2024] [and many more].

In the in-in formalism, the expectation value of an operator ${\cal O}$ at time au is

$$\langle \mathcal{O}(\tau) \rangle = \left\langle \left[\bar{T} \exp\left(i \int_{-\infty(1+i\epsilon)}^{\tau} \mathrm{d}\tau' \mathcal{H}_{\mathrm{int}}(\tau') \right) \right] \mathcal{O}(\tau) \left[T \exp\left(- i \int_{-\infty(1-i\epsilon)}^{\tau} \mathrm{d}\tau' \mathcal{H}_{\mathrm{int}}(\tau') \right) \right] \right\rangle.$$

To compute 1LC, we set $\mathcal{O}(\tau) = \zeta(\mathbf{p}, \tau)\zeta(-\mathbf{p}, \tau)$, where **p** is the comoving wavenumber at large scale where we want to compute the correction,

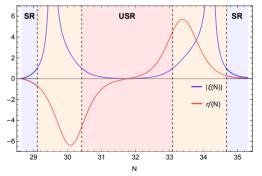
$$\langle \zeta(\mathbf{p}, \tau) \zeta(-\mathbf{p}, \tau) \rangle_{1-\text{loop}} = (2\pi)^3 \delta(\mathbf{p} - \mathbf{p}) P_{\zeta}(\mathbf{p}; \tau)_{1-\text{loop}} .$$
(10)



For a numerical calculation of 1LC to the scalar power spectrum, we adopted the result from [Davies, lacconi, Mulryne, 2024] that takes into account cubic interactions,

$$\mathcal{P}_{\zeta}(\boldsymbol{p};\boldsymbol{N})_{1-\text{loop}} = \frac{p^{3}}{\pi^{4}} \int_{N_{i}}^{N_{i}} dN_{1} \,\epsilon(N_{1}) \frac{d\eta(N_{1})}{dN_{1}} (\boldsymbol{a}(N_{1}))^{2} \int_{N_{i}}^{N_{1}} dN_{2} \,\epsilon(N_{2}) \frac{d\eta(N_{2})}{dN_{2}} (\boldsymbol{a}(N_{2}))^{2} \\ \int_{k_{s}}^{k_{e}} dk \, k^{2} \,\text{Im} \left[\zeta_{\boldsymbol{p}}(\boldsymbol{N}) \,\boldsymbol{a}(N_{1}) \,\boldsymbol{H}(N_{1}) \,\boldsymbol{a}(N_{2}) \,\boldsymbol{H}(N_{2}) \, \frac{d}{dN_{2}} \left[\zeta_{\boldsymbol{p}}^{*}(N_{2}) (\zeta_{\boldsymbol{k}}^{*}(N_{2}))^{2} \right] \\ \left\{ \zeta_{\boldsymbol{p}}^{\prime}(\boldsymbol{N}) \frac{d}{dN_{1}} \left[\zeta_{\boldsymbol{p}}^{R}(N_{1}) (\zeta_{\boldsymbol{k}}(N_{1}))^{2} \right] - \zeta_{\boldsymbol{p}}^{R}(\boldsymbol{N}) \, \frac{d}{dN_{1}} \left[\zeta_{\boldsymbol{p}}^{\prime}(N_{1}) (\zeta_{\boldsymbol{k}}(N_{1}))^{2} \right] \right\} \right].$$

$$(11)$$



The standard Hubble-flow parameters are

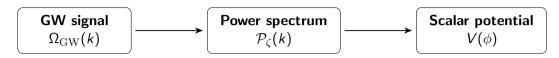
$$\epsilon_{i+1} = \epsilon'_i / \epsilon_i , \quad \epsilon_0 = H^{-1} .$$
 (12)

To distinguish the different phases of inflation and compute 1LC, we used

$$\epsilon \equiv \epsilon_1 , \quad \eta \equiv \epsilon_2 , \quad \xi \equiv \epsilon_3 .$$
 (13)

To determine the transition periods, we used the condition $|\xi| \ge 1$.

Reconstruction of scalar potential from GW signal



The present GW energy density computed in the second order is given by

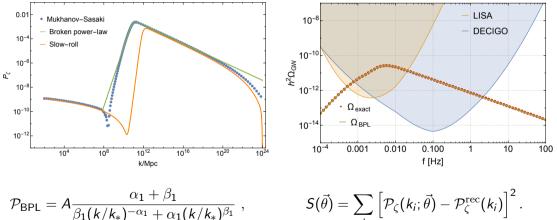
$$\frac{\Omega_{\rm GW}(k)}{\Omega_r} = \frac{c_g}{72} \int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} \mathrm{d}\, d \int_{\frac{1}{\sqrt{3}}}^{\infty} \mathrm{d}\, s \left[\frac{\left(s^2 - \frac{1}{3}\right) \left(d^2 - \frac{1}{3}\right)}{s^2 + d^2} \right]^2 \mathcal{P}_{\zeta}(kx) \, \mathcal{P}_{\zeta}(ky) \left(l_c^2 + l_s^2\right) \,, \quad (14)$$

where $x = \frac{\sqrt{3}}{2}(s+d)$, and $y = \frac{\sqrt{3}}{2}(s-d)$, and the functions I_c and I_s are given by

$$I_{s} = -36 \frac{s^{2} + d^{2} - 2}{\left(s^{2} - d^{2}\right)^{2}} \left[\frac{s^{2} + d^{2} - 2}{s^{2} - d^{2}} \log \left| \frac{d^{2} - 1}{s^{2} - 1} \right| + 2 \right], \ I_{c} = -36 \pi \frac{\left(s^{2} + d^{2} - 2\right)^{2}}{\left(s^{2} - d^{2}\right)^{3}} \theta(s-1),$$

see [Espinosa, Racco, Riotto, 2018], and [Kohri & Terada, 2018].

The procedure of reconstruction is ambiguous. Nevertheless, it is possible to systematically identify the power spectra corresponding to a specific GW energy density curve [DF, Kühnel, Stamou, 2024], [LISA Cosmology Working Group, 2025].



Our results

The key observables and the relative values of the 1LC in our model:

E-Model	ns	r	h	$\Delta N_{\rm USR}$	M_{PBH}, g	$\mathcal{P}_{\zeta}(k_{peak})$	δ_{1L} , %
Set 1	0.9649	0.01466	-1.472	2.674	$2.2 \cdot 10^{21}$	10^{-3}	1.31
Set 2	0.9649	0.01685	-1.435	2.838	$7.1 \cdot 10^{22}$	$0.5 \cdot 10^{-2}$	2.96
Set 3	0.9649	0.014323	-1.471	2.687	$4.6\cdot10^{18}$	10^{-3}	1.33

The CMB tilts n_s and r, the sharpness parameter h, the USR phase duration ΔN_{USR} , the PBH masses M_{PBH} , the peak amplitude $\mathcal{P}_{\zeta}(k_{\text{peak}})$, and the relative 1LC $\delta_{1\text{L}}$ for the different parameter sets

- The 1LC in our E-model does not exceed a few percent, being primarily depending upon the amplitude of the peak in the scalar power spectrum
- The inverse reconstruction of the parameters in the E-model demonstrates its potential as a reasonable framework for interpreting future GW observations

The E-model of inflation and PBH production is constrained (fine-tuned) but not ruled out by CMB measurements and one-loop corrections

Thank you for your attention!