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Hilbert space factorization puzzle in AdS/CFT

Bulk: theory of gravity in AdSy1
with Hilbert space Hpyk.
Boundary: two copies of CFT with
CFT;, CFTx Hilbert space H; ® Hg.

p The puzzle: how to see from the
bulk view that

Hpuk = H @ Hg?
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idea

Let us pick operators k; r = e PrrH in the CFT. r. We denote their
bulk duals as K; g (constructed according to HKLL). Then the
factorization holds if and only if!

Zbulk = Trg.(bulk K/_KR = TI’g.CL k/_ Trg{R kR .

How to compute this trace?

LIf there are gauge symmetries in the bulk, there needs to be an additional

assumption.
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factorization holds if and only if?

Zbulk = Trg.(bulk K/_KR = TI’g.CL k/_ Trg{R kR .
How to compute this trace?

e Construct a family of x special semiclassical bulk states in the
microcanonical ensemble (Balasubramanian et. al., 2212.02447)

f}{gulk(/{) = Span{|\U,-E>, i=1,...,Kk}.

2|f there are gauge symmetries in the bulk, there needs to be an additional

assumption.
Mikhail Khramtsov 2/14



Let us pick operators k; r = e PrrH in the CFT. r. We denote their
bulk duals as K g (constructed according to HKLL). Then the
factorization holds if and only if3

Zbulk = Trg.(bulk K/_KR = TI’g.CL k/_ Trg{R kR .
How to compute this trace?

e Construct a family of x special semiclassical bulk states in the
microcanonical ensemble (Balasubramanian et. al., 2212.02447)

HE (k) = Span{|VE), i=1,... k}.
e Use the Gram matrix G; = (WF|WF) and write

mek = TI‘:}CE

bulk

() (KLKR) = (G71) (WFIKLKRIVE) = lim (G"); (WF|KLKR|VF)

3If there are gauge symmetries in the bulk, there needs to be an additional

assumption.
Mikhail Khramtsov 2/14



Main idea

We cannot compute Zy,k exactly in quantum gravity in general.
However, we can compute such quantities in the effective low-energy
description (coarse-grained level).
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We cannot compute Zy,k exactly in quantum gravity in general.
However, we can compute such quantities in the effective low-energy
description (coarse-grained level).

Step 1. Compute Zp,x = Trﬂg L) (KLKR) in the leading order in
e~1/Gn | verify factorization.
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We cannot compute Zy,k exactly in quantum gravity in general.
However, we can compute such quantities in the effective low-energy
description (coarse-grained level).

Step 1. Compute Zp,x = Trﬂg L) (KLKR) in the leading order in
e~1/Gn | verify factorization.

= —=F .
Step 2. Show that Z2,, = Zp,k + O (%N) (see the paper for details)
Factorization in a given microcanonical band trivially extends to
factorization of any bulk Hilbert subspace corresponding to a finite range
of energies.
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We cannot compute Zy,k exactly in quantum gravity in general.
However, we can compute such quantities in the effective low-energy
description (coarse-grained level).

Step 1. Compute Zp,x = Trﬂg L) (KLKR) in the leading order in
e~1/Gn | verify factorization.

= —=F .
Step 2. Show that Z2,, = Zp,k + O (%N) (see the paper for details)
Factorization in a given microcanonical band trivially extends to
factorization of any bulk Hilbert subspace corresponding to a finite range
of energies.

e 2D JT gravity case: done by Boruch et. al., 2406.04396 exactly to
all orders of Gy.

e Present work: generalization to GR in arbitrary D > 3 in the

leading order of e~1/6n,

Mikhail Khramtsov 3/14



Why take the coarse-grained gravity path integral seriously?

(at semiclassical level)

1. AdS/CFT-correspondence

We can precisely construct states in CFT which have convenient
geometric duals in the leading order of the semiclassical limit. We can
then compute correlators in these states such as Zy,x by summing over
the saddle point geometries satisfying the appropriate boundary
conditions.
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Why take the coarse-grained gravity path integral seriously?

(at semiclassical level)

1. AdS/CFT-correspondence

We can precisely construct states in CFT which have convenient
geometric duals in the leading order of the semiclassical limit. We can
then compute correlators in these states such as Zy,x by summing over
the saddle point geometries satisfying the appropriate boundary
conditions.

2. Replica wormholes and the unitary Page curve

Recent progress in black hole information
problem shows that nontrivial saddle points
(replica wormholes) of gravity path integral
are crucial for restoring unitarity.

Figure 1: from Almbheiri et. al.,
2006.06872
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(at semiclassical level)

Why take the coarse-grained gravity path integral seriously?

3. V. A. did so too

INSTABILITY OF SPACE-TIME DUE TO
EUCLIDEAN WORMHOLES

V.A Rubakov and O.Yu. Shvedov

Institute for Nuclear Rescarch of the Russian Academy of Sciences,

60-th October Anniversary Prospect 7a, Moscow 117312, Russia
and
Sub-department of Quantum Statistics and Field Theory,
Department of Physics, Moscow State University

Vorobicuy gory, Moscow 119899, Russia

November 7, 2017

Abstract

The problem of topology change transitions in quantum gravity is discussc
that the contribution of the Giddings-Strominger wormhole to the Euclidean path integ
is pure imaginary. This is checked by two techniques: by the functional integral approach

and by the analysis of the Wheeler-De Witt equation. We present also a simple quantum
mechanical model which s

ares many features of the system consisting of parent and haby
universes. In this simple model, we show that quantum coherence is completely lost and
obtain the equation for the effective density matrix of the "parent universe’
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A NEGATIVE MODE ABOUT EUCLIDEAN WORMHOLE

A. Rubakov*{] and O. Yu. Shvedov=*f]

* Institute for Nuclear Rescarch of the Russian Academy of Sciences,

60-th October Anniversary Prospect, 7a, Moscow, 117312, Russia

® Physics Department, Moscow State University,

Vorobyouy Gory, Moscow, Russia

Abstract

Wormholes - solutions to the enclidean Einstein equations with non-trivial topol-
ogy — are usually assumed to make real contributions to amplitudes in quantum
gravity. However, we find a negative mode among fluctuations about the Giddings-
Strominger wormhole solution. Hence, the wormbole contribution to the euclidean
functional integral is argued to be purely imaginary rather than real, which suggests
the inferpretation of the wormhole as describing the instability of a large universe

against the emission of baby universes.



Outline of the rest of the talk

1. Review of semiclassical black hole microstates in GR
Balasubramanian et. al., 2212.02447 & 2212.08623

e Microstates as thin shells inside AdS black holes
e Overlap structure

e Gram matrix and the resolvent
2. Trace factorization at the coarse-grained level

e Computing the trace
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Semiclassical microstates: boundary view

The boundary state |W) € 3, ® Hr can be represented by the Euclidean
time contour

Energy basis:
Hilm) ® [n)g = Em|m) ® [N)R, Hg|m)( ® [n)r = En|lm)L ® |n.)r
The microstate:

1 _AB = _af
U = S Y e e g m s e, (1)

where Z; = Tr [O}e*BLHoje*BnH]_
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Semiclassical microstates: bulk view

The operator O; is dual to a shell of mass determined by
mf =j2u? = Aj(Aj — d), where d = D — 1.

e Shells are inside both event horizons, they can be arbitrarily heavy
e One can have microstates with multiple shells

e Single-shell states are sufficient to have an overcomplete basis
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Inner product (V,|V;)

Assumption: large shell mass limit  — oco. This shrinks the shell
worldline and pinches off the two Euclidean AdS black hole segments into
two disks

Zon-shel[V] = Z(8L)Z(Br) s Z(B) = e =M
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Second moment <\U,|WJ> <WJ‘\U,>

Key point: there is a connected contribution given by two-boundary

wormbhole

Br

261 28R

/BL [
Br I

AL R
In the pinching limit, the result is (no sum)

U — 5. o Z2(281)Z(26r)
‘<\|/,|\UJ>‘2 - (5U + Z(BL)2Z(BR)2 :
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Resolvent of the microstate Gram matrix

For the Gram matrix Gj = (V;|V;) we define the (coarse-grained)

resolvent

1 1
Rj(A) = <05 + > o1 (67
n=1

The trace of the resolvent R = Zf:lRTJ can be represented

diagrammatically and resummed as

The Schwinger-Dyson equation is easily solved in microcanonical
ensemble.
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Computing the bulk trace

Coupling back to the bulk trace, we have

S 1 [dA
— [B E E\ _ . (5 E
Zouic = lim (G"); (VEIKLKRIVE) = 7 ¢ < Ri(A)(VEIKLKRIVE)

The r.h.s. can also be represented diagrammatically and resummed:
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Result for the bulk trace

e For k> e°t5%  the degeneracy of the zero eigenvalue of the Gram
matrix G is k — e°.1t5R and the resolvent solution satisfies
Resy—oR()\) = k — €757 The bulk trace gives a factorized result:

Tl"f}cgmk(,{) (K[_KR) =Zpk = et torR—BLEL —BrER

e For k < €158 the Gram matrix has no zero eigenvalue and thus
R(0) = Ry with Ry a finite number. The bulk trace does not
factorize:
Roe$L+SR

Ry — eSL+Sr

Trﬂfﬁ k(%) (KLKR) = e PLEL—PrRER
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Conclusions

e We have shown that bulk Hilbert space of every theory of quantum
gravity in AdS which has GR as its low-energy limit, factorizes in the
leading order of semiclassical expansion.

e The crucial ingredient is an overcomplete family of semiclassical
states with nonperturbatively small overlaps.

Limitations and possible generalizations:

e Leading order of semiclassical expansion

e Gauge symmetries in the bulk require physical states in every irrep of
the bulk gauge group for the factorization argument to hold.

e The argument can be generalized to asymptotically flat spacetimes.
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Backup
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Dynamics of thin shells in Euclidean AdS

Euclidean AdS black hole metric:

dr?
dSi: ()dTi—}— _|_rde .
fi(r)
where
16T GM.
fi(r)= r2+1_m, for d > 2,
r? — 8rGMy., for d = 2.

Trajectory of a thin spherical shell parametrized by functions r = R(T),
7 =74(T) is determined by Israel junction conditions:

fory = £/ —R2 4+ fy,

R? 4+ Ve(R) = 0,

where

M, — M_ 4w Gm )2

VefF(R):_f+(R)+ ( o - (dfl)VQRdfz
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Thin shell inside the horizons

B

Boundary conditions for the shell inside both horizons: 7 (R.) = %
7_(R.) = 0.

The trajectory is given by

Py
dR [f_+V,
T—(R) = /? _+ o
R, '— eff
R~
dR [fi +V,
7+(R) = 5;_1_/ OR T+ VelF
2 R f+ — Vetr
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Thin shell outside the r. horizon

Boundary conditions for the shell infalling from outside the ry horizon:

(R =0, 7(R.) =0.
The trajectory is given by

o
dR [f_+ V.
r (R) = /R? +ffeff7
o
dR |f V.
nR) = [
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Problem of black hole microstate (over)counting

Black holes have finite entropy:

A

E )

In quantum gravity we expect it to be equal to the coarse-grained entropy

SgH =

S =dimJ

e Top-down string models (Strominger, Vafa) and fuzzball paradigm
produce quantum gravity microstates which reproduce the
Bekenstein-Hawking entropy.

e But can this microstate counting be found in any semiclassical
gravity?

Balasubramanian et. al., 2212.02447 & 2212.08623: there is infinite set
of microstates in semiclassical gravity which counts the coarse-grained
entropy matching with Bekenstein-Hawking.
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Microstate counting: main idea

We study the Gram matrix of microstates: G = (W;|W;); i,j =1,Q
The computation of the overlap structure is performed the gravitational
path integral rules, which is denoted by the overline. The main steps:

1. Obtain the expression for the moments of overlaps

Gl = (Wi[w;)"

for general n.

2. Solve the resolvent equation for the Gram matrix:

1 1 o~ 1 —

3. Find the density of eigenvalues of the Gram matrix in the gravity
path integral, which is defined as

D(\) = lim —(R(A — ie) — R(A + ie)).
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