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Modified gravity
Motivation to study

▶ Solutions without singularities.
1. Compact objects
2. Cosmological solutions

▶ Other modified gravity solutions (e.g. hairy BH, neutron star)

▶ Null Energy Condition: Tµνk
µkν ≥ 0

▶ Penrose theorem: no singularity ⇒ NEC-violation
▶ Null Convergence Condition: Rµνk

µkν ≥ 0 (for modified gravity
solutions)



Horndeski theory and its generalization

S =

∫
d4x

√
−g (L2 + L3 + L4 + L5 + LBH) ,

L2 = F (π,X ),

L3 = −K (π,X )2π,

L4 = G4(π,X )R + G4X (π,X )
[
(2π)2 − π;µνπ

;µν
]
,

L5 = G5(π,X )Gµνπ;µν − 1

6
G5X

[
(2π)3 − 32ππ;µνπ

;µν + 2π;µνπ
;µρπ ν

;ρ

]
,

LBH = F4(π,X )ϵµνρσϵ
µ′ν′ρ′σπ,µπ,µ′π;νν′π;ρρ′+

+ F5(π,X )ϵµνρσϵµ
′ν′ρ′σ′

π,µπ,µ′π;νν′π;ρρ′π;σσ′ ,

X = −1

2
gµνπ,µπ,ν



Time-dependent spherically symmetric background.

▶ Background scalar field: π = π(r , t)

▶ Background metric

ds2 = −A(r , t) dt2 +
dr2

B(r , t)
+ J2(r , t)

(
dθ2 + sin2 θ dφ2

)

▶ Shift-symmetric scalar field (i.e. π(r , t) = q · t + ψ(r))

[T. Kobayashi 1510.07400]



Horndeski theory. G4 subclass.

S =

∫
d4x

√
−g (L2 + L3 + L4) ,

L2 = F (π,X ),

L3 = −K (π,X )2π,

L4 = G4(π,X )R + G4X (π,X )
[
(2π)2 − π;µνπ

;µν
]
.



Perturbations.
▶ Perturbations

π = π̄ + χ

gµν = ḡµν + hµν ,

▶ Regge-Wheeler classification of perturbations
▶ Odd parity (axial) and even parity (polar) modes (Z2 rotations).
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Even parity sector. Parametrization.



htt =A(t, r)
∑
ℓ,m

H0,ℓm(t, r)Yℓm(θ, φ),

htr =
∑
ℓ,m

H1,ℓm(t, r)Yℓm(θ, φ),

hrr =
1

B(t, r)

∑
ℓ,m

H2,ℓm(t, r)Yℓm(θ, φ),

hta =
∑
ℓ,m

βℓm(t, r)∂aYℓm(θ, φ),

hra =
∑
ℓ,m

αℓm(t, r)∂aYℓm(θ, φ),

hab =
∑
ℓ,m

Kℓm(t, r)gabYℓm(θ, φ) +
∑
ℓ,m

Gℓm(t, r)∇a∇bYℓm(θ, φ) .

π(t, r , θ, φ) = π(t, r) +
∑
ℓ,m

χℓm(t, r)Yℓm(θ, φ),



Even parity sector. Gauge transformation.

▶ xµ → xµ + ξµ with ξµ parametrized as

ξµ =
(
Tℓm(t, r),Rℓm(t, r),Θℓm(t, r)∂θ,

Θℓm(t, r)∂φ

sin2 θ

)
Yℓm(θ, φ)

▶ In use in the static case.

β = 0, K = 0, G = 0.

▶ No static scalar field π(r , t) limit.

χ = 0, K = 0, G = 0.

▶ Shift-symmetric solutions:

π(t, r) = π(r) + qt

▶ Stability conditions and propagation speeds do not depend on gauge
choice.



High momentum regime in even sector.

▶ Quadratic action. v1 = H2, v2 = α.

S (2)
even =

∫
dt dk

√
A

B
J2

(
Kij v̇

i v̇ j + kQij v̇
iv j − k2Gijv

iv j + ...
)
,

▶ Dispersion relation:(
c2r1,2Kij − cr1,2(AB)

−1/2Qij − (AB)−1Gij

)
|Eigenvalues = 0,

c
(±)
r1 =

√
B

A

J
F

± 1

F
√
Z = c

(±)
odd .
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Stability conditions. G4 subclass. Even sector

(
c2r1,2Kij − cr1,2(AB)

−1/2Qij − (AB)−1Gij

)
|Eigenvalues = 0,

▶ No-ghost:
K11 > 0, det K > 0.

▶ No radial gradient:

G1,2
11 > 0, det G1,2 > 0.

▶ Angular gradient.
▶ Tachyonic (low energies).



Even sector. No-go theorem.

▶ Static spherically symmetric or cosmological case in Horndeski
theory:

Stability conditions ⇒ no-go theorem.
[V. Rubakov, S. Mironov, M. Libanov ]

Generalizations:
▶ Additional matter.

▶ Multi-galileon.

▶ Several ways to bypass the no-go theorem.

▶ Absence of the no-go theorem in Beyond Horndeski.
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No-go theorem. Spherically symmetric background.

▶ Static case in full Horndeski theory:

Stability conditions ⇒ no-go theorem.

▶ Dynamical background in cubic subclass:

S =

∫
d4x

√
−g (R + F (π,X )− K (π,X )2π)

Stability conditions ⇒ generalized no-go theorem.

K00ω2 = Krrkr
2 +KΩkϕ

2 +Ktrωkr .
K00 > 0

KΩ ≥ 0

Krr ≥ − (Ktr )2

4K00



No-go theorem. Spherically symmetric background.

▶ Static case in full Horndeski theory:

Stability conditions ⇒ no-go theorem.

▶ Dynamical background in cubic subclass:

S =

∫
d4x

√
−g (R + F (π,X )− K (π,X )2π)

Stability conditions ⇒ generalized no-go theorem.

K00ω2 = Krrkr
2 +KΩkϕ

2 +Ktrωkr .
K00 > 0

KΩ ≥ 0

Krr ≥ − (Ktr )2

4K00



Sufficient conditions of the generalized no-go theorem.

▶ Coordinate transformation ⇒ π is a function of one variable.

▶ ∃γ(λ) ∈ (r , t): at any point of γ, its tangent vector ξµ = ∂xµ

∂λ
satisfies ξµ = ∂µπ(r , t).

▶ In the region around the curve γ:

1. The stability conditions are satisfied.
2. The field equations are satisfied.
3. The curve γ is either timelike or spacelike.
4. γ does not contain zeros and singularities of the background

functions.

As a result:

▶ γ is spacelike, π |γ= π(r ′) ⇒ Static no-go th.
▶ The case reduces to either the static or cosmological no-go theorem.
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Generalized no-go in the cubic subclass.

▶ Sufficient conditions only in the region around the γ.

▶ Now the no-go theorem applies to solutions with special points.



Odd parity sector. Horndeski theory + F4

S =

∫
d4x

√
−g (L2 + L3 + L4) ,

L2 = F (π,X ),

L3 = −K (π,X )2π,

L4 = G4(π,X )R + G4X (π,X )
[
(2π)2 − π;µνπ

;µν
]
.



Odd parity sector. Horndeski theory + F4

▶ Quadratic action

L(2)
odd =

√
B

A
J2

ℓ(ℓ+ 1)

2(ℓ− 1)(ℓ+ 2)
·
[
1

A

FH2

Z
Q̇2 − B · KH2

Z
(Q ′)2

+2
B

A

JH2

Z
Q ′Q̇ − ℓ(ℓ+ 1)

J2
· HQ2 − V (r)Q2

]
,

▶ Stability analysis

▶ Absence of the no-go theorem in the odd parity sector.
▶ Propagation speeds

c(±)
r =

√
B

A

J
F

± 1

F
√
Z ≤ 1, c2θ =

Z
FH

≤ 1
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Odd parity. Additional restrictions.

▶ After GW170817: |cGW /cγ − 1| ≤ 5× 10−16

▶ Restrictions for the propagation speeds

c(±)
r =

√
B

A

J
F

± 1

F
√
Z= 1, c2θ =

Z
FH

= 1,

▶ The only viable subclass of BH theory
1. G5(π,X ) = 0

2. F4(π,X ) = G4X (π,X )
2X

3. Arbitrary G4(π,X )
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Speeds of graviton.

Odd Even
1. Radial speeds

c
(±)
r,Q = c

(±)
r,V =

√
B

A

J
F ± 1

F
√
Z= 1. | c (±)

r,g = c
(±)
r,V =

√
B

A

J
F ± 1

F
√
Z= 1.

2. Angular speeds

c2θ,Q = c2θ,V =
Z
FH= 1. | mixed



Kaluza-Klein compactification.

▶ Compactification R5 −→ R4 × S1

▶ Kaluza-Klein metric, 5D theory

gAB =

(
gµ ν + ϕ2 Aµ Aν ϕ2 Aµ

ϕ2 Aν ϕ2

)
▶ Horndeski action in 5D theory

S5 =

∫
d5x

√
−g(5)

(
G2(π, X ) + G3(π, X )2π

+G4 R(5) + G4,X

(
(2π)2 − (∇A∇Bπ)

2
)
+ G5(π)G

AB∇A∇Bπ
)

▶ Cylindrical conditions.



KK compactification of Horndeski theory.

ϕ(L2 + L3 + L4) + L4Aµ + L4ϕ =∫
d4x

√
−g ϕ

[
G2(π, X ) + G3(π, X )2π + G4(π, X )

(
R − 1

4
ϕ2 F 2 − 2

2ϕ

ϕ

)
+G4,X (π, X )

(
(2π)2 − (∇µ∇νπ)

2 + 2
1

ϕ
∇µϕ∇µπ2π − 1

2
ϕ2 Fµ

σ Fνσ ∇µπ∇νπ
)]

ϕL5 + L5Aµ + L5ϕ =

∫
d4x

√
−g ϕG5(π)

[(
Rµν − 1

2
gµν R

)
∇µ∇νπ

− 1

2ϕ
R ∇µϕ∇µπ +

1

ϕ
(2ϕ2π −∇µ∇νϕ∇µ∇νπ) +

1

2
ϕ2 Fµν ∇σF

νσ ∇µπ

+
1

8
ϕFµν Fσρ

(
3 gνρ(−4 gλµ gβσ+gλβ gµσ)∇λπ∇βϕ+ϕ gσµ (−4∇ν∇ρπ+gρν2π)

)]



KK compactification of Horndeski theory.

R5 −→ R4 × S1

▶ Generalized Galileons −→ Generalized Galileons

▶ 2nd derivatives in the action −→ 2nd derivatives in the action

▶ no higher derivatives in EOMs −→ no higher derivatives in EOMs

▶ Metric + scalar −→ Metric + vector + scalar + scalar
[U(1) gauge]



Time-dependent spherically symmetric background.

▶ Background metric

ds2 = −A(r , t) dt2 +
dr2

B(r , t)
+ J2(r , t)

(
dθ2 + sin2 θ dφ2

)
▶ Background fields

π = π(r , t), ϕ = ϕ(t, r), Aµ = (A0(t, r), A1(t, r), 0, 0).



Classification of perturbations.

π = π̄ + χ, gµν = ḡµν + hµν ,

ϕ = ϕ̄+ δϕ, Aµ = Āµ + δAµ.



Speeds of graviton and modified photon

Odd Even
1. Radial speeds

c
(±)
r,Q = c

(±)
r,V =

√
B

A

J
F ± 1

F
√
Z≠ 1. | c (±)

r,g = c
(±)
r,V =

√
B

A

J
F ± 1

F
√
Z≠ 1.

2. Angular speeds

c2θ,Q = c2θ,V =
Z
FH ̸= 1. | mixed

(The notations were saved from the non-compactified theory)



Conclusion and outlook

▶ General time-dependent spherically symmetric background within
Horndeski theory.

▶ Stability conditions.

▶ Speeds of gravity waves.

▶ Generalized no-go theorem in the cubic subclass.

▶ KK compactification of Horndeski theory.

▶ cGW = cV


