

Сессия-конференция секции ядерной физики ОФН РАН, посвященная 70-летию В.А. Рубакова

Исследование влияния гамма-облучения на сцинтилляционные свойства неорганического сцинтиллятора BaF₂, легированного иттрием

Н.А. Гусейнов^{1,3,4}, М.Н. Мирзаев^{1,2,3}, Э.Д. Мустафаев², И.И. Мустафаев², В.Ю. Баранов¹, Ю.И. Давыдов¹, И.Ю. Зимин¹, <u>И.И. Васильев¹</u>

¹ Объединенный институт ядерных исследований, Дубна ² Институт радиационных проблем Министерства науки и образования Азербайджанской Республики, Баку ³ Университет Хазар, Баку ⁴ Институт физики Министерства науки и образования Азербайджанской Республики, Баку

Введение

Lifetime = 864ns Nuclear Recoil

Требования, предъявляемые к ECAL Mu2e-II

- Энергетическое разрешение: < 10% при 105 МэВ
- Временное разрешение: < 0,5 нс
- Радиационная стойкость:~ 0,1-1 Мрад, 1012-1013 1 МэВ нейтронов/см²
- Высокая загрузочная способность

Система решетки	кубическая
Плотность (г/см ³)	4.89
Температура плавления (°С)	1280
Эффективный атомный номер	52.2
Показатель преломления (2.58 мкм)	1.4626
Радиационная длина (см)	2.06
Максимум эмиссии (нм)	310(медл.); 220(быстр.)
Время затухания (нс)	620(медл.); 0.6(быстр.)
Световыход (относительно Nal(Tl))	20%(медл.); 4%(быстр.)

Способы подавления медленной компоненты BaF₂

1. Применение светофильтров

- 2. Использование солнечно-слепых фотоприемников
- 3. Легирование редкоземельными элементами

	Fast	Fast	Slow	Slow	DC
	Component	Component	Component	Component	Component
M	Luminosity	Decay Time	Luminosity	Decay Time	Luminosity
Material	(photons/MeV)	(ns)	(photons/MeV)	(ns)	(pnotons/Mev)
Ba F ₂	1805	0.73	7997	559	1364
Ba _{0.9} La _{0.1} F _{2.1}	1258	0.41	856	205	-4
Ba _{0.9} Ce _{0.1} F _{2.1}	1149	7.29	1862	39	-346
Ba _{0.9} Y _{0.1} F _{2.1}	1000	0.72	289	167	2445
Ba _{0.9} Lu _{0.1} F _{2.1}	594	0.43	430	175	8
Ba0.9 Pro.1 F2.1	407	2.19	356	175	212
Ba0.92 Ho0.08 F2.08	367	0.27	416	148	-179
Ba0.9 Sm0.1 F2.1	186	0.22	138	121	-445
$Ba_{0.9} Nd_{0.1} F_{2.1}$	155	0.32	246	120	-178
Ba _{0.9} Tm _{0.1} F _{2.1}	140	0.34	328	201	-80
Ba _{0.9} Gd _{0.1} F _{2.1}	140	0.26	234	130	5629
Ba _{0.9} Dy _{0.1} F _{2.1}	85	0.17	165	126	-484
Ba _{0.9} Er _{0.1} F _{2.1}	79	0.20	136	95	-245
Ba0.9 Yb0.1 F2.1	69	0.23	54	84	1971
$Ba_{0.9} Tb_{0.1} F_{2.1}$	67	10.79	153	201	3514
Ba _{0.9} Eu _{0.1} F _{2.1}	66	0.17	5	14	3668

B. P. SOBOLEV, E. A. KRIVANDINA, S. E. DERENZO, W. W. MOSES, and A. C. WEST, "SUPPRESSION OF BaF2 SLOW COMPONENT OF X-RAY LUMINESCENCE IN NON-STOICHIOMETRIC Ba0.9R0.1F2.1 CRYSTALS (R=RARE EARTH ELEMENT)" Proceedings of The Material Research Society: Scintillator and Phosphor Materials, pp. 277-283, 1994.

Fig. 7: Transmission spectra for pure BaF_2 measured shortly after irradiation for accumulated doses of 0, 10^3 , 10^4 , 10^5 and 10^6 rad.

Fig. 9: Transmission spectra for 1% Tm sample measured shortly after irradiation for accumulated doses of $0, 10^3, 10^4, 10^5, 2x10^5, 5x10^5$ and 10^6 rad.

C.L. Woody, P.W. Levy and **J.A.** Kierstead "Slow Component Suppression and Radiation Damage in Doped BaF_2 Crystals" IEEE Transactions on Nuclear Science, Vol. 36, No. 1, February 1989

Световыход быстрой и медленной компоненты люминесценции ВаF₂:Y (0,1,3,5 at.%) (сверху) и его относительное изменение (снизу) после облучения нейтронами с флюенсом 2,3x10¹⁴ нейтронов/см²

V. Baranov, Yu.I. Davydov, I. Vasilyev "Light outputs of yttrium doped BaF₂ crystals irradiated with neutrons" 2022 *JINST* **17** P01036

Методика эксперимента

Облучение образцов

Институт радиационных проблем Министерства науки и образования Азербайджанской Республики

Образование цветовых центров в кристалле BaF₂ после облучения дозой 2,9×10⁶ рад

	BaF ₂	BaF ₂ :1 at.% Y	BaF ₂ :3 at.% Y	BaF ₂ :5 at.% Y
Номер	1,6,11,	2,7,12,17,22,	3,8,13,18,23,	4,9,14,19,24,
	16 21 26	27	28	29

Облучательная установка типа MRCFG-25

Облучательная установка	Мощность дозы, рад/с	Образец	Время облучения, с	Расчетная поглощенная доза, рад	Измеренная поглощенная доза*, рад
GFRCCA-20000 0,212		1,2,3,4	136	2,9×10 ¹	4×10 ³ ± 1×10 ³
	0,212	6,7,8,9	1360	2,9×10 ²	5×10 ³ ± 1×10 ³
		11,12,13,14	13698	2,9×10 ³	$2 \times 10^3 \pm 1 \times 10^3$
MRCFG-25 128		16,17,18,19	227	2,9×10 ⁴	$2,5 \times 10^4 \pm 0,1 \times 10^4$
	128	21,22,23,24	2270	2,9×10 ⁵	2,20×10 ⁵ ± 0,01×10 ⁵
		26,27,28,29	22700	2,9×10 ⁶	2,909×10 ⁶ ± 0,004×10 ⁶

*Измерения поглощенной дозы проводились при помощи радиохромного дозиметра FWT-91R

Обработка экспериментальных данных

Результаты эксперимента

Светопропускание ВаF₂ после облучения

*Светопропускание образцов измерялось на спектрофотометре SHIMADZU 3700-DUV.

Выводы

- Исследованы сцинтилляционные свойства 24-х образцов BaF₂ (0, 1, 3, 5 at. % Y) до и после облучения на облучательных установках с γ-источником ⁶⁰Co. Максимальная поглощенная доза составила 2,9 Мрад.
- Установлено, что наиболее эффективное подавление медленной компоненты сцинтилляции достигается при концентрациях иттрия 3 и 5 at. %. При данных концентрациях вклад быстрой компоненты в общий отклик сцинтиллятора составляет в среднем 42% без учета поправки на квантовую эффективность фотокатода ФЭУ. Явной зависимости данного соотношения от поглощенной дозы не наблюдается.
- Наблюдается снижение световыхода быстрой компоненты с ростом поглощенной дозы, причем наиболее явно выраженное при концентрациях иттрия 1 и 3 at. %. Максимальное снижение составило 13,6% для образца с концентрацией иттрия 3 at. %, облученного дозой 2,9 Мрад.
- Энергетическое разрешение быстрой компоненты исследованных образцов не зависит от концентрации иттрия, а также от поглощенной дозы. Среднее значение энергетического разрешения быстрой компоненты для энергии 511 кэВ около 24 %.
- Исследовано светопропускание образцов после облучения. При концентрациях иттрия 1 и 3 at. % наблюдается падение прозрачности в области длин волн 200-400 нм с ростом поглощенной дозы, в то время как в образцах с концентрацией иттрия 5 at. % изменения прозрачности менее выражены. Исходя из этого можно предположить, что снижение световыхода быстрой компоненты в основном связано с ухудшением прозрачности кристаллов BaF₂ при воздействии гамма-излучения.

Спасибо за внимание!