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Motivation

GR has successfully been exploited for a long time to describe
celestial motion in Solar system, a bending of light rays,
gravitational waves, the universe expansion (ΛCDM model)

GR is unable to solve the number already existing problems and
appearing new ones

cosmological and black hole singularities
dark energy (accelerating expansion of the Universe)
initial in�ation
large scale structure of the universe
dark matter evidence
cosmological constant problem
etc. . .

These amazing discoveries have set new serious challenges before
theoretical cosmology faced the necessity of radical modi�cation or
extension of General Relativity
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Scalar-tensor theories

S =

∫
d4x

√
−g [F (ϕ)R− Z(ϕ)gµν∂µϕ∂νϕ− 2U(ϕ)] + Sm [ψm, gµν ]

generalizations of the Brans-Dicke theories

the scalar �eld is

minimally coupled with ordinary matter (physical or Jordan frame)
non-minimally coupled with the scalar curvature by the term F (ϕ)R

Notice: Non-minimal coupling of the scalar �eld with the scalar
curvature is provided by the terms F (ϕ)R
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Horndeski theory

In 1974, Gregory Walter Horndeski derived the action of the most general
scalar-tensor theories with second-order equations of motion
[G.Horndeski, Second-Order Scalar-Tensor Field Equations in a
Four-Dimensional Space, IJTP 10, 363 (1974)]

Horndeski Lagrangian:1

LH =
√
−g (L2 + L3 + L4 + L5)

L2 = G2(ϕ,X) ,

L3 = G3(ϕ,X)□ϕ ,

L4 = G4(ϕ,X)R− 2G4,X(ϕ,X)(□ϕ2 − ϕµνϕµν) ,

L5 = G5(ϕ,X)Gµνϕ
µν + 1

3
G5,X(ϕ,X)(□ϕ3 − 3□ϕϕµνϕ

µν + 2ϕµνϕ
µσϕν

σ) ,

Ga(ϕ,X) are four arbitrary functions, and X = − 1
2 (∇ϕ)

2

Notice: Non-minimal coupling of the scalar �eld with curvature is
provided by two terms, G4(ϕ,X)R and G5(ϕ,X)Gµν∇µϕ∇νϕ

1T. Kobayashi, M. Yamaguchi, J. Yokoyama, Prog. Theor. Phys. 126, 511 (2011).
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Subclasses of the Horndeski theory

LH = L{G2, G3, G4, G5}

Hilbert-Einstein action (GR):
G4(ϕ,X) = 1

2M
2
Pl → LH ∼ 1

2M
2
PlR

Nonminimal coupling: G4(ϕ,X) = f(ϕ) → LH ∼ f(ϕ)R

GR with a scalar �eld: G2(ϕ,X) = ϵX − V (ϕ)

k-essence: G2 = K(ϕ,X)

Kinetic gravity braiding (KGB):
G3 = B(ϕ,X) → LH ∼ B(ϕ,X)□ϕ

Nonminimal kinetic coupling:
G5(ϕ,X) = ηϕ → LH ∼ ηGµν∇µϕ∇νϕ

Fab Four, Gallileons, etc.
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Extended scalar-tensor theories

Landscape of scalar-tensor theories
D. Langlois, Dark energy and modi�ed gravity

in degenerate higher-order scalar-tensor (DHOST) theories: A review
Int. J. Mod. Phys. D 28 (2019), no. 05 1942006
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DHOST theories

S =

∫
d4x

√
−g

[
F(2)(ϕ,X)R+ P (ϕ,X) +Q(ϕ,X)□ϕ

+F(3)(ϕ,X)Gµνϕ
µν +

5∑
a=1

Aa(ϕ,X)L(2)
a +

10∑
a=1

Ba(ϕ,X)L(3)
a

]

L
(2)
1 = ϕµνϕ

µν , L
(2)
2 = (□ϕ)2 , L

(2)
3 = (□ϕ)ϕµϕµνϕ

ν ,

L
(2)
4 = ϕµϕµρϕ

ρνϕν , L
(2)
5 = (ϕµϕµνϕ

ν)2 .

L
(3)
1 = (□ϕ)3 , L

(3)
2 = (□ϕ)ϕµνϕ

µν , L
(3)
3 = ϕµνϕ

νρϕµ
ρ ,

L
(3)
4 = (□ϕ)2 ϕµϕ

µνϕν , L
(3)
5 = □ϕϕµϕ

µνϕνρϕ
ρ , L

(3)
6 = ϕµνϕ

µνϕρϕ
ρσϕσ ,

L
(3)
7 = ϕµϕ

µνϕνρϕ
ρσϕσ , L

(3)
8 = ϕµϕ

µνϕνρϕ
ρ ϕσϕ

σλϕλ ,

L
(3)
9 = □ϕ (ϕµϕ

µνϕν)
2 , L

(3)
10 = (ϕµϕ

µνϕν)
3 .

Notice: Non-minimal coupling of the scalar �eld with curvature is
provided by two terms, F(2)(ϕ,X)R and F(3)(ϕ,X)Gµν∇µϕ∇νϕ
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Non-minimal coupling of the scalar �eld with curvature

Notice: There are only two qualitatively di�erent terms describing
non-minimal coupling of the scalar �eld with curvature: M(ϕ,X)R and
N(ϕ,X)Gµν∇µϕ∇νϕ.

M(ϕ,X)R � Brans-Dicke-like theories

N(ϕ,X)Gµν∇µϕ∇νϕ � theories with non-minimal derivative
coupling
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Theory with nonminimal derivative coupling. I

Focusing on non-minimal derivative coupling, we have

Action: S = S(g) + S(m)

S(m) � the action for ordinary matter �elds

S(g) =
1

2

∫
d4x

√
−g

[
M2

Pl (R− 2Λ)− (ε gµν + η Gµν)∇µϕ∇νϕ− 2V (ϕ)
]

Λ � cosmological constant

ε = 1 (ordinary scalar �eld);
ε = −1 (phantom scalar �eld);
ε = 0 (no standard kinetic term)

η � dimensional coupling parameter; [η] = (length)
2 → η = ±ℓ2

ℓ � characteristic scale of non-minimal coupling
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Theory with nonminimal derivative coupling. II

Field equations:

Gµν = −gµνΛ + 8π
[
T (m)
µν + T (ϕ)

µν + ηΘµν

]
[εgµν + ηGµν ]∇µ∇νϕ = V ′

ϕ

T (ϕ)
µν =ε

[
∇µϕ∇νϕ− 1

2
gµν(∇ϕ)2

]
− gµνV (ϕ),

Θµν=− 1
2
∇µϕ∇νϕR+ 2∇αϕ∇(µϕR

α
ν) − 1

2
(∇ϕ)2Gµν +∇αϕ∇βϕRµανβ

+∇µ∇αϕ∇ν∇αϕ−∇µ∇νϕ□ϕ+ gµν
[
− 1

2
∇α∇βϕ∇α∇βϕ+ 1

2
(□ϕ)2

−∇αϕ∇βϕR
αβ]

T (m)
µν =(ρ+ p)uµuµ + pgµν

Notice: The �eld equations are of second order!
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Isotropic and homogeneous cosmological models

Ansatz: V ≡ 0 (no potential), ε = +1 (ordinary scalar)

ϕ = ϕ(t), T
(m)
µν = diag(ρ(t), p(t), p(t), p(t)), and

the FLRW metric

ds2 = −dt2 + a
2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
k = 0,±1, a(t) cosmological factor, H(t) = ȧ(t)/a(t) Hubble
parameter

Gravitational equations:

3

(
H2 +

k

a
2

)
= Λ+ 8πρ+ 4πψ2

(
1− 9η

(
H2 +

k

3a2

))
,

2Ḣ + 3H2 +
k

a
2
= Λ− 8πp− 4πψ2

[
1 + 2η

(
Ḣ +

3

2
H2 − k

a
2
+ 2H

ψ̇

ψ

)]
The scalar �eld equations:

a
3ψ

(
1− 3η

(
H2 +

k

a
2

))
= Q = const

where ψ = ϕ̇
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Modi�ed Friedmann equation (Master equation). I

Material content is a mixture of radiation and non-relativistic component:

ρ = ρm + ρr = ρm0

(
a0

a

)3

+ ρr0
(
a0

a

)4

Introducing the dimensionless scales factor a, Hubble parameter h, and
coupling parameter ζ:

a =
a

a0
, h =

H

H0
, ζ = ηH2

0 ,

and the dimensionless density parameters:

Ω0 =
Λ

3H2
0

, Ω2 =
k

a
2
0H

2
0

, Ω3 =
ρm0

ρcr
, Ω4 =

ρr0
ρcr

, Ω6 =
4πQ2

3a60H
2
0

,

where ρcr = 3H2
0/8π is the critical density, one has

Modi�ed Friedmann equation

h2 = Ω0 −
Ω2

a2
+

Ω3

a3
+

Ω4

a4
+

Ω6

(
1− 3ζ(3h2 + Ω2

a2 )
)

a6
(
1− 3ζ(h2 + Ω2

a2 )
)2
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Modi�ed Friedmann equation (Master equation). II

Modi�ed Friedmann equation

h2 = Ω0 −
Ω2

a2
+

Ω3

a3
+

Ω4

a4
+

Ω6

(
1− 3ζ(3h2 + Ω2

a2 )
)

a6
(
1− 3ζ(h2 + Ω2

a2 )
)2

Assuming Λ ≥ 0, one has Ω0 ≥ 0

Ω2 = k/a20H
2
0 , hence

Ω2 = 0, Ω2 < 0, Ω2 > 0 if k = 0,−1,+1, respectively

ζ = ηH2
0 = ± (ℓ/ℓH)

2
, where ℓH = 1/H0, hence

ζ is proportional to the square of ratio of two characteristic scales,
hence ζ ≪ 1 ???

In case Ω6 = 0 (no scalar with non-minimal derivative coupling) one
has the standard master equation of ΛCDM cosmological model

In case Ω6 ̸= 0 but ζ = 0 (no non-minimal derivative coupling) one
has a cosmological model with an ordinary scalar �eld
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Modi�ed Friedmann equation (Master equation). III
Denoting y = h2 one can rewrite the master equation as a cubic in y
algebraic equation

c3y
3 + c2(a)y

2 + c1(a)y + c0(a) = 0

with the coe�cients

c3=9ζ2

c2=−6ζ

(
1− 3ζΩ2

a2

)
− 9ζ2

(
Ω0 −

Ω2

a2
+

Ω3

a3
+

Ω4

a4

)
,

c1=

(
1− 3ζΩ2

a2

)2

+ 6ζ

(
1− 3ζΩ2

a2

)(
Ω0 −

Ω2

a2
+

Ω3

a3
+

Ω4

a4

)
+

9ζΩ6

a6
,

c0=−
(
1− 3ζΩ2

a2

)2 (
Ω0 −

Ω2

a2
+

Ω3

a3
+

Ω4

a4

)
−

(
1− 3ζΩ2

a2

)
Ω6

a6
.

Notice: Roots h = h(a) of the cubic polynomial (14) de�ne a global
cosmological behavior as follows∫ a

a=1

dã

ãh(ã)
= H0(t− t0).
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Turning points and bounces in the Universe evolution

A turning point in the Universe evolution may occur at a moment t = t∗,
when the scale factor a(t) reaches its extremal, either maximal or
minimal value, a(t∗) = a∗. Correspondingly, y(a∗) = h2(a∗) = 0.

The polynomial P (a, y) = c3y
3 + c2(a)y

2 + c1(a)y + c0(a) has a root
y(a∗) = 0 if and only if c0(a∗) = 0,and hence we obtain two separate
algebraic conditions for a∗:(

1− 3ζΩ2

a2∗

)(
Ω0 −

Ω2

a2∗
+

Ω3

a3∗
+

Ω4

a4∗

)
+

Ω6

a6∗
= 0, (1)(

1− 3ζΩ2

a2∗

)
= 0. (2)

NOTICE: The conditions (1) and (2) have NO solutions in case Ω2 ≤ 0.
Therefore, in cosmological models with negative or zero spatial curvature
there are no turning points.
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Turning points and bounces: Ω2 > 0 (positive spatial
curvature)

Condition 1:
(
1− 3ζΩ2

a2
∗

)(
Ω0 − Ω2

a2
∗
+ Ω3

a3
∗
+ Ω4

a4
∗

)
+ Ω6

a6
∗
= 0

In the simplest case: Ω0 = Ω3 = Ω4 = 0, ζ = 0, one has

a2∗ =
√
Ω6/Ω2 =

√
(1 + Ω2)/Ω2.

Supposing Ω2 ≪ 1, we get a2∗ = a2max ≈ 1/Ω
1/2
2 ≫ 1

Therefore, the Universe's expansion is stopped when the scale factor
achieves its maximal value amax and then replaced by contraction.

This is a turning point!

Thus, a root (if exists) of the Condition 1 gives a maximal value
a∗ = amax(Ω0,Ω2,Ω3,Ω4, ζ) which does generally depend on all
parameters of the model.
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Turning points and bounces: Ω2 > 0 (positive spatial
curvature)

Condition 2: 1− 3ζΩ2

a2∗
= 0 −→ a2∗ = 3ζΩ2

Since Ω2 ≪ 1 and ζ ≪ 1, we get a2∗ = a2min ≪ 1

Therefore, the Universe's contraction is stopped when the scale factor
achieves its minimal value amin = (3ζΩ2)

1/2.

NOTICE:

The value amin = (3ζΩ2)
1/2 depends ONLY on the product ζΩ2,

and does NOT depend on Ω0, Ω3, Ω4!

Following [a], we may say that the cosmological constant and
material substance are screened at the early stage and makes no
contribution to the universe evolution.

aA. A. Starobinsky, S. V. Sushkov, and M. S. Volkov, The screening Horndeski

cosmologies, JCAP 1606 (2016), no. 06 007
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Bounce solution

Let us consider an asymptotic behavior of h near a = a∗ ≡ (3ζΩ2)
1/2:

9ζh2 ≈ 2
∆a

a∗
− 3

(
∆a

a∗

)2

+ 4

(
∆a

a∗

)3

+ . . . ,

where ∆a = a− a∗.
Integrating, we obtain

a(τ)=amin

(
1 +

∆τ2

18ζ

)
+O(∆τ4),

h(τ)=
∆τ

9ζ
+O(∆τ3),

where amin = a∗, ∆τ = τ − τ∗, and τ∗ is a constant of integration.

Evidently: a(τ) → amin and h(τ) → 0 as ∆τ → 0, i.e. τ → τ∗.

NOTICE: The spacetime geometry is regular when approaching to the
�bounce� amin!
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Bounce solution

Is the point a2∗ = a2min = 3ζΩ2 a bounce?

Scalar �eld equation:

ϕ′ =
q

a3
(
1− 3ζ

(
h2 + Ω2

a2

))
Asymptotics:

ϕ′ ≈ 27ζq

2a3min∆τ
2
.

Thus, one has ϕ′ ∝ 1/∆τ2 → ∞ as ∆τ → 0, i.e. τ → τ∗.

NOTICE: One has a singular behavior of the scalar �eld when
approaching to the �bounce� amin.

A `singular' bounce!
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Examples of numerical solutions. I.
The case ζ ̸= 0 and Ω0 = Ω3 = Ω4 = 0

Plots of h2 versus a
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Examples of numerical solutions. II.
The case ζ ̸= 0 and Ω0 = Ω3 = Ω4 = 0

Plots of a versus t

Sergey Sushkov Cosmological bounce 21 / 23



ααα

Concluding remarks

We have explored bounce scenarios in the framework of
homogeneous and isotropic cosmological models with arbitrary
spatial curvature in the theory of gravity with non-minimal derivative
coupling.

In general, the model depends on �ve independent dimensionless
parameters: the coupling parameter ζ, and density parameters Ω0,
Ω2, Ω3, Ω4.

A bounce cosmological scenario is most general for the homogeneous
and isotropic cosmological model with positive spatial curvature
(Ω2 > 0, k = +1).

Near the bounce one has a(τ) ≈ amin

(
1 + ∆τ2/18ζ

)
→ amin and

h(τ) ≈ ∆τ/9ζ → 0 as ∆τ → 0. Therefore, the spacetime geometry
is regular when approaching to the bounce.

However, the scalar �eld diverges near the bounce as follows:
ϕ′ ∝ 1/∆τ2 → ∞ as ∆τ → 0.

Therefore, we can term this scenario as a `singular' bounce.
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THANKS FOR YOUR ATTENTION!
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