
Blinking Islands for Black Holes in Cavities

Timofei Rusalev, Steklov Mathematical Institute

based on arXiv:2311.16244, PRD’ 25
with D. Ageev, I. Aref’eva

Session-conference of the Nuclear Physics Section of the Physical
Sciences Department of the Russian Academy of Sciences, dedicated

to the 70th anniversary of V.A. Rubakov

February 18, 2025



Main idea and result

The information paradox for black holes is one of the fundamental
problems in the union of gravity and quantum theory, starting with
seminal paper [Hawking ’76] after the discovery of Hawking
radiation [Hawking ’74]

Is the island approach [Almheiri et al. ‘19, ‘20, Penington ‘20] the solution
to information paradox?

Placing a black hole in a cavity (box) is known to be a natural way
to study IR scales in gravity, the thermodynamic instability etc.
[Hawking ’76, Page ‘80, York ’86, . . . ]

We consider the dynamics of the entanglement entropy within island
prescription for Hawking radiation in the generalization of the two-
sided Schwarzschild black hole [Hashimoto-Iizuka-Matsuo ’20] by intro-
ducing reflective boundaries (BCFT2 techniques)
We found a universal effect induced by the boundary presence, which
we call “blinking” island – the disappearance of the island for a finite
time interval, that for large cavity leads to non-unitary evolution
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Introduction: information paradox

The information paradox – a (possible) violation of the
unitary evolution of closed systems containing black holes,
taking into account quantum effects, where unitary

𝜌tot(tf ) = U𝜌tot(t0)U
†, UU† = U†U = 1

Important: unitary evolution implies pure state → pure state

if 𝜌tot(t0) = 𝜌2
tot(t0), then 𝜌tot(tf ) = 𝜌2

tot(tf ) for all tf > t0

We consider a system “black hole + Hawking radiation”, which
at t0: 𝜌tot(t0) = 𝜌2

tot(t0) (pure state)
if at tf > t0: 𝜌tot(tf ) ̸= 𝜌2

tot(tf ) (mixed state)
then there is an information paradox (non-unitary evolution)
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Introduction: Entanglement Entropy

Total system A ∪ B is described by 𝜌tot and divided into A and B

ℋtot = ℋA ⊗ℋB , 𝜌A = Tr
ℋB

𝜌tot , 𝜌B = Tr
ℋA

𝜌tot

The entanglement entropies of the subsystems are defined as

S(X ) ≡ SvN(𝜌X ) = −Tr 𝜌X log 𝜌X , where X = A, B

Basic properties
1 𝜌tot = 𝜌2

tot (pure state) ⇔ SvN(𝜌tot) = 0 ⇒ S(A) = S(B)

2 |S(A)− S(B)| ≠ 0 ⇒ SvN(𝜌tot) > 0 ⇒ 𝜌tot ̸= 𝜌2
tot (mixed state)

3 SvN(𝜌X ) ≤ S therm(𝜌X ) (thermod. entropy is always BIGGEST)

If S(A) > S therm(𝜌B) ⇒ 𝜌tot ̸= 𝜌2
tot (mixed state)
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Introduction: Bipartition

Total system “Hawking radiation (R) + black hole (BH)”

ℋtot = ℋR ⊗ℋBH

Entanglement entropies S(R), S(BH), thermodynamic entropy

S therm
BH =

Area(horizon)
4G

Black Hole

is horizon

is cutoff

"gravity is weak"

''Radiation''

''Black Hole''
after which

system

system
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Introduction: information paradox via EE

Recall that we assume 𝜌tot(t0) = 𝜌2
tot(t0). If ∃ tf > t0:

SRad(tf ) > S therm
BH (tf ) ⇒ 𝜌tot(tf ) ̸= 𝜌2

tot(tf ) (mixed state)

t

Incorrect behaviour — paradox

t t t

Correct behaviour — Page curve

t t

“Hawking curve”: monotonic increase in entropy, exceeding
the upper limit at t > tpage → unitarity violation
“Page curve”: at tpage the growth is replaced by a
monotonic decrease to zero entanglement entropy, pure
state at tevap → unitary behavior

6 / 27



Introduction: island formula

The ”island formula” for entanglement entropy of quantum field theory in
gravitational systems for R ⊂ Σ, where ℋtot = ℋR ⊗ℋR̄ , R̄ = Σ/R

S(R) ≃ min
ℐ

{︂
ext
ℐ

[︂
Area(𝜕ℐ)

4G
+ Ssemi−class(R ∪ ℐ)

]︂}︂
[Almheiri et al. ‘19, ‘20, Penington ‘20, Penington et al. ‘22]
where

Σ – spacelike Cauchy surface (e.g. constant time surface t = const)
ℐ ⊂ R̄ – ”island”, defined by extremization, 𝜕ℐ – its boundary
Ssemi−class – entanglement entropy of QFT on the classical background

is horizon

is cutoff

"gravity is weak"

''Radiation''

after which
system

Island
is boundary

of island
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Schwarzschild black hole

The metric of the four-dimensional Schwarzschild black hole (BH) is

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dΩ2

2, f (r) = 1 − rh
r

rh = 2GM is the horizon, M is BH mass, G is gravitational constant

Introducing Kruskal coordinates

U = − 1
𝜅h

e−𝜅h(t−r*(r)), V =
1
𝜅h

e𝜅h(t+r*(r))

with the tortoise coordinate r*(r) = r + rh log |r − rh|/rh and the
surface gravity 𝜅h = 1/2rh, we can rewrite the metric in the form

ds2 = −e2𝜌(r)dUdV + r2dΩ2, e2𝜌(r) =
rh
r
e−r/rh

Eternal (two-sided) black hole: the maximal analytic extension of
spactime to −∞ < U,V <∞ with constraint UV < 4r2

h
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Schwarzschild black hole

Kruskal diagram of Lorentzian Schwarzschild spacetime is

Outlook Main Results

REMOVE

singularity r =
0

t = constant

r = constant

t = 0

r = 2GM
t = +1

�

r = 2GM
t = �1

�

⇢
r = 2GM
t = �1

⇢
r = 2GM
t = +1

U
V

III I

II

IV
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Eternal Schwarzschild black hole

The mass of a black hole is constant, M = const,
thermodynamic equilibrium with radiation

Thermofield double state (TFD)

|Ψ⟩ =
∑︁
n

e−𝛽En/2|n⟩L|n⟩R ,

where |n⟩L,R are the eigenstates with energy En of the
matter theory Hamiltonian HL,R in the left/right wedges

Time evolution is upward in both left and right wedges

Htot = HL + HR .

TFD under Htot is time-dependent!
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s-wave approximation (Hashimoto et al. ’20)

The massless field Φ(x𝜇) on a spherically symmetric background of
d = 4 spacetime (for instance, Schwarzschild) is decomposed into
spherical harmonics: Φ(r , t, 𝜃, 𝜙) =

∑︀
l,m Ylm(𝜃, 𝜙)fl(r , t)

There is a set of effective 2D theories with masses m2 ≃ l(l + 1)

The lowest harmonic with l = 0 (s-mode) corresponds to the effec-
tive massless 2D theory of matter and it is the largest part of the
Hawking radiation away from the horizon

Discarding l > 0 modes, we assume that s-mode corresponds to
conformal theory (CFT) and entanglement entropy of this theory
approximates the entropy of the original 4D problem

s-wave approximation [Hashimoto-Iizuka-Matsuo ’20]

We consider CFT2 on a two-dimensional part of Schwarzschild spacetime

ds2 = −e2𝜌(r)dUdV , e2𝜌(r) =
rh
r
e−r/rh
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Schwarzschild without boundary (Hashimoto et al. ’20)

S(R) ≃ min
ℐ

{︂
ext
ℐ

[︂
Area(𝜕ℐ)

4G
+ Smatter (R ∪ ℐ)

]︂}︂
= min

ℐ

{︁
ext
ℐ

Sgen(ra, ta)
}︁

Entanglement region (orange) is located in both exteriors
R = R− ∪ R+ =

(︀
i0L , b−] ∪ [b+, i

0
R

)︀
, b+ = {rb, tb}, b− = {rb,− tb}

Island configuration (magenta) extends between both exteriors
ℐ = [a−, a+], a+ = {ra, ta}, a− = {ra,− ta}
Evolution is upward in both exteriors with Htot = HL + HR for TFD
Parameters (ra, ta) of the island ℐ are determined by extremization

ext
𝜕ℐ

Sgen :

{︃
𝜕raSgen(ra, ta) = 0
𝜕taSgen(ra, ta) = 0

12 / 27



Schwarzschild without boundary (Hashimoto et al. ’20)

tt

ℐ = ∅ : Sℐ=∅(R) =
c

6
log

[︂
16r2

h (rb − rh)

𝜀2rb
cosh2 tb

rh

]︂
≃

tb≫rh

c tb
6rh

(red)

ℐ ≠ ∅ : Sℐ(R) ≃ 2𝜋r2
h

G
+

c

6

[︂
log

(︂
16r3

h (rb − rh)
2

𝜀4rb

)︂
+

rb − rh
rh

]︂
(green)

Island rule: at each moment t = tb we need to choose the smallest entropy

Note: Sℐ(R) ≃ S therm
BH = 2𝜋r2

h /G only in the approximation cG/r2
h ≪ 1

(neglect of backreaction), island provides consistent behaviour with unitarity
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Introducing of boundaries

Geometry with a spherically symmetric boundaries:
double-boundary geometry with a boundary at r = r0 > rh
in the left and right exteriors

22 23 24

We assume thermodynamic
stable equilibrium at all times

Loss due to Hawking radiation is com -
pensated by reflection from the walls

Quantum state - generalization of TFD

Schwarzschild with walls - an analogue
of AdS - Schwarzschild?
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BCFT2 on upper half-plane

Simplest BCFT2 geometry – Euclidean flat upper half-plane (UHP)

22 23 24

boundary

sp
at

ia
l h

al
f-

lin
e

ds2 = dx2
1 + dx2

2 = dzdz̄ , z = x1 + ix2, x1 ∈ (−∞,∞), x2 ≥ 0

Here x1 is Euclidean time, x2 is the spatial coordinate, x2 = 0 is boundary
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BCFT2 on upper half-plane

We consider regions R consisting of union of intervals

R = [za1 , zb1 ] ∪ . . . ∪ [zam , zbm ]

Entanglement entropy in replica trick framework [Callan, Wilczek ’94]

S(R) = −Tr(𝜌R log 𝜌R) = − lim
n→1

1
n − 1

log (Tr 𝜌nR)

where 𝜌R = TrR̄ 𝜌tot, and 𝜌tot is vacuum state on UHP

Tr 𝜌nR = ⟨𝜑(za1 , z̄a1)
̃︀𝜑(zb1 , z̄b1) . . . 𝜑(zam , z̄am)

̃︀𝜑(zbm , z̄bm)⟩b.c.UHP

The twist operators are primary with hn = h̄n = c/24(n − 1/n) for
bulk and hn = h̄n = 0 for boundary insertions [Calabrese, Cardy ’04]

22 23 24
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BCFT2 of free Dirac fermions

We consider c copies of two-dimensional free massless Dirac fermions
with perfectly reflecting boundary conditions

𝜓 =

(︂
𝜓1(x1, x2)
𝜓2(x1, x2)

)︂
=

(︂
𝜓1(z)
𝜓2(z̄)

)︂
;

b.c.⏞  ⏟  
𝜓1(x1, 0) = 𝜓2(x1, 0), x1 ∈ (−∞,∞)

22 23 24

The EE of R = [za1 , zb1 ]∪ . . .∪ [zam , zbm ] [Kruthoff et. al ’21, Rottoli et. al ’23]

S(R) =
c

3

m∑︁
i,j=1

log |zai − zbj | −
c

3

m∑︁
i<j

log |zai − zaj ||zbi − zbj | −m log 𝜀

+
c

6

m∑︁
i,j=1

log |zai − z̄aj ||zbi − z̄bj | −
c

6

m∑︁
i,j=1

log |zai − z̄bj ||zbi − z̄aj |
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BCFT2 on a curved spacetime

What if the domain 1) is not UHP and 2) is not flat?

Transform correlators using 1) conformal and 2) Weyl transformations

Recall within replica trick the EE is defined by correlator

S(R) = − lim
n→1

1
n − 1

log⟨𝜑(za1 , z̄a1)
̃︀𝜑(zb1 , z̄b1) . . . 𝜑(zam , z̄am)

̃︀𝜑(zbm , z̄bm)⟩
Conformal map, z : Ω → UHP, z = z(w), z̄ = z̄(w̄)

⟨𝜑(w1, w̄1) . . . 𝜑(wm, w̄m)⟩Ω =
m∏︁
j=1

(︂
dz

dw

)︂hn ⃒⃒⃒
w=wj

(︂
dz̄

dw̄

)︂h̄n ⃒⃒⃒
w̄=w̄j

×⟨𝜑(z1, z̄1) . . . 𝜑(zm, z̄m)⟩UHP.

Weyl map (flat → curved), ds2 = dw dw̄ → ds2 = e2𝜌(w ,w̄)dw dw̄

⟨𝜑(w1, w̄1) . . . 𝜑(wm, w̄m)⟩e2𝜌g = e−2hn𝜌(w1,w̄1) . . . e−2hn𝜌(wn,w̄n)

× ⟨𝜑(w1, w̄1) . . . 𝜑(wm, w̄m)⟩g
Note: it is entropy on a fixed curved background (the 2nd term in the island formula)!
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Euclidean Schwarzschild spacetime

Euclidean geometry is needed to apply the BCFT2 EE technique ⇒
⇒ let us consider Euclidean Schwarzschild spacetime with boundaries

Define the (space-) time-like Kruskal coordinates X ,T = (V ∓ U)/2
Wick rotate Kruskal T = −i𝒯 and Schwarzschild t = −i𝜏 times
Euclidean Schwarzschild does not contain an interior, i.e. r ≥ rh

We introduce a complex coordinates

w = X + i𝒯 , w̄ = X − i𝒯 ,

and the Euclidean version of the 2D part of Kruskal metric is

ds2 = e2𝜌(w ,w̄)dwdw̄ ,

Weyl factor⏞  ⏟  
e2𝜌(w ,w̄) =

W (e−1𝜅2
hww̄)

𝜅2
hww̄

[︀
1 +W (e−1𝜅2

hww̄)
]︀ ,

where W (x) is Lambert W function
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Euclidean double-boundary geometry

Euclidean double-boundary geometry is the interior of the disc

{X 2 + 𝒯 2 ≤ L2
0 |X , 𝒯 ∈ [−L0, L0]}, L0 =

e𝜅hr*(r0)

𝜅h

Conformal map from disc to UHP is

z = i
L0 + w

L0 − w

22 23 24
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Double-boundary entanglement entropy setup
22 23 24

Entanglement region (purple) is located in both exteriors
R2 = R− ∪R+ = [r−0 , b−]∪ [b+, r+0 ], b+ = {rb, tb}, b− = {rb,− tb}
Island configuration (green) extends between both exteriors
ℐ2 = [a−, a+], a+ = {ra, ta}, a− = {ra,− ta}
Evolution is upward in both exteriors with Htot = HL + HR

Parameters (ra, ta) of the island ℐ are determined by extremization

ext
𝜕I

Sgen :

{︃
𝜕raSgen(ra, ta) = 0
𝜕taSgen(ra, ta) = 0
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Double-boundary: no-island dynamics

Entanglement entropy with trivial island ℐ = ∅

S(R2) =
c

6
log

(︃
4f (rb) cosh2 𝜅htb

𝜅2
h𝜀

2

)︃
+
c

6
log

(︂
2 sinh2 𝜅h(r*(r0)− r*(rb))

cosh 2𝜅h(r*(r0)− r*(rb)) + cosh 2𝜅htb

)︂
Entropy saturates at tb ≫ t1b , t

1
b ≡ r*(r0)− r*(rb) at value

Ssat(R2) =
c

6
log

(︃
4f (rb) sinh2 𝜅h(r*(r0)− r*(rb))

𝜅2
h𝜀

2

)︃
There is such ̃︀r0(rb, c) that

∀r0 > ̃︀r0: S sat(R2) > S therm
BH (non-unitary evolution)

∀r0 ∈ (rh, ̃︀r0): S sat(R2) < S therm
BH (consistent with unitarity)

22 23 24
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Double-boundary: blinking island

The general picture of the island evolution is
First the island appears and at t1b = r*(r0)− r*(rb) disappears
At t2b = r*(r0) + 2r*(rb)− 3/2𝜅h log

(︀
cG𝜅2

he/3𝜋
)︀

it appears again
So, at tb ∈ (t1b , t

2
b ) island solution near horizon does not exist

There is a ”blinking island” in the approximation cG𝜅2
h ≪ 1

(G𝜅2
h ∝ M2

pl/M
2, so G𝜅2

h → 0 in semiclassical limit)

tblink ≡ t2b − t1b = 3r*(rb)− 3/2𝜅h log
(︀
cG𝜅2

he/3𝜋
)︀
> 0

22 23 24
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Properties of blinking island

For rb/2GM = fixed and c = fixed, with M ↗ the time tblink ↗

tblink = 6GM
(︂

rb
2GM

− log

[︂
ce

48𝜋GM2(rb/2GM − 1)

]︂)︂
Behavior of island’s parameters (ra, ta) – loss of equilibrium?

100 120 140 160 180

0.5

1.0

1.5

2.0

2.5

3.0

3.5

110 120 130 140 150 160 170

120

140

160

Thermodynamic stability/instability depends on cavity size r0
[Hawking ’76, York ’86]. Is there a connection with the ”blinking effect”?
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Non-unitarity and Finite-size effects

Islands and non-unitarity for adiabatic evaporation of eternal black
holes, [I.Ya. Aref’eva, I.V. Volovich TMP arXiv:2110.04233]

EE of finite-size region [Ageev, Aref’eva, Belokon, Ermakov, Pushkarev, TR ’23

PRD arXiv:2209.00036], for dS [Ageev, Aref’eva, Belokon, Pushkarev, TR JHEP

arXiv:2304.12351]

50 100 150 200 250

50

100

150

The island disappears ⇒ a jump in EE and non-unitary evolution
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Conclusions

1 We considered the dynamics of the entanglement entropy within
island prescription for Hawking radiation in the generalization of the
two-sided Schwarzschild black hole by introducing reflective
boundaries

2 We showed a universal effect induced by the boundary presence,
which we call “blinking” island – the disappearance of the island for
a finite time interval, that for large cavity leads to non-unitary
evolution

3 While for small sizes of cavity there is an evolution consistent with
unitarity even without considering the island configuration
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Thank you for attention!
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