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These works:
o arXiv:2104.13412 (PRD),
« arXiv:2207.04071 (JHEP),
« work in progress...,
are done in the collaboration with V. Rubakov, P. Petrov, and M. Kotenko.



Motivation

Why non-singular cosmologies?

« The search of non-singular alternatives/completions to inflation
[Starobinsky’1980, Guth’1981, Sato’1981, Linde’1982, Albrecht,
Steinhardt’1982] seems as an important problem.



Motivation

Why non-singular cosmologies?

« We study contracting Universe with subsequent bounce
[Veneziano’2004;
Aref’eva, Joukovskaya, Vernov’2007;
Qui et al’2011,2013;
Easson, Sawicki, Vikman’2011;
Cai, Easson, Brandenberger’2012;
Osipov, Rubakov’2013;
Koehn et al’2013; Battarra et al’201/; Ijjas, Steinhardt’2016...]
epoch as such alternative/completion to inflation;

« This model (as any viable cosmological model) should obey the set of different
theoretical and experimental constraints...



Bounce

Why non-singular cosmologies?
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[igure: Hubble parameter for the early Universe with bounce



Horndeski theory

Modified gravity

Violation of NEC/NCC without obvious pathologies is possible in the class of
Horndeski theories [Horndeski 74]:

LH — GQ((ZS, X) - G3(¢7 X)D¢+
Gi(6, X)R + Gax [(06)? = (VuVu0)’]
+ G5(o, X)G“”Vuqub
~ G x[(06)° ~ 306(V,V,6)" + 2AV,V,9)°),
where X = —%g““@udﬂl,d) and U¢ = g""V ,V,¢.

In the framework of this theory one can (quite straightforwardly) obtain healthy
bounce epoch.



No-Go theorem

Stability during the whole evolution

» One way is to go beyond Horndeski and DHOST [Cai et.al.” 2016, Creminelli
et.al.’2016, Kolevatov et.al.’2017, Cai, Piao’2017, Mironov, Volkova,
Rubakov’2018...]

o Another way to avoid No-Go theorem for Horndeski is to obtain such a
model/solution that Fgr coefficients have asymptotics

Fsr — 0ast — —oo, where Fr = 2Gy.
o This means that
Gy —0ast— —o0.

» Effective Planck mass goes to zero and it signalizes that we may have strong
coupling at t — —oc.
Solution: no SC regime at ¢ — —oo in some region of Lagrangian parameters.



Concrete bounce model

Theoretical constraints

With the appropriate choice of Lagrangian functions, the bounce solution reads
a = d(_t)X )

where x > 0 is a constant and ¢ is cosmic time, so that H = x/t. Coefficients from
quadratic actions are

g gs Is
and e F
usz—Tzl, u%z—szﬁ#l.
gr S gs

To avoid No-Go:
1>x>0, 2u>x+1.
To avoid SC regime (t — —o0):
w <1



Power spectrum

Observational constraints

Spectra are given by

k ns—1 L\ T
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k.
where k, is pivot scale, the spectral tilts are

1—

ng = 0.9649 £ 0.0042.
The amplitudes in our model are

Cc 1 8C
A¢= ——5, Ar = —,
g gsug g
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1+ 2u—-3x 3 1l-—ng 3
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Power spectrum

Observational constraints

« Approximate flatness is ensured in our set of models by choosing p ~ 1...

o ...while the slightly red spectrum is found for p > 1 .



Power spectrum

Observational constraints

The problem Nel: red-tilted spectrum requires 1 > 1, while absence of strong
coupling p < 1!
Solution: consider time-dependent p: changes from p < 1 to > 1 (time runs as
—00 < t < 00).
Try to escape from SC and generate spectrum, consistent with experiment.
Horizon exit must occur in weak coupling regimel!
The problem Ne2: r-ratio is small:

Ar

r= T ~ 8gsus < 0.032. Tristram et al’2022
¢

Solution: choose ug < 1 — similar to k-inflation Mukhanov et al’1999, 2000



Strong coupling

Details of dimensional analysis: tensor sector

Cubic action for tensors
S\ = / dt 3d3 <hzkhjl hijhkl> hij,kl] -

Corresponding SC and classical scales are

3/2 1/2
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Tensors exit (effective) horizon:

Qr—2
so the absence of SC at t = ty: % (%) Y v Ar < 1L



Strong coupling

Details of dimensional analysis: scalar sector

Scalars exit (effective) horizon:

2(p—1
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Strong coupling and r-ratio

Region of healthy parameters
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Figure: The r-ratio (red line) and ratio Fgtrong(k«)/Eei(k«) (blue line) as functions of x for
the central value ng = 0.9649.



Review on primordial non-Gaussianities

Evaluatiion of non-linear parameter

« Deviation from the Gaussian features for primordial perturbation field:
3
C=(g+ ngLCga

[Komatsu, Spergel’2001; 2009] where

10 A<

and

2m)4 (P,)?
B (k1, ko, ks) = ()3(]{;).,44 (k1, ko, k3),
i=1 1

(C(k1)C (ko) (ks3))
= _i/r-f dr a (0] [C(rf, k1)C(Ts, ka)C(Tr, Ka), Hin(T)] 10) .



Review on primordial non-Gaussianities

Evaluatiion of non-linear parameter

The following observational constraints were acquired by
Planck collaboration’2018:

o flogal = —0.9 £5.1,
il = 26 + 47,
o feabold — 6 4+ 30.5.

Our model — small fy; — weak constraints on model parameters...



Conclusion

...and outlook

« We construct the model of bounce, within one can generate nearly flat
(red-tilted) power spectrum of scalar perturbations. But it is not so automatic
as in inflation!

o In such models the requirement of strong coupling absence leads to the fact
that the r-ratio cannot be arbitrarily small and, moreover, it is close to the
boundary r < 0.032 suggested by the observational data.

« It seems that observational constraints from non-Gaussianities provide very
weak conditions for model parameters — in progress...

Thank you for attention!
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