Статус модернизации счетчиков АШИФ для детектора СНД

Овтин И.В.

Институт Ядерной Физики СО РАН, г. Новосибирск I.V.Ovtin@inp.nsk.su

Сессия-конференция секции ядерной физики ОФН РАН, посвященная 70-летию В.А. Рубакова, г. Москва, 17-21 февраля 2025 г.

1 Метод идентификации частиц АШИФ

- 2 Модернизация счетчика АШИФ: ФЭУ с МКП \rightarrow КФЭУ
- Прототип счетчика АШИФ с КЭФУ
- 🜗 Калибровка КФЭУ
- 🏮 Испытание прототипа счетчика АШИΦ с КЭΦУ на пучке электонов
- Параметры системы АШИФ с ФЭУ МКП детектора СНД
- 🕐 Сравнение качества разделения АШИФ-МКП/АШИФ-КФЭУ

🔕 Заключение

Метод идентификации частиц АШИ Φ

Предложен в ИЯФ СО РАН (A. Onuchin et al. NIM A315, 1992, 517-520). ПММА пластина с добавкой ВВQ работает как световод со спектросмещением.

- Метод позволяет значительно уменьшить площадь фотокатода $\Phi \Im V,$ и соответственно стоимость системы.

Системы АШИФ в ИЯФ СО РАН (Новосибирск):

КЕДР эксперимент на e^+e^- коллайдере ВЭПП-4М (2E=2÷10 ГэВ)

СНД эксперимент на e^+e^- коллайдере ВЭПП-2000 (2E=0.3 \div 2 Г $_{3}$ В)

Модернизация счетчика АШИФ: ФЭУ с МКП → КФЭУ

MPPC (Multi-Pixel Photon Counter) S13363-3050NE-16

Производитель: "Экран ФЭП" (Новосибирск)

ФЭУсМКП

- Окно из боросиликатного стекла
- Мультищелочной (Sb-Na-K-Cs) фотокатод
- МКП с диаметром канала 7 мкм
- Максимальное QE=23% при $\lambda=500$ нм
- Коэффициент сбора фотоэлектронов ~0.6
- PDE=QE*CE=23*0.6~14%
- Осевое магнитное поле
- Электропитание 3÷4 кВ

- Производитель: "Hamamatsu"
- Эффективная светочувствительная площадь/канал 3×3 мм
- Количество пикселей/канал 3584
- PDE=40% при λ=500 нм
- Магнитное поле любого направления
- Источник питания <100 В (тип. V_{BR} =53 В)
- Высокий уровень темновых шумов (0.5 Мкпс)

Переход на КФЭУ (SiPM) должен увеличить количество обнаруживаемых фотоэлектронов. 8÷10 ф.э.⇒20÷30 ф.э.

Иван Овтин (ИЯФ СО РАН)

Модернизации счетчиков АШИФ

18 февраля 2025 г.

Прототип счетчика АШИФ с КЭФУ

Сегмент прототипа

Счетчик 1, Аэрогель n=1.05

Счетчик 2, Аэрогель n=1.12

- Использовался сегмент ситемы АШИФ детектора СНД
- Сегмент состоит из трех черенковских счетчиков:
 - Использовались два счетчика из сегмента:
 - 1 счетчик: аэрогель с показателем преломления 1.05 и толщиной 30 мм
 - 2 счетчик: аэрогель с показателем преломления 1.12 и толщиной 25 мм (счетчик заполнен не полностью)
- Размеры счетчика: R=105÷141 мм, длина 260 мм, ширина 80 мм
- Аэрогель обернут в тефлон с коэффициентом отражения ~98%
- Массив из 5 КФЭУ снимает сигнал с WLS с резмером 17×3 мм²

Прототип счетчика АШИФ с КЭФУ

Схемы подключения КФЭУ

Status and R&D of ASHIPH-SiPM option for PID, Int.J.Mod.Phys.A 39 (2024)

- В1: Последовательное соединение КФЭУ с делителем напряжения смещения;
- В2: Последовательное соединение КФЭУ с параллельным распределением напряжения смещения – сейчас основной вариант.

Система термостабилизации

- Платиновый датчик температуры на плате электроники (SMD0805V Pt1000)
- Термоэлектрический Модуль Пельтье (30×30 мм)
- Воздушный медный радиатор

Позволяет термостабилизировать температуру в 15°С на КФЭУ, при внешней температуре 45°С

Калибровка КФЭУ

 $N_{ph,e.} = (A_{sig} - Aped)/A_{1ph,e.}$

Число ф.э. при малой засветке описывается распределением Пуассона:

$$P(n,\mu) = \frac{e^{-\mu}}{n!}\mu^{n}, \quad \mu = -lnP(0,\mu),$$

где *n* – число фотоэлектронов, *µ* – среднее число фотоэлектронов за импульс. Вероятность отсутствия фотоэлектрона:

 $P(0,\mu) = \frac{N_{ped}^{sig}}{N^{sig}} \cdot \frac{N^{noise}}{N_{ped}^{noise}},$

где N^{sig} – общее число событий в сигнальном спектре, N^{noise} – общее число событий в шумовом спектре, N^{sig}_{ped} – число событий в пьедестале сигнального спектра, N^{noise}_{ped} – число событий в пьедестале шумового спектра.

Иван Овтин (ИЯФ СО РАН)

- Энергия электронов 2.5 ГэВ;
- Трекинговая система основана на 3-х координатных GEM-детекторах $(\sigma_x = 70 \text{ мкм}, \sigma_y = 200 \text{ мкм})$ и NaI-калориметре;
- Триггер формируется из совпадения двух счетчиков на основе ФЭУ с МКП;
- Сигналы со счетчиков и прототипа оцифровываются V1742 CAEN;
- Набор производился в 12 различных геометрических областях счетчика, при температурах 15°С и 45°С, и при различных напряжениях смещения на КФЭУ. В каждой точке набиралось 50000 событий.

2D mover

Испытание прототипа счетчика АШИФ с КЭФУ на пучке электонов ($T=15^{\circ}C$)

- Среднее число фотоэлектронов на счетчик N_{ph.e.} ≈ 8.6 ((p2+p9)/2)
- Неоднородность светосбора составила ~ ±22%

Прототип счетчика АШИФ с n=1.12 аэрогеля

Прототип не полностью заполнен аэрогелем (до 30 мм), толщина составляет 25 мм ۰ • АШИФ с ФЭУ МКП детектора СНД содержит аэрогель с n=1.13

Прототип счетчика АШИФ с n=1.05 аэрогеля

Иван Овтин (ИЯФ СО РАН)

Испытание прототипа счетчика АШИФ с КЭФУ на пучке электонов

• Допороговая эффективность в основном определяется собственным DCR

- Другие источники:
 - Черенковский свет от δ-электронов в аэрогеле
 - Сцинтилляции в тефлоне
 - Черенковский свет в тефлоне

Прототип счетчика АШИФ с n=1.05 аэрогеля

T = 15 °C, U = 53.5 B, точка p2

$$K[\sigma] = \sqrt{2} * (\text{erf}^{-1}(1 - 2\varepsilon_K) + \text{erf}^{-1}(1 - 2 * (1 - \varepsilon_\pi)))$$

Параметры системы АШИФ с ФЭУ МКП детектора СНД

Результаты из статей описываются параметрическим моделированием

Система с n=1.05 аэрогеля

Test results of the threshold aerogel Cherenkov counter system with n=1.05 using electrons and muons at p < 500 MeV/c, JINST 9 C08010, 2014

- Средний сигнал 3.5 ф.э.
- Допороговый сигнал ~3%

Система с n=1.13 аэрогеля

Сравнение качества разделения АШИФ-ФЭУ МКП и АШИФ-КФЭУ

Прототип счетчика АШИФ с n=1.05 аэрогеля

е/π разлеление

Прототип счетчика АШИФ с n=1.13 аэрогеля

Среднее в точках р2 и р9

Карта

Модернизации счетчиков АШИФ

18 февраля 2025 г.

Заключение

- Сконструирован прототип АШИФ-КФЭУ содержащий два счетчика с аэрогелем n=1.05 и n=1.12, с системой термостабилизации на основе модулей Пельтье и воздушного радиатора
- Проведены испытания прототипа АШИФ-КФЭУ на электронном пучке в ИЯФ СО РАН:
 - Аэрогель n=1.05:
 - Среднее число зарегистрированных фотоэлектронов 8.6.
 - Неоднородность светосбора составляет $\pm 22\%$.
 - Аэрогель n=1.12:
 - Среднее число зарегистрированных фотоэлектронов 11.8.
 - Неоднородность светосбора составляет $\pm 22\%$.
- Представлено увеличения числа фотоэлектронов и качества разделения частиц между прототипом счетчика АШИФ-КФЭУ и счетчиком АШИФ-МКП детектора СНД:
 - Аэрогель n=1.05:
 - АШИФ с ФЭУ МКП, N_{ph.e.}=3.5.
 - N_{ph.e.}(АШИФ-КФЭУ)/N_{ph.e.}(АШИФ-ФЭУ МКП)≈2.5
 - $3.7\sigma(AIIIИ\Phi-\Phi \Im Y MK\Pi) \rightarrow 4.6\sigma(AIIIII\Phi-K\Phi \Im Y, T=15^{\circ}C)$
 - Аэрогель n=1.13:
 - АШИФ-КФЭУ с n=1.13, 30 мм: N_{ph.e.} ≈11.8×1.3=15.3
 - АШИФ с ФЭУ МКП, N_{ph.e.}=6÷8.
 - N_{ph.e.}(АШИФ-КФЭУ)/N_{ph.e.}(АШИФ-ФЭУ МКП)≈2.2
 - $4.3\sigma(AIIIM\Phi-\Phi \Im Y MK\Pi) \rightarrow 5.6\sigma(AIIIM\Phi-K\Phi \Im Y, T=15^{\circ}C)$
- Прототип счетчика АШИФ-КФЭУ имеет геометрию реального счетчика и может быть

легко интегрирован в детектор СНД:

 Были успешно проведены калибровки счетчика АШИФ-КФЭУ в электронном канале АШИФ-ФЭУ МКП детектора СНД.

Спасибо за внимание!

BACKUP

Испытание прототипа счетчика АШИФ с КЭФУ на пучке электонов

Примеры записанных осциллограмм при T=15°C

Детектор СНД на ВЭПП-2000

Комплекс ВЭПП-2000

- $\bullet e^+e^-$ коллайдер
- Энергия 160-1000 МэВ
- Светимость 4·10³¹см⁻²с⁻¹
- Детекторы: СНД и КМД-3

Сферический нейтральный детектор (СНД)

- 1 вакуумная камера
- 2 трековая система
- 3 черенковские счётчики
- 4 кристаллы NaI(Tl)
- 5 вакуумные фототриоды
- 6 железный поглотитель
- 7 пропорциональные трубки
- 9 сцинтилляционные счётчики
- 10 соленоиды ВЭПП-2000

Аэрогель

S.S.Kistler, "Coherent Expanded Aerogels and Jellies", Nature, 1931, vol. 127, p. 741.

- Аэрогель пористый диоксид кремния (SiO₂) с показателем преломления в промежутке между газами, с одной стороны, и твердыми и жидкими веществами, с другой
- Основные производители для ФВЭ: ИК СО РАН (Новосибирск) и Matsushita (Япония)
- Показатель преломления $n^2 = 1 + 0.438 \cdot
 ho$
 - n=1.006...1.070 синтез
 - n=1.070...1.130 спекание + синтез
- Важный параметр длина рассеяния света
 - $L_{sc} \approx 5$ см на 400 нм, $L_{sc} \sim \lambda^4$
- Размер блоков аэрогеля до 200×200×50 мм (ИК СО РАН)

SiO₂ + H₂O(1÷5%)

Сравнение качества разделения АШИФ-ФЭУ МКП и АШИФ-КФЭУ

Прототип счетчика АШИФ с n=1.05 аэрогеля

Среднее в точках р2 и р9

Карта

е/π разлеление

Прототип счетчика АШИФ с n=1.13 аэрогеля

Среднее в точках р2 и р9

400.0 < P. MeV/c < 900.0

Иван Овтин (ИЯФ СО РАН)

Модернизации счетчиков АШИФ

Примеры записанных осциллограмм: T=15°C, U=54 B, уровень генератора 2.5-12.5%

Набранные данные при T=15°C, U=54 В

Иван Овтин (ИЯФ СО РАН)

Модернизации счетчиков АШИФ

18 февраля 2025 г.

Примеры записанных осциллограмм: T=45°C, U=57 В, уровень генератора 3.2-20%

Иван Овтин (ИЯФ СО РАН)

Модернизации счетчиков АШИФ

18 февраля 2025 г. 13 / 13

Набранные данные при Т=45°С, U=57 В

Иван Овтин (ИЯФ СОРАН)

Модернизации счетчиков АШИФ

18 февраля 20<u>25 г.</u>

Температурные и радиационные испытания электроники КФЭУ

- Температура внутри детектора СНД ~45°С
- Имитируются температурные условия в термобоксе

Оценка радиационной загрузки

 $\frac{(-0)'}{60} = 0.66 \cdot 0^{10} = 6.6 \cdot 0^{3} f_{\mu\nu} = \frac{1}{5} \cdot \frac{1}{6} \cdot \frac{1}{6} + \frac{1}{5} + \frac{1}{5} \cdot \frac{1}{6} + \frac{1}{5} \cdot \frac{1}{6} + \frac{1}{5} \cdot \frac{$

Температурные и радиационные испытания электроники КФЭУ

При температуре ${\sim}50\,^{\circ}{\rm C}$ платы электроники находились 212 часов ${\sim}$ 8.8 суток; – из них 72 часа одна плата электроники облучалась изотопом $^{60}{\rm Co}$

Проведенные калибровки КФЭУ (сравнение уровня сигнала с реперным КЭФУ) до и после тестов указывают на отсутствие деградации

Иван Овтин (ИЯФ СО РАН)

Модернизации счетчиков АШИФ