

Разработка и создание детекторов тепловых нейтронов в ЛНФ ОИЯИ

В. Боднарчук

- Current status of the IBR-2 reactor
- Neutron detectors at the IBR-2 reactor instrumentation
 - > Detectors with ³He converter
 - > Scintillation detectors
- > Detector electronics
- Development of the technology of thin film B₄C coverage

Pulsed Research Reactor IBR-2

On 2022 the license for the reactor exploitations was expired. Obtaining the license – beginning of 2024. Reactor startup – autumn of 2024.

2
PuO ₂
69
9
5
200* 340
600 300
Nickel + steel
55 000
7
~10 ¹³ n/cm ² s

Site of instruments

13 INSTRUMENTS INCLUDE IN USER PROGRAMM

Diffraction:	Small-angle	Inelastic
HRFD	YuMo	scattering:
RTD	Reflectometry:	NERA
DN-6	GRAINS	NAA.
EPSILON	REMUR	REGATA
SKAT	REFLEX	REOMM
DN-12	Under constructio	n:
FSD	 SANSARA – small angle + imaging 	
	- DINI tradentia	a shit sufficient

• BJN – inelastic scattering

Distribution of the beam time

- **35%** (internal proposals)
- **•55%** (external regular proposals)
- **10%** (external urgent beam time requests)

Regular access applications

	First round	Second round	
Period for proposal submission	September 1 - October 15	March 1 - April 15	
Experiments time	1 half-year	2 half-year	

IBR-2 User Club website: <u>https://ibr-2.jinr.ru/</u> 418 users are volume of the community (reregistration since 2020).

Neutron detectors with He-3 converter

Single counters

Multi counter (19) 90° detector (SKAT Instrument)

Producer: Scientific-Production Firm "CONSENSUS" Moscow reg., Zaprudnya

Cathode

18

1D/2D PSD MWPC

Characteristic	Value		
Detector type	Area monitor	Linear PSD	Area PSD
Operating area, mm ²	100×100	200×80	225×225
Efficiency, %	$10^{-2} - 10^{-6} (\lambda = 1 \text{ Å})$	$65\% (\lambda = 2 \text{ Å})$	$65\% (\lambda = 2 \text{ Å})$
Coordinate resolution, mm ²	4×4	2	2×2
Load, kHz	Up to 100	Up to 100	Up to 1000
Uniformity of channels, %	No worse that 20% (5%*)	No worse that 5%*	No worse that 15%
Working gas	3 He or N ₂ + CF ₄	$^{3}\text{He} + \text{CF}_{4}$	3 He + CF ₄
Total pressure, 10 ⁵ Pa	1	4.5	4.5

* The result with summation over the channels.

Profile of the beamline 6b of the IBR-2

Diffraction spectra (La_{0.1}Pr_{0.9})_{0.7}Ca_{0.3}Mn_{0.3}) at the beamline 5 (HRFD)

Gaseous neutron detectors with He-3 converter

Linear PSD with resistive anode

Scheme of tube package

The assemble of 8 tubes of 8 mm diameter, 600mm length

Space resolution – 0.5% of the tube length Average efficiency ~ 55%

Test of the module at the neutron beam at IR-8 reactor (Kurchatov Institute, Moscow)

Gaseous neutron detectors with He-3 converter

Ring detectors

_ 1 √⊑	Parameter	
1.	Detector casing (material)	~ aluminum– magnesium allov
2.	Inner radius of the detector ring, mm	637
3.	Outer radius of the detector ring, mm	800
4.	The angle of overlap, degrees	360°
5.	Total number of independent detecting elements	96
<mark>6</mark> .	Single detector element, mm	parallelepiped 123×40×12
7.	At an operating pressure of ³ He of 4 atm. the detection efficiency of neutrons with a wavelength of 1.8 Å coming into the detector volume	\approx 89.4 %, (without considering the absorption in the detector wall).
<mark>8.</mark>	Work pressure max., atm.	7

The multisection ring detector is designed for DN-6 spectrometer at the IBR-2 reactor (channel №6b). The detector is designed to study small-volume samples at high pressure and consists of 16 sections, where each one section is divided into six independent detector elements. The total number of independent detecting elements in the gas ring is 96. 16 sectors with 6 detector

Gaseous neutron detectors with He-3 converter

Ring detectors

Efficiency at 1.8 Å ~ 78 %

The ring detector is designed for measure small-angle scattering of thermal neutrons at the IBR-2 reactor (beamline 6a) instrument: Real-Time Neutron Diffractometer (RTD).

Structurally the detector is divided into 9 independent equidistant coaxial rings. The cathodes of each of the rings are divided into 16 independent sectors, the same for each ring. Registration signals are taken from the anode wires (common for every single ring) and with each of the 16 cathodes - 153 independent detector elements.

90°- ASTRA detector

Parameters	ASTRA-M
Ω, sr	0.55
2θ, deg	70-110
ф, deg	24
Efficiency (conversion), %	72
Δd/d	8.30E-04
Detector counters	14
Total detector max count rate I (no chopper), s ⁻¹	5.03E+06
1 counter max count rate I (no chopper), s ⁻¹	3.59E+05
Total detector max count rate I (with chopper), s ⁻¹	1.01E+06
1 counter max count rate I (with chopper), s ⁻¹	7.18E+04
DAQ electronics	1 MPD-32 or 2 N6730 (8-channel, CAEN
	digitizer)
Electronic efficiency (1/(1+I*d.t.)	
for max value n	0,6 for 2 μ s dead time

Back Scattering Detector (BSD)

Internal 3 rings divided by sectors 30°(12 sec./ring) External 3 ring divided by sectors 15° (24 sec./ring)

Back Scattering Detector (BSD)

Back Scattering Detector (BSD)

Back Scattering Detector (BSD)

Selection of events: Pulse shape discrimination method - PSD

Back Scattering Detector (BSD)

- Photomultipliers : 216
- The surface of scintillator S > 10 m^2
- The approximate length of fibers L=36000 m
- High voltage (CAEN)
- 2 NIM creates
- Pre-amplifiers and 216 independent detectors of the Data Acquisition and Accumulation System. The system is designed in the NIM standard. In its full configuration, it consists of 8 units of amplifiers-discriminators with 32 inputs.

An element of the scintillation screen (white plate) together with the optical wavelength shifting fibers glued to it on both sides.

Back Scattering Detector (BSD)

Experimental example of MPD32-USB3

- MPD-32 combines a discriminator and an encoder for 32 analog inputs
- Digital logic on 2 FPGA (Altera Cyclone IV)
- USB3.0 interface with optical fiber extender
- Maximum data rate 6*10⁷
 event/sec
- High speed (2.5 Gb) interunit interface for linking several MPD-32 to common USB3.0 port.

Back Scattering Detector (BSD)

Parameters	BSD
Ω , sr	2
2θ, deg	133-175
φ, deg	360
Efficiency (conversion), %	85
Δd/d	2.62E-04
Detector counters	216
Total detector max count rate I (no chopper), s ⁻¹	1.30E+08
1 counter max count rate I (no chopper), s ⁻¹	6.02E+05
Total detector max count rate I (with chopper), s ⁻¹	4.69E+07
1 counter max count rate I (with chopper), s ⁻¹	2.17E+05
DAQ electronics	8 MPD-32 or 8 DT5560SE (32-channel, CAEN digitizer)
Electronic efficiency 1/(1+I*d.t.) for max value n	0,5 for 2 μ s dead time

Detector electronics

DAQ Electronics for 1D or 2D PSD

Design and production FLNP JINR

The DeLiDAQ-2D provides two basic options of data acquisition: histogramming with on-line sorting and collection of spectra in the module memory, and list mode.

8-channel TDC-GPX 80 ps res. Digital logic baded on FPGA (Altera Cyclone III) Count rate together with data transfer and writing to PC is no less than 10⁶ events/s. Data transfer between the DAQ and USB computer via a serial optical fiber line at a rate of 1.25 Gbit/s. The maximum distance between DAQ electronics and computer is up to 100 m.

Data transfer rate through USB 2.0 port is 32 MB/s.

B4C coverage technology

Collaboration FLNP JINR & State University Dubna

Magnetron sputtering machine VCR-300

Neutron detector design with B₄C convertor

Neutron detector design with B₄C convertor

TDC board FPGA 10G TCP/IP 10G TCP/IP 10G TCP/IP 10G TCP/IP Frontend Computer

Multi-layer detector project

res. 32 ch. AmpDisc, 7ns res.

Parameters	Narrow gap detectors	MWPC	
	Proportio	onal mode	
Gas amplifier	1	10 ⁵	
Anode-cathode distance, mm	1 - 2	5 - 10	
Anode wire step, mm	≤1	≥ 2	
Radius of avalanche area, mm	0,3 – 0,5	0,06 - 0,2	
Current of electron avalanche, µA	0,5	0,5	
Anode signal duration (in base), ns	20	100	
Amplitude spread, ΔΑ/Α, %	100	100	
Time resolution (FWHM), ns	5	40	
Limit of count rate, c ⁻¹ cm ⁻²	10 ⁸	5*10 ⁵	
Radiation resistance, Кл/см	10	0,2	

Neutron detector design with B₄C convertor

Neutron detector design with B₄C convertor

Структура плоской камеры для регистрации медленных нейтронов: 1 - печатная плата со стрипами, 2 - термополированное стекло, 3 - карбид бора, 4 – спейсер (~ 400µ), 5 - алюминиевая фольга.

Development of infrastructure

With financial support of Russian Federation Ministry of Education and Science, Grant Nº 075-10-2021-115 from 13.10.2021

Building of experimental site for detector production

Development of infrastructure

With financial support of Russian Federation Ministry of Education and Science, Grant № 075-10-2021-115 from 13.10.2021

Building of experimental site for detector production

Spattering machine for B₄C coverage Ferry Vatt company, Kazan, Russia

Max. coverage square 400x1200 mm²

Initial stage of building

Today: modern equipment and engineer systems

Thank you for the attention!

CONTACTUS

The Frank Laboratory of Neutron Physics, JINR, Joliot-Curie str. 6, Dubna, Moscow reg., Russia, 141980 bodnarch@nf.jinr.ru