A cosmological bounce in the theory of gravity with non-minimal derivative coupling



Сессия-конференция «Физика фундаментальных взаимодействий», посвященная 70-летию со дня рождения академика РАН Валерия Анатольевича Рубакова

Москва, 17 февраля 2025 г.

## Motivation

- GR has successfully been exploited for a long time to describe celestial motion in Solar system, a bending of light rays, gravitational waves, the universe expansion (ΛCDM model)
- GR is unable to solve the number already existing problems and appearing new ones
  - cosmological and black hole singularities
  - dark energy (accelerating expansion of the Universe)
  - initial inflation
  - large scale structure of the universe
  - dark matter evidence
  - cosmological constant problem
  - etc...
- These amazing discoveries have set new serious challenges before theoretical cosmology faced the necessity of radical *modification* or *extension* of General Relativity

< ∃→

$$S = \int d^4x \sqrt{-g} \left[ \mathbf{F}(\phi) \mathbf{R} - Z(\phi) g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - 2U(\phi) \right] + S_m \left[ \psi_m, g_{\mu\nu} \right]$$

- generalizations of the Brans-Dicke theories
- the scalar field is
  - minimally coupled with ordinary matter (physical or Jordan frame)
  - ullet non-minimally coupled with the scalar curvature by the term  $F(\phi)R$

**Notice:** Non-minimal coupling of the scalar field with the scalar curvature is provided by the terms  $F(\phi)R$ 

## Horndeski theory

In 1974, Gregory Walter Horndeski derived the action of the most general scalar-tensor theories with second-order equations of motion [G.Horndeski, Second-Order Scalar-Tensor Field Equations in a Four-Dimensional Space, IJTP **10**, 363 (1974)]

### Horndeski Lagrangian:<sup>1</sup>

$$L_{\rm H} = \sqrt{-g} \left( \mathcal{L}_2 + \mathcal{L}_3 + \mathcal{L}_4 + \mathcal{L}_5 \right)$$

$$\begin{split} \mathcal{L}_{2} &= G_{2}(\phi, X) ,\\ \mathcal{L}_{3} &= G_{3}(\phi, X) \,\Box\phi ,\\ \mathcal{L}_{4} &= G_{4}(\phi, X)R - 2G_{4,X}(\phi, X)(\Box\phi^{2} - \phi^{\mu\nu}\phi_{\mu\nu}) ,\\ \mathcal{L}_{5} &= G_{5}(\phi, X)G_{\mu\nu}\phi^{\mu\nu} + \frac{1}{3}G_{5,X}(\phi, X)(\Box\phi^{3} - 3\,\Box\phi\,\phi_{\mu\nu}\phi^{\mu\nu} + 2\,\phi_{\mu\nu}\phi^{\mu\sigma}\phi^{\nu}{}_{\sigma}) , \end{split}$$

 $G_a(\phi,X)$  are four arbitrary functions, and  $X=-rac{1}{2}(
abla\phi)^2$ 

**Notice:** Non-minimal coupling of the scalar field with curvature is provided by two terms,  $G_4(\phi, X)R$  and  $G_5(\phi, X)G^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi$ 

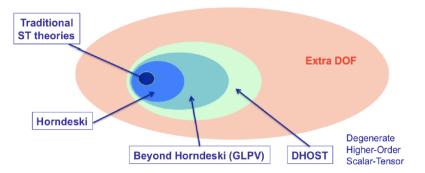
<sup>1</sup>T. Kobayashi, M. Yamaguchi, J. Yokoyama, Prog. Theor. Phys. **126**, 511 (2011). 🤊 <

## Subclasses of the Horndeski theory

$$\mathcal{L}_H = \mathcal{L}\{G_2, G_3, G_4, G_5\}$$

- Hilbert-Einstein action (GR):  $G_4(\phi, X) = \frac{1}{2}M_{Pl}^2 \rightarrow \mathcal{L}_H \sim \frac{1}{2}M_{Pl}^2R$
- Nonminimal coupling:  $G_4(\phi, X) = f(\phi) \rightarrow \mathcal{L}_H \sim f(\phi)R$
- GR with a scalar field:  $G_2(\phi, X) = \epsilon X V(\phi)$
- k-essence:  $G_2 = K(\phi, X)$
- Kinetic gravity braiding (KGB):  $G_3 = B(\phi, X) \rightarrow \mathcal{L}_H \sim B(\phi, X) \Box \phi$
- Nonminimal kinetic coupling:  $G_5(\phi, X) = \eta \phi \rightarrow \mathcal{L}_H \sim \eta G^{\mu\nu} \nabla_\mu \phi \nabla_\nu \phi$
- Fab Four, Gallileons, etc.

- ◆ 臣 → ----



Landscape of scalar-tensor theories D. Langlois, Dark energy and modified gravity in degenerate higher-order scalar-tensor (DHOST) theories: A review Int. J. Mod. Phys. D 28 (2019), no. 05 1942006

< ∃⇒

# **DHOST** theories

$$S = \int d^4x \sqrt{-g} \left[ F_{(2)}(\phi, X)R + P(\phi, X) + Q(\phi, X) \Box \phi \right]$$

$$+ F_{(3)}(\phi, X) G_{\mu\nu} \phi^{\mu\nu} + \sum_{a=1}^{5} A_a(\phi, X) L_a^{(2)} + \sum_{a=1}^{10} B_a(\phi, X) L_a^{(3)} \bigg]$$

$$\begin{split} L_1^{(2)} &= \phi_{\mu\nu} \phi^{\mu\nu} \,, \qquad L_2^{(2)} = (\Box \phi)^2 \,, \qquad L_3^{(2)} = (\Box \phi) \phi^{\mu} \phi_{\mu\nu} \phi^{\nu} \,, \\ L_4^{(2)} &= \phi^{\mu} \phi_{\mu\rho} \phi^{\rho\nu} \phi_{\nu} \,, \qquad L_5^{(2)} = (\phi^{\mu} \phi_{\mu\nu} \phi^{\nu})^2 \,. \end{split}$$

$$\begin{split} L_1^{(3)} &= (\Box \phi)^3 \,, \quad L_2^{(3)} = (\Box \phi) \,\phi_{\mu\nu} \phi^{\mu\nu} \,, \quad L_3^{(3)} = \phi_{\mu\nu} \phi^{\nu\rho} \phi^{\mu}_{\rho} \,, \\ L_4^{(3)} &= (\Box \phi)^2 \,\phi_{\mu} \phi^{\mu\nu} \phi_{\nu} \,, \quad L_5^{(3)} = \Box \phi \,\phi_{\mu} \phi^{\mu\nu} \phi_{\nu\rho} \phi^{\rho} \,, \quad L_6^{(3)} = \phi_{\mu\nu} \phi^{\mu\nu} \phi_{\rho} \phi^{\rho\sigma} \phi_{\sigma} \,, \\ L_7^{(3)} &= \phi_{\mu} \phi^{\mu\nu} \phi_{\nu\rho} \phi^{\rho\sigma} \phi_{\sigma} \,, \quad L_8^{(3)} = \phi_{\mu} \phi^{\mu\nu} \phi_{\nu\rho} \phi^{\rho} \phi_{\sigma} \phi^{\sigma\lambda} \phi_{\lambda} \,, \\ L_9^{(3)} &= \Box \phi \,(\phi_{\mu} \phi^{\mu\nu} \phi_{\nu})^2 \,, \quad L_{10}^{(3)} = (\phi_{\mu} \phi^{\mu\nu} \phi_{\nu})^3 \,. \end{split}$$

**Notice:** Non-minimal coupling of the scalar field with curvature is provided by two terms,  $F_{(2)}(\phi, X)R$  and  $F_{(3)}(\phi, X)G^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi$ 

7 / 23

**Notice:** There are only two qualitatively different terms describing non-minimal coupling of the scalar field with curvature:  $M(\phi, X)R$  and  $N(\phi, X)G^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi$ .

- $M(\phi, X)R$  Brans-Dicke-like theories
- $N(\phi,X)G^{\mu
  u}
  abla_{\mu}\phi
  abla_{
  u}\phi$  theories with non-minimal derivative coupling

프 🖌 🛪 프 🛌

# Theory with nonminimal derivative coupling. I

Focusing on non-minimal derivative coupling, we have

Action: 
$$S = S^{(g)} + S^{(m)}$$
  
 $S^{(m)}$  — the action for ordinary matter fields  
 $S^{(g)} = \frac{1}{2} \int d^4x \sqrt{-g} \left[ M_{\rm Pl}^2 \left( R - 2\Lambda \right) - \left( \varepsilon g_{\mu\nu} + \eta G_{\mu\nu} \right) \nabla^{\mu} \phi \nabla^{\nu} \phi - 2V(\phi) \right]$ 

- $\Lambda$  cosmological constant
- $\varepsilon = 1$  (ordinary scalar field);
- $\varepsilon = -1$  (phantom scalar field);
- $\varepsilon = 0$  (no standard kinetic term)

 $\eta$  – dimensional coupling parameter;  $[\eta] = (length)^2 \rightarrow \eta = \pm \ell^2$ 

 $\ell$  - characteristic scale of non-minimal coupling

# Theory with nonminimal derivative coupling. II

#### Field equations:

$$G_{\mu\nu} = -g_{\mu\nu}\Lambda + 8\pi \left[ T^{(m)}_{\mu\nu} + T^{(\phi)}_{\mu\nu} + \eta \Theta_{\mu\nu} \right]$$
$$[\varepsilon g^{\mu\nu} + \eta G^{\mu\nu}] \nabla_{\mu} \nabla_{\nu} \phi = V'_{\phi}$$

$$\begin{split} T^{(\phi)}_{\mu\nu} &= \varepsilon \left[ \nabla_{\mu} \phi \nabla_{\nu} \phi - \frac{1}{2} g_{\mu\nu} (\nabla \phi)^2 \right] - g_{\mu\nu} V(\phi), \\ \Theta_{\mu\nu} &= -\frac{1}{2} \nabla_{\mu} \phi \nabla_{\nu} \phi R + 2 \nabla_{\alpha} \phi \nabla_{(\mu} \phi R^{\alpha}_{\nu)} - \frac{1}{2} (\nabla \phi)^2 G_{\mu\nu} + \nabla^{\alpha} \phi \nabla^{\beta} \phi R_{\mu\alpha\nu\beta} \\ &+ \nabla_{\mu} \nabla^{\alpha} \phi \nabla_{\nu} \nabla_{\alpha} \phi - \nabla_{\mu} \nabla_{\nu} \phi \Box \phi + g_{\mu\nu} \left[ -\frac{1}{2} \nabla^{\alpha} \nabla^{\beta} \phi \nabla_{\alpha} \nabla_{\beta} \phi + \frac{1}{2} (\Box \phi)^2 \right. \\ &- \nabla_{\alpha} \phi \nabla_{\beta} \phi R^{\alpha\beta} \right] \\ T^{(m)}_{\mu\nu} &= (\rho + p) u_{\mu} u_{\mu} + p g_{\mu\nu} \end{split}$$

## Notice: The field equations are of second order!

< ∃→

## lsotropic and homogeneous cosmological models

**Ansatz:**  $V \equiv 0$  (no potential),  $\varepsilon = +1$  (ordinary scalar)  $\phi = \phi(t), \ T^{(m)}_{\mu\nu} = diag(\rho(t), p(t), p(t), p(t))$ , and the FLRW metric

$$ds^{2} = -dt^{2} + a^{2}(t) \left[ \frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2}) \right]$$

 $k=0,\pm 1, ~~{\rm a}(t)$  cosmological factor,  $~H(t)={\rm \dot{a}}(t)/{\rm a}(t)$  Hubble parameter

#### Gravitational equations:

$$\begin{split} & 3\left(H^2 + \frac{k}{a^2}\right) = \Lambda + 8\pi\rho + 4\pi\psi^2 \left(1 - 9\eta \left(H^2 + \frac{k}{3a^2}\right)\right), \\ & 2\dot{H} + 3H^2 + \frac{k}{a^2} = \Lambda - 8\pi p - 4\pi\psi^2 \left[1 + 2\eta \left(\dot{H} + \frac{3}{2} H^2 - \frac{k}{a^2} + 2H\frac{\dot{\psi}}{\psi}\right)\right] \end{split}$$

The scalar field equations:

$$\mathbf{a}^{3}\psi\left(1-3\eta\left(H^{2}+\frac{k}{\mathbf{a}^{2}}\right)\right)=Q=const$$

where  $\psi = \dot{\phi}$ 

< ∃ > \_

# Modified Friedmann equation (Master equation). I

Material content is a mixture of radiation and non-relativistic component:

$$\rho = \rho_m + \rho_r = \rho_{m0} \left(\frac{\mathbf{a}_0}{\mathbf{a}}\right)^3 + \rho_{r0} \left(\frac{\mathbf{a}_0}{\mathbf{a}}\right)^4$$

Introducing the dimensionless scales factor a, Hubble parameter h, and coupling parameter  $\zeta$ :

$$a = \frac{\mathbf{a}}{\mathbf{a}_0}, \quad h = \frac{H}{H_0}, \quad \zeta = \eta H_0^2,$$

and the dimensionless density parameters:

$$\Omega_0 = \frac{\Lambda}{3H_0^2}, \quad \Omega_2 = \frac{k}{a_0^2 H_0^2}, \quad \Omega_3 = \frac{\rho_{m0}}{\rho_{cr}}, \quad \Omega_4 = \frac{\rho_{r0}}{\rho_{cr}}, \quad \Omega_6 = \frac{4\pi Q^2}{3a_0^6 H_0^2},$$

where  $\rho_{cr}=3H_0^2/8\pi$  is the critical density, one has

#### Modified Friedmann equation

$$h^{2} = \Omega_{0} - \frac{\Omega_{2}}{a^{2}} + \frac{\Omega_{3}}{a^{3}} + \frac{\Omega_{4}}{a^{4}} + \frac{\Omega_{6} \left(1 - 3\zeta(3h^{2} + \frac{\Omega_{2}}{a^{2}})\right)}{a^{6} \left(1 - 3\zeta(h^{2} + \frac{\Omega_{2}}{a^{2}})\right)^{2}}$$

Sergey Sushkov (

Cosmological bounce

### Modified Friedmann equation

$$h^{2} = \Omega_{0} - \frac{\Omega_{2}}{a^{2}} + \frac{\Omega_{3}}{a^{3}} + \frac{\Omega_{4}}{a^{4}} + \frac{\Omega_{6}\left(1 - 3\zeta(3h^{2} + \frac{\Omega_{2}}{a^{2}})\right)}{a^{6}\left(1 - 3\zeta(h^{2} + \frac{\Omega_{2}}{a^{2}})\right)^{2}}$$

- Assuming  $\Lambda \geq 0$ , one has  $\Omega_0 \geq 0$
- $\Omega_2 = k/a_0^2 H_0^2$ , hence  $\Omega_2 = 0$ ,  $\Omega_2 < 0$ ,  $\Omega_2 > 0$  if k = 0, -1, +1, respectively
- $\zeta = \eta H_0^2 = \pm (\ell/\ell_H)^2$ , where  $\ell_H = 1/H_0$ , hence  $\zeta$  is proportional to the square of ratio of two characteristic scales, hence  $\zeta \ll 1$ ???
- In case  $\Omega_6 = 0$  (no scalar with non-minimal derivative coupling) one has the standard master equation of  $\Lambda$ CDM cosmological model
- In case  $\Omega_6 \neq 0$  but  $\zeta = 0$  (no non-minimal derivative coupling) one has a cosmological model with an ordinary scalar field

프 🖌 🔺 프 🕨

# Modified Friedmann equation (Master equation). III

Denoting  $y = h^2$  one can rewrite the master equation as a cubic in y algebraic equation

$$c_3y^3 + c_2(a)y^2 + c_1(a)y + c_0(a) = 0$$

with the coefficients

$$\begin{split} c_{3} &= 9\zeta^{2} \\ c_{2} &= -6\zeta \left(1 - \frac{3\zeta\Omega_{2}}{a^{2}}\right) - 9\zeta^{2} \left(\Omega_{0} - \frac{\Omega_{2}}{a^{2}} + \frac{\Omega_{3}}{a^{3}} + \frac{\Omega_{4}}{a^{4}}\right), \\ c_{1} &= \left(1 - \frac{3\zeta\Omega_{2}}{a^{2}}\right)^{2} + 6\zeta \left(1 - \frac{3\zeta\Omega_{2}}{a^{2}}\right) \left(\Omega_{0} - \frac{\Omega_{2}}{a^{2}} + \frac{\Omega_{3}}{a^{3}} + \frac{\Omega_{4}}{a^{4}}\right) + \frac{9\zeta\Omega_{6}}{a^{6}}, \\ c_{0} &= -\left(1 - \frac{3\zeta\Omega_{2}}{a^{2}}\right)^{2} \left(\Omega_{0} - \frac{\Omega_{2}}{a^{2}} + \frac{\Omega_{3}}{a^{3}} + \frac{\Omega_{4}}{a^{4}}\right) - \left(1 - \frac{3\zeta\Omega_{2}}{a^{2}}\right) \frac{\Omega_{6}}{a^{6}}. \end{split}$$

**Notice:** Roots h = h(a) of the cubic polynomial (14) define a global cosmological behavior as follows

$$\int_{a=1}^{a} \frac{d\tilde{a}}{\tilde{a}h(\tilde{a})} = H_0(t-t_0).$$

Sergey Sushkov Cosmological bounce

< ∃→

## Turning points and bounces in the Universe evolution

A turning point in the Universe evolution may occur at a moment  $t = t_*$ , when the scale factor a(t) reaches its extremal, either maximal or minimal value,  $a(t_*) = a_*$ . Correspondingly,  $y(a_*) = h^2(a_*) = 0$ .

The polynomial  $P(a, y) = c_3 y^3 + c_2(a)y^2 + c_1(a)y + c_0(a)$  has a root  $y(a_*) = 0$  if and only if  $c_0(a_*) = 0$ , and hence we obtain two separate algebraic conditions for  $a_*$ :

$$\left(1 - \frac{3\zeta\Omega_2}{a_*^2}\right) \left(\Omega_0 - \frac{\Omega_2}{a_*^2} + \frac{\Omega_3}{a_*^3} + \frac{\Omega_4}{a_*^4}\right) + \frac{\Omega_6}{a_*^6} = 0, \quad (1)$$
$$\left(1 - \frac{3\zeta\Omega_2}{a_*^2}\right) = 0. \quad (2)$$

**NOTICE:** The conditions (1) and (2) have NO solutions in case  $\Omega_2 \leq 0$ . Therefore, in cosmological models with negative or zero spatial curvature there are no turning points.

# Turning points and bounces: $\Omega_2 > 0$ (positive spatial curvature)

**Condition 1:** 
$$\left(1 - \frac{3\zeta\Omega_2}{a_*^2}\right)\left(\Omega_0 - \frac{\Omega_2}{a_*^2} + \frac{\Omega_3}{a_*^3} + \frac{\Omega_4}{a_*^4}\right) + \frac{\Omega_6}{a_*^6} = 0$$

In the simplest case:  $\Omega_0=\Omega_3=\Omega_4=0, \zeta=0$ , one has

$$a_*^2 = \sqrt{\Omega_6/\Omega_2} = \sqrt{(1+\Omega_2)/\Omega_2}.$$

Supposing 
$$\Omega_2 \ll 1$$
, we get  $a_*^2 = a_{max}^2 \approx 1/\Omega_2^{1/2} \gg 1$ 

Therefore, the Universe's expansion is stopped when the scale factor achieves its maximal value  $a_{max}$  and then replaced by contraction.

#### This is a turning point!

Thus, a root (if exists) of the Condition 1 gives a maximal value  $a_* = a_{max}(\Omega_0, \Omega_2, \Omega_3, \Omega_4, \zeta)$  which does generally depend on *all* parameters of the model.

# Turning points and bounces: $\Omega_2 > 0$ (positive spatial curvature)

**Condition 2:** 
$$1 - \frac{3\zeta\Omega_2}{a_*^2} = 0 \longrightarrow a_*^2 = 3\zeta\Omega_2$$

Since  $\Omega_2 \ll 1$  and  $\zeta \ll 1$ , we get  $a_*^2 = a_{min}^2 \ll 1$ 

Therefore, the Universe's contraction is stopped when the scale factor achieves its minimal value  $a_{min} = (3\zeta\Omega_2)^{1/2}$ .

## NOTICE:

- The value  $a_{min} = (3\zeta\Omega_2)^{1/2}$  depends ONLY on the product  $\zeta\Omega_2$ , and does NOT depend on  $\Omega_0$ ,  $\Omega_3$ ,  $\Omega_4$ !
- Following [<sup>a</sup>], we may say that the cosmological constant and material substance are *screened* at the early stage and makes no contribution to the universe evolution.

<sup>a</sup>A. A. Starobinsky, S. V. Sushkov, and M. S. Volkov, *The screening Horndeski cosmologies*, *JCAP* **1606** (2016), no. 06 007

< ≣⇒

## Bounce solution

Let us consider an asymptotic behavior of h near  $a = a_* \equiv (3\zeta \Omega_2)^{1/2}$ :

$$9\zeta h^2 \approx 2\frac{\Delta a}{a_*} - 3\left(\frac{\Delta a}{a_*}\right)^2 + 4\left(\frac{\Delta a}{a_*}\right)^3 + \dots,$$

where  $\Delta a = a - a_*$ . Integrating, we obtain

$$a(\tau) = a_{min} \left( 1 + \frac{\Delta \tau^2}{18\zeta} \right) + O(\Delta \tau^4),$$
  
$$h(\tau) = \frac{\Delta \tau}{9\zeta} + O(\Delta \tau^3),$$

where  $a_{min} = a_*$ ,  $\Delta \tau = \tau - \tau_*$ , and  $\tau_*$  is a constant of integration.

Evidently:  $a(\tau) \to a_{min}$  and  $h(\tau) \to 0$  as  $\Delta \tau \to 0$ , i.e.  $\tau \to \tau_*$ .

**NOTICE**: The spacetime geometry is regular when approaching to the "bounce"  $a_{min}$ !

< ⊒ >

## Bounce solution

Is the point 
$$a_*^2 = a_{min}^2 = 3\zeta\Omega_2$$
 a bounce?

Scalar field equation:

$$\phi' = \frac{q}{a^3 \left(1 - 3\zeta \left(h^2 + \frac{\Omega_2}{a^2}\right)\right)}$$

Asymptotics:

$$\phi' \approx \frac{27\zeta q}{2a_{min}^3 \Delta \tau^2}.$$

Thus, one has  $\phi' \propto 1/\Delta \tau^2 \rightarrow \infty$  as  $\Delta \tau \rightarrow 0$ , i.e.  $\tau \rightarrow \tau_*$ .

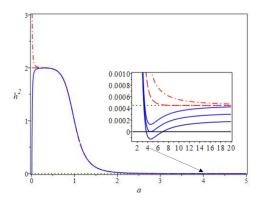
NOTICE: One has a singular behavior of the scalar field when approaching to the "bounce"  $a_{min}$ .

#### A 'singular' bounce!

< 注→

# Examples of numerical solutions. I. The case $\zeta \neq 0$ and $\Omega_0 = \Omega_3 = \Omega_4 = 0$

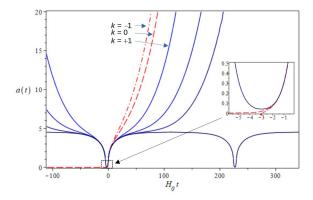
**Plots of**  $h^2$  versus a



∃ >

Examples of numerical solutions. II. The case  $\zeta \neq 0$  and  $\Omega_0 = \Omega_3 = \Omega_4 = 0$ 

#### **Plots of** a versus t



# Concluding remarks

- We have explored bounce scenarios in the framework of homogeneous and isotropic cosmological models with arbitrary spatial curvature in the theory of gravity with non-minimal derivative coupling.
- In general, the model depends on five independent dimensionless parameters: the coupling parameter  $\zeta$ , and density parameters  $\Omega_0$ ,  $\Omega_2$ ,  $\Omega_3$ ,  $\Omega_4$ .
- A bounce cosmological scenario is most general for the homogeneous and isotropic cosmological model with positive spatial curvature  $(\Omega_2 > 0, k = +1)$ .
- Near the bounce one has  $a(\tau) \approx a_{min} \left(1 + \Delta \tau^2 / 18\zeta\right) \rightarrow a_{min}$  and  $h(\tau) \approx \Delta \tau / 9\zeta \rightarrow 0$  as  $\Delta \tau \rightarrow 0$ . Therefore, the spacetime geometry is regular when approaching to the bounce.
- However, the scalar field diverges near the bounce as follows:  $\phi' \propto 1/\Delta \tau^2 \to \infty$  as  $\Delta \tau \to 0$ .
- Therefore, we can term this scenario as a 'singular' bounce.

医下颌 医下颌

## **THANKS FOR YOUR ATTENTION!**

э

< ∃→