Высокогранулярный нейтронный детектор и система передних детекторов спектаторов эксперимента BM@N

Николай Карпушкин ИЯИ РАН

Сессия-конференция секции ядерной физики ОФН РАН 17—21 февраля 2025, Москва

Обзор

- Новый высокогранулярный нейтронный детектор эксперимента BM@N
 - Физическая мотивация измерения нейтронов в экспериментах по столкновению тяжелых ионов
 - Конструкция детектора и исследование его характеристик
 - Статус создания детектора
- Передние детекторы спектаторов эксперимента BM@N
 - Задачи и конструкция детекторов
 - Рабочие характеристики на физическом сеансе Xe+CsI

Уравнение состояния материи с высокой барионной плотностью

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

Уравнение состояния материи с высокой барионной плотностью

Энергия связи на нуклон Изоспиновая асимметрия: $\delta = (\rho_n - \rho_p)/\rho$

 $E_A(
ho,\delta) = E_A(
ho,0) + E_{sym}(
ho)\delta^2 + O(\delta^4)$

Symmetric matter

 В настоящее время активно изучается посредством наблюдаемых (таких как потоки, выходы мезонов и др.) и исследования несжимаемости.

$$K_0 = 9\rho^2 \frac{d^2 E_A}{d\rho^2}$$

 Один из основных источников неопределенности: расхождение между существующими экспериментальными данными.

Symmetry energy

• Один из основных параметров для изучения – наклон E_{sym}.

- Отсутствуют экспериментальные данные при $E_{kin} > 0.4 \text{ A}\Gamma$ эB.
- Необходимо определить наблюдаемые величины, чувствительные к *L*, и получить новые экспериментальные данные.

Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5

Необходимы новые данные для дальнейшего ограничения транспортных моделей с адронными степенями свободы.

Энергия симметрии при высокой барионной плотности

- Область плотностей Nuclotron-NICA: $2 < n_B/n_0 < 8$
- Энергия симметрии E_{sym} обладает выраженной зависимостью от плотности, что может быть охарактеризовано наклоном *L*.

Какие наблюдаемые величины можно использовать для извлечения информации о *L*?

Наблюдаемые величины для изучения энергии симметрии

Отношения выходов n/p

 \checkmark Выраженная зависимость от наклона L

✓ Слабая зависимость от несжимаемости K_{θ}

Для изучения энергии симметрии необходимо экспериментально измерить выходы и азимутальные потоки нейтронов

Задача: исследовать энергию симетрии в неизученной области высокой барионной плотности

Как:

• Дифференциальное изучение отношения n/p (выходы, азим. потоки)

Измеряя:

- протоны спектрометром BM@N
- <u>нейтроны</u> при помощи HGND по их кинетической энергии, определенной по времени пролета

Общая длина ~ 48cm (1.5 λ_{in})

Конструкция детектора

Светонепроницаемая сборка с воздушным охлаждением. Каждое плечо включает:

- 1 слой-вето
- 7 слоев медного поглотителя (толщина 3 cm)
- 7 активных слоев:
 - 11x11 матрица сцинтилляторов 4x4x2.5 cm³
 - С обеих сторон печатные платы (РСВ) электроники
 - Плата выше по пучку: светодиоды для калибровки
 - Плата ниже по пучку: SiPMs и аналоговая электроника

F. Guber, et al., Instrum. Exp. Tech. №3 (2024)

Схема считывания

- 1. Вспышка сцинтиллятора
- 2. SiPM EQR15 11-6060D-S
- 3. Высокоскоростной компаратор с дифф. LVDS выходом
- 4. ВЦП на основе ПЛИС

= Время отклика + ТоТ

На канал

- Динамический диапазон: 0.5-7 МІР
- Временное разрешение: 150 ps
- Амплитудное разрешение: < 20% (реконструировано из ТоТ)

F. Guber, et al., Instrum. Exp. Tech. 66 (2023) 4, 553-557.D. Finogeev, et al., Nucl. Instrum. Meth. A 1059 (2024) 168952.N. Karpushkin, et al., Nucl. Instrum. Meth. A 1068 (2024) 169739.

SiPM: Beijing NDL EQR15 11-6060D-S

- Активная зона 6×6 mm²
- Пиксель15×15 µm²
- Пикселей: 160 000
- PDE: 45%
- Усиление: 4*10⁵

Моделирование характеристик детектора

За 1 месяц работы BM@N можно собрать ~1.2×10⁹ одиночных первичных нейтронов с кинетической энергией > 300 МэВ.

Верхний предел: **1.5**×**10**⁹ нейтронов (требуется распознавание многонейтронных событий).

BiBi@3AGeV

DCM-QGSM-SMM

Статус создания детектора

Размещение платы РСВ

Макетный прототип собран в ИЯИ РАН

- Сцинтилляционные ячейки: Все ~2000 ячеек (40×40×25 мм³) изготовлены.
- Печатные платы (РСВ): Дизайн завершён, производство в процессе.
- Считывающая плата: ВЦП на основе ПЛИС находится в активной разработке.
- Прототип: Собран первый макетный прототип со сцинтилляционным слоем. Завершены приготовления к тестам на пучке.
- Сроки: Ввод в эксплуатацию запланирован на конец 2025 года.

Передние детекторы спектаторов установки BM@N

- FHCal (Forward Hadron Calorimeter)
- FQH (Forward Quarz Hodoscope)
- Задачи:
- Центральность

<u>Д. Идрисов 21.02.2025, 14:00</u> <u>А. Деманов 21.02.2025, 14:15</u>

 Ориентация плоскости реакции <u>М.Мамаев 17.02.2025, 16:15</u> <u>И.Жаворонкова 17.02.2025, 16:45</u>

□ Magnet SP-41 (0) ■ Vacuum Beam Pipe (1) ■ BC1, VC, BC2 (2-4) ■ SiBT, SiProf (5, 6) ■ Triggers: BD + SiMD (7) FSD, GEM (8, 9) \Box CSC 1x1 m² (10) TOF 400 (11) DCH (12) TOF 700 (13) ScWall (14) FD (15) ■ Small GEM (16) \Box CSC 2x1.5 m² (17) Beam Profilometer (18) ■ FQH (19) □ FHCal (20) HGN (21)

FHCal (Forward Hadron Calorimeter)

- 34 внутренних модулей 15х15 сm² 42 пластины Pb/scint (16mm Pb + 4mm Scint)
- 20 внешних модулей 20х20 cm² 60 пластин Pb/scint (16mm Pb + 4mm Scint)
- Длина малого модуля ~ 4 λ_{int} Длина большого модуля ~ 5.6 λ_{int}
- Светосбор 6 WLS оптоволокон с каждых 6 последовательных слоев сцинтиллятора (единая секция) соединяются в
 - оптическом разъеме на заднем торце модуля
- Считывание света:
 7 SiPM на малый модуль
 - 10 SiPM на большой модуль
- Вес малого модуля 200kg
 Вес большого модуля 500kg

Wavelength (nm)

BM@N FHCal

PDE: 12%

модуля адронного калориметра

производство

Аналогичные калориметры спроектированы и созданы группой ИЯИ РАН для экспериментов MPD@NICA (ОИЯИ), NA61/SHINE (CERN SPS), CBM@FAIR (GSI)

FQH (Forward Quarz Hodoscope)

Используется для измерения заряженных фрагментов в пучковом отверстии FHCal – необходимо для определения централности ядро-ядерных столкновений

- Перекрывает пучковое отверстие 15*15сm²
- Считывание света с обоих торцов
- 2 MPPCs соединенные параллельно для считывания света каждой полосы
- Каждая пара SiPM считывается с усилением x1 и x4

Hamamatsu MPPC S14160-3015PS 3*3mm² Пикселей: 39984 Усиление: 3.6*10⁵ PDE: 32%

Beam

axis

FQH

FHCal

Передние детекторы спектаторов в физическом ceance XeCsI 3.8A GeV и 3.0A GeV

- Исследовались столкновения ядер ксенона с мишенью йодида цезия при двух энергиях.
- Передние детекторы спектаторов продемонстрировали стабильную работу в ходе физического сеанса ВМ@N в 2022–2023 гг.
- Почти вся статистика находится в пределах 5σ, за исключением тестовых данных.

Определение центральности: корреляция FQH&FHCal

$$c(b) = \frac{\int_0^b \frac{d\sigma}{db'} db'}{\int_0^\infty \frac{d\sigma}{db'} db'} = \frac{1}{\sigma_{A-A}} \int_0^b \frac{d\sigma}{db'} db'$$

Прицельный параметр b не является измеряемой в эксперименте величиной, поэтому необходимы экспериментальные наблюдаемые для определения центральности.

<u>Методы определения центральности в</u> эксперименте <u>ВМ@N</u> Д. Идрисов 21.02.2025, 14:00

XeCsI@3.8A GeV. DCM-QGSM-SMM

Выводы

- Новый высокогранулярный нейтронный детектор перспективный детектор для эксперимента BM@N, предназначенный для исследования энергии симметрии при высокой барионной плотности.
- Энергия симметрии представляет интерес для изучения свойств нейтронных звезд.
- Статус создания HGND:
 - ▷ Сцинтилляционные ячейки: Все ~2000 ячеек (40×40×25 мм³) изготовлены.
 - ▷ Печатные платы (PCB): Дизайн завершён, производство в процессе.
 - ▷ Считывающая плата: Плата ВЦП на основе ПЛИС находится в активной разработке.
 - ▷ Собран первый макетный прототип. Завершены приготовления к тестам на пучке.
 - ▷ Сроки: Ввод в эксплуатацию запланирован на конец 2025 года.
- Передние детекторы спектаторов:
 - ▷ Разработаны и созданы в ИЯИ РАН для оценки центральности и плоскости реакции в эксперименте BM@N.
 - Впервые использовались в тяжелоионном физическом сеансе BM@N и продемонстрировали стабильную работу в течение всего периода измерений и сейчас используются в физическом анализе.

Спасибо за внимание!

BACKUP

Collective flow as sensitive probe to the EOS

Incompressibility parameter $K_0(\rho)$:

Specifies the behavior of EOS in the given baryon densities

Models with flexible EOS for different (K_0, ρ) are required

Collective flow is sensitive to:

- Compressibility of the created in the collision matter
- Time of the interaction between the matter within the overlap region and spectators

How to measure the collective flow?

The HGND for the BM@N Experiment

One can define free neutron-proton differential directed flow:

$$v_1^{np} = \frac{N_n(y)}{N(y)} \langle v_1^n(y) \rangle - \frac{N_p(y)}{N(y)} \langle v_1^p(y) \rangle$$

 $N_n(y), N_p(y), N(y)$ - total number of neutrons, protons and nucleons respectively

 $\langle v_1^n(y) \rangle$, $\langle v_1^p(y) \rangle$ - flow of neutrons and protons respectively

- v_1^{np} sensitive to both K_0 and L which may lead to ambigous interpretation
 - More observables might be necessary for robust study of L

FIG. 18. Constraints deduced for the density dependence of the symmetry energy from the present data in comparison with the FOPI-LAND result of Ref. [5] as a function of the reduced density ρ/ρ_0 . The low-density results of Refs. [78–81] as reported in Ref. [82] are given by the symbols, the gray area (HIC), and the dashed contour (IAS). For clarity, the FOPI-LAND and ASY-EOS results are not displayed in the interval $0.3 < \rho/\rho_0 < 1.0$.

Discussing the ToF cut

At HGND entrance

All HGND surfaces


```
Selecting ToF < 35 ns rejects:
```

background neutrons- 77%gamma- 15%primary neutrons- 8%

Measuring the primary neutrons with energies ≥300MeV

BiBi@3AGeV

DCM-QGSM-SMM 200k minbias

with kinetic energy > 300 MeV can be collected

Upper limit: **1.5** * **10**⁹ neutrons (additional multi-neutron event recognition is required).

Methods of neutrons energy reconstruction in multineutron events are currently under development.

Proton p_T**-y acceptance**

TOF-400

Performance study: R1

DCMQGSM-SMM

26

Event centrality: FQH&FHCal correlation

XeCsI@3.8A GeV. DCM-QGSM-SMM 250k minbias

Cluster

27

FHCal visible energy [MeV]

Event characterisation: Cluster information from simulation

ScWall (Scintillation Wall)

- 36 small inner cells 7.5*7.5*1 cm³ + 138 big outer cells 15*15*1 cm³
- light yield for MIP signal small cells 55 p.e. $\pm 2.4\%$; big cells 32 p.e. $\pm 6\%$.
- beam hole for heavy fragments
- covered with a light-shielding aluminum plate
- light collection by WLS fibers
- light readout with SiPM mounted on the PCB at each scint. cell

light collection from tiles

Hamamatsu MPPC S13360-1325CS 1.3*1.3mm² Number of pixels: 2668

Gain: 7*10⁵ PDE: 25%

1000

(Typ. Ta=25 °C - S13360-**25PE S13360-**25CS Photon detection efficiency (%) 40 30 20 10 400 500 600 200 300 700 800 900 Wavelength (nm)

ScWall Z² distributions

41	42	43	44	45	46	47	48		49		50		51		52		53	54	55	56	57	58
59	60	61	62	63	64	Ŕ	66		67		68		69		29		71	72	73	⁷⁴ Г) ⁷⁵	76
77	78	79	80	81	82	83	84		8	85		86		87		8	89	90	91	92	93	94
95	96	97	98	99	100	101	1	2	3 13	4	5 15	6 16	7	8	9 19	10 20	102	103	104	105	106	107
108	109	110	111	112	113	114	21	22	23 33	24 34	25 35	26 36	37	38	29 39	30 40	115	116	117	118	119	120
121	122	123	124	125	126	127	128		129		130		131		132		133	134	135	136	137	138
139	140	141	142	143	144	J 145	14	.46 147		47	148		149		150		151	152	153	154	155	156
157	158	159	160	161	162	163	164		165		10	56	167		168		169	170	171	172	173	174

