3D сегментированный детектор нейтрино СуперFGD

Юрий Куденко ИЯИ РАН

Сессия-конференция «Физика фундаментальных взаимодействий», посвященную 70-летию В. А. Рубакова Москва, Россия, 17-21 февраля 2025

Supported by the RSF grant # 24-12-00271

> 550 members
76 institutions
from 14 countries
Russai: INR, JINR

Long-Baseline Neutrino Oscillation Experiment

Experiment T2K

T2K collects data since 2010

T2K Near Detector ND280

- No capability to detect neutrons

1200 1400 Momentum p (MeV

ND280

Features of upgraded ND280

Current ND280 \Rightarrow Upgraded ND280

- SuperFGD and HA-TPC improve acceptance for high angle and backward tracks
- SuperFGD provides a high precision probe of the nuclear effects responsible for some of the dominant systematics in neutrino oscillation analyses \rightarrow reduced systematics
- High granularity of SuperFGD \rightarrow detection of short proton tracks which is very important for T2K analysis
- SuperFGD provides reconstruction of the neutrino energy by time-of-flight
- TOF Detector separates background from outside SuperFGD and HA-TPC

ND280 upgrade

SuperFGD

- Volume ~192 x 184 x 56 cm³
- ~2 x 10⁶ scintillator cubes , each 1 x 1 x 1 cm³
- Each cube has 3 orthogonal holes of 1.5 mm diameter
- 3D (x,y,z) WLS readout
- About 60000 readout WLS/MPPC channels
- Total active weight about 2t

SuperFGD project: about 100 participants from 6 countries Russia: INR, JINR, LPI

proposed at INR in 2017

Fully active, highly granular,

 4π scintillator neutrino detector

with 3D WLS/MPPC readout -

JINST 13 (2018) 02006

Cubes produced by injection molding at OOO Uniplast, Vladimir
Covered by chemical reflector
Tolerance (each side) about 30 microns

Mean Std Dev χ² / ndf Constan Mean

0.02589 33.55 / 17 146.2 ± 6.1 10.26 ± 0.00

- 2000000 cubes produced
in 2019-2021
- 56 planes assembled at INR
using fishing lines in 2021-2022
- SFGD delivered to J-PARC
in 2022

Assembly of SuperFGD at J-PARC

Transfer to new support frame

Installation of cube layers

Fishing lines \rightarrow WLS fibers

Installation of soft foam

Installation of MPPC-PCB

Installation of LED calibration system

Cabling

About 6 months to assembly SFGD: from installation of 1st layer to finish cable connection

SuperFGD Electronics

- MPPC analogue signal digitised by CITIROC (Omega lab. Ecole Polytechnique)
- Peak detector, Low-gain and High-gain signals (2x 12-bit ADCs)
- \bullet Constant threshold discriminator \rightarrow rising edge and falling edge timestamps

✓ Complementary measurement of charge from time-over-threshold

- \checkmark FPGA at 400 MHz sampling (single channel 0.7 ns resolution)
 - \rightarrow measure the neutron time of flight
- ✓ Firmware upgrade will provide 800 MHz, sampling on clock rising/falling edges

Calibration of SuperFGD

New ND280 detectors in ND280 magnet

Installation of all detectors (SuperFGD, HA-TPC, TOF) into ND280 magnet completed in May 2024

SuperFGD begun
collecting neutrino data
in November 2023
Now SuperFGD taking
statistics with all detectors
installed into marnet

Milestones of SuperFGD

Neutrino interactions in SuperFGD

T2K muon neutrino beam, CC events

Neutrino interactions in SuperFGD

v_{μ} CC interaction event

Run = 16946, Subrun = 9, Event = 172366

XY projection

Muon neutrino November 2024 Run

YZ projection

-110

-105 -100

Z position [cm]

Time resolution

Optical cross-talk

12Mean above 0 p.e. for cubes near center of track Work in progress 10 -Fiber X (Data) --- Fiber Z (Data) ſ 80 180 200 20 40 60 100 120140 160 0 PE

Cube-to-cube optical cross-talk

→ about 3% cross-talk

Results are consistent with measurements of detector Prototypes

Possible cross-talk between Electronics channels is under study

Detection of stopped protons

Conclusion

- Reduction of systematic uncertainties crucial for CP-violation search and oscillation measurements in T2K and HyperK
- Upgrade of T2K near detector ND280 with a new neutrino target-detector SuperFGD is completed
- □ SuperFGD will be a central near neutrino detector in T2K and HyperK experiments
- SuperFGD begun to accumulate data in T2K neutrino beam in 2024 with 810 kW proton beam
- □ Main feature of SuperFGDs: 4π solid angle; good time resolution; excellent identification of e, γ , p; low proton threshold ~300 MeV/c, neutron detection by ToF

Thank you very much for your attention