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Quantum Theory vs General Relativity
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collapsingmatter
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Apparent violation of unitarity:

ρ̂in = |Ψin⟩⟨Ψin| 7→
ρ̂out = TrBH (|Ψext⟩|ΨBH⟩⟨ΨBH |⟨Ψext |)

Tr(ρ̂2out) < 1 Danger to quantum laws!

This is information paradox.

S.W. Hawking, 1976
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Quantum Theory vs General Relativity

Pro-unitary arguments:

Black hole complementarity

Susskind et al.

Remnants/baby universes
Holography: gauge/string duality (AdS/CFT)

Maldacena et al.

Islands: unitary Page curve - MAIN FOCUS HERE

1911.12333 [hep-th] Almheiri, 1905.08255 [hep-th] Pennington ...

Problems?

AMPS-�rewall: unitarity vs equivalence principle.

Almheiri et al.

Dynamics: S-matrix derivation.

ArXiv:gr-qc/9607022 't Hooft

Microscopic: fundamental dofs in Quantum Gravity.
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Toy models

CGHS model

S =

∫
d2x

√−g

[
e−2ϕ

(
R+4(∇ϕ)2+4λ2

)
− 1

2
(∇f )2

]
ArXiv:9111056 [hep-th] C. Callan, S. Giddings, J. Harvey, A. Strominger, 1991

In the bulk: ds2 = −e2ϕdvdu,
f (v , u) = fout(u) + fin(v)

e−2ϕ = −λ2vu − T (v)−H(u)

∂2vT = (∂v fin)
2/2, ∂2uH = (∂ufout)

2/2

Eternal black hole metric: linear ϕ = −λr ,

ds2 = −f (r)dt2 + f −1(r)dr2 ,

f (r) = 1− M

2λ exp(2λr)
.
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Models

Sinh-CGHS model

Ssinh = −Mext

2λ

∫
d2x

√−g sinh(2ϕ)
(
R + 4(∇ϕ)2 + 4λ2

)
ArXiv:2202.00023 [gr-qc] M.F.

Regular black holes: linear ϕ = −λr ,

ds2 = −f (r)dt2 + f −1(r)dr2 ,

f (r) = 1− M

Mext cosh(2λr)
.

Motivation:

Limiting curvature Rµνρσ
2 < Λ2.

Markov, 2111.14318 [gr-qc] Frolov ...

Other models: Bardeen's black hole, black
bounces, planck stars...

1812.07114 Visser, 1802.04264 Rovelli...

λr−4 −3 −2 −1 1 2 3 4

f(r)

1

λr−4 −3 −2 −1 1 2 3 4

R/λM

0.5

−1

(a)

(b)

Fitkevich Ì.D. (INR RAS & MIPT) Entanglement islands in regular black holes 2025 February 17, Moscow 5 / 21



Thermodynamic properties

Euclidean solution

dsE
2 = f (r)dtE

2 +
dr2

f (r)
, 0 ≤ tE < βH ,

has imaginary time period

βH = TH
−1 = 4π/f ′(rh)

⇐ no conifold singularity at r = rh.

Regular black hole temperature and entropy

SBH =
2π

λ
M

√
1− M2

ext

M2

TH =
λ

2π

√
1− M2

ext

M2

Sinh-CGHS reduces to CGHS in Mext → 0.
M

TH

λ/2π

0 Mext
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Entropy from entanglement island

Hawking's semiclassical answer (for R ∪ R∗):

Ṡent ≃ 2πNT/3 , at rO → +∞ , ⇒ Sent ≤ 2SBH

- in violation of the Bekenstein bound.

Island formula for black hole entropy

Sgen[R] = min
I

ext
∂I

(Sgrav[∂I ] + Sent[R ∪ I ])

I RR

OQ
_

Q
O
_

_

For linear dilaton CGHS W (ϕ) = e−2ϕ and sinh-CHGS W (ϕ) = −Mext

2λ sinh(2ϕ)

Sgen = 8πW (−λrQ) +
N

3
log(ϵ−2(vO − vQ)(uQ − uO)) +

N

3
(ρO + ρQ)

where ρ is metric factor: ds2 = −e2ρdvdu. Vary Sgen with respect to tQ and rQ .
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Quantum Extremal Point and Sent in CGHS model

Position of QEP

M

rQ

N M

Entanglement entropy

M

S

N M

Horizon at rhor(M) = 1
2λ ln(M/2λ) (black dashed)

Position of QEP at �nite rO (blue line)
Position of QEP at rO → +∞ (red line)

1. rQ ≃ rhor(M) , M > MN ,

where MN =
Nλ

24π

2. rQ ≃ rhor(MN) , M < MN

Zero entropy for lightest black hole: S0
ent(0) = 0

Analytic answer at rO → +∞

1. Sent =
2π

λ
M− N

12
(ln(M/MN) + 1) , M > MN

2. S0
ent(M) = 0 , M < MN
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Quantum Extremal Point and Sent in sh-CGHS model

Position of QEP

M

r

ext M

Q

Entanglement entropy

M

S

ext MMN

Position of QEP at �nite rO (blue line)
QEP at rO → +∞ and horizon at (red line)

rhor(M) = 1
2λ ln

(
M/Mext +

√
(M/Mext)

2 − 1

)
Extremal hole is heavy Mext > MN . At �nite rA its
entropy diverges!

Sent ≃
4π

λ

Mext

λrO
, M → Mext

What if far observer can not distinguish CGHS and
sh-CGHS, Sent(M)/S0

ent(M) ≃ 1 as M → +∞,

Sent ≃
c

6
ln

(
MN

M −Mext

)
+ . . . ,

Minimal entropy at Mqb ≃ Mext + 2M2
N/Mext,

Smin ≃ N

6
(1 + ln(Mext/MN)− 2MN/Mext))
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Law of evaporation

2D Stefan�Boltzmann

dM

dt
= − π

12
T 2
H(M)

⇒ averaged mass function

M(t) +
Mext

2
log

(
M(t)−Mext

M(t) +Mext

)
= M0 −

λ2t

48π

with initial value M0 ≫ Mext.

Fluctuations of Hawking �ux

⟨: ∆T̂tr :⟩ = O(1)⟨: T̂tr :⟩

on timescale O(M)

gr-qc/9905012 Wu, Ford

t

〈M(t)〉1

M0

0

Mext
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Remnants formation

2D Stefan�Boltzmann

dM

dt
= − π

12
T 2
H(M)

⇒ asymptotically

M ≃ Mext

(
1 + exp

(
− λ2t

24πMext

))
i.e. remnant is formed.

Fluctuations of Hawking �ux

⟨: ∆T̂tr :⟩ = O(1)⟨: T̂tr :⟩

on timescale O(M)

gr-qc/9905012 Wu, Ford

t

〈M(t)〉1

M0

0

Mext

i0

i′0

i+

i0

i−

remnant

m
atter
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Remnants formation decay

2D Stefan�Boltzmann

dM

dt
= − π

12
T 2
H(M)

⇒ asymptotically

M ≃ Mext

(
1 + exp

(
− λ2t

24πMext

))
i.e. remnant is formed.

Fluctuations of Hawking �ux

⟨: ∆T̂tr :⟩ = O(1)⟨: T̂tr :⟩

on timescale O(M)

gr-qc/9905012 Wu, Ford

t

〈M(t)〉2

M0

0

Mext

i+

i′0

i−

i0

m
atter
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Remnants formation decay

t

〈M(t)〉2

M0

0

Mext

M ≃ Mext

(
1 + exp

(
− λ2t

24πMext

))

From �uctuations theory

⟨(∆M)2⟩ = −∂⟨E ⟩
∂β

≃ λ2

Mext
O(1)

assuming ∆M ≪ Mext.

Thermal estimate

tdec ≃ 48π
Mext

λ2
log

(
Mext

λ

)

Adiabaticity condition: change in mass is negligible

T
∂T

∂M
≪ T ⇒ T

∂S

∂T
≫ 1 ⇒ T ≫ λ2

4π2Mext

We need quantum treatment of remnant decay.

Fitkevich Ì.D. (INR RAS & MIPT) Entanglement islands in regular black holes 2025 February 17, Moscow 13 / 21



Remnants formation decay

t

〈M(t)〉2

M0

0

Mext

M ≃ Mext

(
1 + exp

(
− λ2t

24πMext

))

From �uctuations theory

⟨(∆M)2⟩ = −∂⟨E ⟩
∂β

≃ λ2

Mext
O(1)

assuming ∆M ≪ Mext.

Thermal estimate

tdec ≃ 48π
Mext

λ2
log

(
Mext

λ

)

Adiabaticity condition: change in mass is negligible

T
∂T

∂M
≪ T ⇒ T

∂S

∂T
≫ 1 ⇒ T ≫ λ2

4π2Mext

We need quantum treatment of remnant decay.

Fitkevich Ì.D. (INR RAS & MIPT) Entanglement islands in regular black holes 2025 February 17, Moscow 13 / 21



Remnants formation decay

t

〈M(t)〉2

M0

0

Mext

M ≃ Mext

(
1 + exp

(
− λ2t

24πMext

))

From �uctuations theory

⟨(∆M)2⟩ = −∂⟨E ⟩
∂β

≃ λ2

Mext
O(1)

assuming ∆M ≪ Mext.

Thermal estimate

tdec ≃ 48π
Mext

λ2
log

(
Mext

λ

)

Adiabaticity condition: change in mass is negligible

T
∂T

∂M
≪ T ⇒ T

∂S

∂T
≫ 1 ⇒ T ≫ λ2

4π2Mext

We need quantum treatment of remnant decay.

Fitkevich Ì.D. (INR RAS & MIPT) Entanglement islands in regular black holes 2025 February 17, Moscow 13 / 21



What try to do

Either regularize classical solutions or modify �eld equations to make black hole
decay.

Complex saddle points:

S 7→ S + iϵT T − “interaction time′′

Amplitude : A = lim
ϵ→+0

Aϵ

Levkov, Panin et al (ϵ�regularization)

Real EFT solutions:

S 7→ S +
N

96π

∫
R
1

□
R , (1−loop effective action)

Example: Bardeen black hole, arXiv: 2405.13373
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Looming problem

Alice and Bob perform quantum
cloning...

...but singularity prevents their
attempts

Quantum xerox/cloner paradox:

|ψ⟩ 7→ |ψ⟩|ψ⟩ - forbidden

Wooters, Zurek (1982)

but black holes seems to do exactly this

Solution (?): complementarity

with scrambling time tscr ∼ T−1
H ln SBH

Page, Preskill et al.
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Looming problem

But it literally can be in�nite for regular solutions!

Vaydia : ds2 = −
(
1− M(v)

Mext cosh(2λr)

)
dv2 + 2dvdr , M(v) - Bondi mass

Geodesics chart:

r v

boundary / potential

m
at

te
r

decay

Instead hitting the singularity the matter accumulates near the inner horizon.

Obstacle to perturbative/numerical analysis is mass in�ation.
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Far from conclusion

Black hole information puzzle:

Progress: holography (AdS/CFT), replica wormholes (island formula, Page
curve).
Missing: quantum dynamics, S-matrix, microdescription.

Toy model with regular black holes was investigated:

Islands do not reproduce unitary Page curve in quasi�stationary situations.
Singularity removal does not automatically save unitarity.

What next:

Model with one�loop corrections: numerical solutions for black hole decay.
Regularization: tunneling solutions.
Use them both to test unitarity∫

Dc∗k Dck e−
∫
dk c∗k ck ⟨b|Ŝ†|c⟩⟨c|Ŝ |a⟩ = ⟨b|a⟩ ,

where path integrals for the S�matrix are evaluated using saddle points
method.
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Thank you!
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