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These works:
• arXiv:2104.13412 (PRD),
• arXiv:2207.04071 (JHEP),
• work in progress...,

are done in the collaboration with V. Rubakov, P. Petrov, and M. Kotenko.



Motivation
Why non-singular cosmologies?

• The search of non-singular alternatives/completions to inflation
[Starobinsky’1980, Guth’1981, Sato’1981, Linde’1982, Albrecht,
Steinhardt’1982] seems as an important problem.



Motivation
Why non-singular cosmologies?

• We study contracting Universe with subsequent bounce
[Veneziano’2004;
Aref’eva, Joukovskaya, Vernov’2007;
Qui et al’2011,2013;
Easson, Sawicki, Vikman’2011;
Cai, Easson, Brandenberger’2012;
Osipov, Rubakov’2013;
Koehn et al’2013; Battarra et al’2014; Ijjas, Steinhardt’2016...]
epoch as such alternative/completion to inflation;

• This model (as any viable cosmological model) should obey the set of different
theoretical and experimental constraints...



Bounce
Why non-singular cosmologies?
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Figure: Hubble parameter for the early Universe with bounce



Horndeski theory
Modified gravity

Violation of NEC/NCC without obvious pathologies is possible in the class of
Horndeski theories [Horndeski’74]:

LH = G2(ϕ, X) − G3(ϕ, X)□ϕ+

G4(ϕ, X)R + G4,X

[
(□ϕ)2 − (∇µ∇νϕ)2

]
+ G5(ϕ, X)Gµν∇µ∇νϕ

− 1
6

G5,X

[
(□ϕ)3 − 3□ϕ(∇µ∇νϕ)2 + 2(∇µ∇νϕ)3],

where X = −1
2gµν∂µϕ∂νϕ and □ϕ = gµν∇µ∇νϕ.

In the framework of this theory one can (quite straightforwardly) obtain healthy
bounce epoch.



No-Go theorem
Stability during the whole evolution

• One way is to go beyond Horndeski and DHOST [Cai et.al.’ 2016, Creminelli
et.al.’2016, Kolevatov et.al.’2017, Cai, Piao’2017, Mironov, Volkova,
Rubakov’2018...]�

• Another way to avoid No-Go theorem for Horndeski is to obtain such a
model/solution that FS,T coefficients have asymptotics

FS,T → 0 as t → −∞, where FT = 2G4.

• This means that
G4 → 0 as t → −∞.

• Effective Planck mass goes to zero and it signalizes that we may have strong
coupling at t → −∞.

Solution: no SC regime at t → −∞ in some region of Lagrangian parameters.



Concrete bounce model
Theoretical constraints

With the appropriate choice of Lagrangian functions, the bounce solution reads
a = d(−t)χ ,

where χ > 0 is a constant and t is cosmic time, so that H = χ/t. Coefficients from
quadratic actions are

GT = FT = g

(−t)2µ
, GS = g

gS

2(−t)2µ
, FS = g

fS

2(−t)2µ
,

and
u2

T = FT

GT
= 1, u2

S = FS

GS
= fS

gS
̸= 1.

To avoid No-Go:
1 > χ > 0, 2µ > χ + 1.

To avoid SC regime (t → −∞):
µ < 1.



Power spectrum
Observational constraints

Spectra are given by

Pζ ≡ Aζ

(
k

k∗

)ns−1
, PT ≡ AT

(
k

k∗

)nT

,

where k∗ is pivot scale, the spectral tilts are

nS − 1 = nT = 2 ·
(1 − µ

1 − χ

)
,

nS = 0.9649 ± 0.0042.

The amplitudes in our model are

Aζ = C

g

1
gSu2ν

S

, AT = 8C

g
,

where
ν = 1 + 2µ − 3χ

2(1 − χ)
= 3

2
+ 1 − nS

2
≈ 3

2
.



Power spectrum
Observational constraints

• Approximate flatness is ensured in our set of models by choosing µ ≈ 1...
• ...while the slightly red spectrum is found for µ > 1 .



Power spectrum
Observational constraints

The problem №1: red-tilted spectrum requires µ > 1, while absence of strong
coupling µ < 1!
Solution: consider time-dependent µ: changes from µ < 1 to µ > 1 (time runs as
−∞ < t < ∞).
Try to escape from SC and generate spectrum, consistent with experiment.
Horizon exit must occur in weak coupling regime!
The problem №2: r-ratio is small:

r = AT

Aζ
≈ 8gSu3

S < 0.032. Tristram et al’2022

Solution: choose uS ≪ 1 → similar to k-inflation Mukhanov et al’1999, 2000



Strong coupling
Details of dimensional analysis: tensor sector

Cubic action for tensors

S(3)
T T T =

∫
dt a3d3x

[FT

4a2

(
hikhjl − 1

2
hijhkl

)
hij,kl

]
.

Corresponding SC and classical scales are

ET T T
strong ∼ G3/2

T

FT
= g1/2

|t|µ
, Ecl ∼ H ∼ |t|−1,

ET T T
strong > Ecl → |t|2µ−2 < g .

Tensors exit (effective) horizon:

t
(T )
f (k) ∼

(
d

k

) 1
1−χ

so the absence of SC at t = tf : 1
g

(
d
k

)2 µ−1
1−χ ∼ AT ≪ 1.



Strong coupling
Details of dimensional analysis: scalar sector

Scalars exit (effective) horizon:

t
2(µ−1)
f ∼ gAζu3

S .

(
gu11

S

|tf (kmin)|2(µ−1)

)1/6

∼
(

u8
S

Aζ

)1/6

∼
(

r8/3

Aζ

)1/6

,

(
r8/3

Aζ

)1/6

> 1 .



Strong coupling and r-ratio
Region of healthy parameters

Figure: The r-ratio (red line) and ratio Estrong(k∗)/Ecl(k∗) (blue line) as functions of χ for
the central value nS = 0.9649.



Review on primordial non-Gaussianities
Evaluatiion of non-linear parameter

• Deviation from the Gaussian features for primordial perturbation field:

ζ = ζg + 3
5

fNLζ2
g ,

[Komatsu, Spergel’2001; 2009] where

fNL = 10
3

Aζ∑3
i=1 k3

i

,

and

Bζ (k1, k2, k3) = (2π)4 (Pζ)2∏3
i=1 k3

i

Aζ (k1, k2, k3) ,

⟨ζ(k⃗1)ζ(k⃗2)ζ(k⃗3)⟩

= −i

∫ τf

τi

dτ a ⟨0| [ζ(τf , k⃗1)ζ(τf , k⃗2)ζ(τf , k⃗3), Hint(τ)] |0⟩ .



Review on primordial non-Gaussianities
Evaluatiion of non-linear parameter

The following observational constraints were acquired by
Planck collaboration’2018:

• f local
NL = −0.9 ± 5.1,

• f equil
NL = −26 ± 47,

• f enfold
NL = 6 ± 30.5.

Our model → small fNL → weak constraints on model parameters...



Conclusion
...and outlook

• We construct the model of bounce, within one can generate nearly flat
(red-tilted) power spectrum of scalar perturbations. But it is not so automatic
as in inflation!

• In such models the requirement of strong coupling absence leads to the fact
that the r-ratio cannot be arbitrarily small and, moreover, it is close to the
boundary r < 0.032 suggested by the observational data.

• It seems that observational constraints from non-Gaussianities provide very
weak conditions for model parameters → in progress...

Thank you for attention!



70th anniversary of V. A. Rubakov
Session-conference of the Nuclear Physics Section of the Physical Sciences
Department RAS


