Сравнение методов определения центральности в столкновениях Xe+CsI при энергии 3.8А ГэВ в эксперименте BM@N

Идрисов Дим, Николай Карпушкин, Парфенов Петр, Федор Губер

ИЯИ РАН

Сессия-конференция Секции ядерной физики ОФН РАН, посвященная 70-летию со дня рождения Валерия Анатольевича Рубакова

17-21 февраля 2025

Ускорительный комплекс NICA

- Высокие энергии (_√*s_{NN}*>100 GeV):
 - Высокая *T*, $\mu_B \approx 0$, Эволюция ранней вселенной
- Низкие энергии (2.4< $\sqrt{s_{NN}}$ <11 GeV):
 - Средние *Т*, высокая µ_B, внутренняя структура компактных звезд, слияния нейтронных звезд

- Baryonic Matter at Nuclotron (BM@N) эксперимент с фиксированной мишенью, первый физический сеанс Xe+CsI 2022-2023
- Multi-Purpose Detector (MPD) запуск 2025-2026
- Spin Physics Detector (SPD) возможность работать с поляризованными пучками дейтронов

Определение центральности в эксперименте

- Эволюция материи, образующейся при столкновениях тяжелых ионов, зависит от ее начальной геометрии
- Процедура определения центральности сопоставляет параметры начальной геометрии с измеряемыми величинами(множественность или энергия нуклонов спектаторов).
- Это позволит сравнить будущие результаты BM@N с данными из других экспериментов (STAR BES, NA49/NA61) и теоретическими моделями

$$c(b) = \frac{\int_0^b \frac{d\sigma}{db'} db'}{\int_0^\infty \frac{d\sigma}{db'} db'} = \frac{1}{\sigma_{A-A}} \int_0^b \frac{d\sigma}{db'} db'$$

Распределение множественности (черные маркеры) для области -0.5 < y < 0 и 0.4 < pT < 2.0 ГэВ/с , GM (красная гистограмма), а также результаты для пайлапа и без него.

Определение центральности в эксперименте BM@N

Корреляция энергии спектаторов в FHCal и множественности треков заряженных частиц с прицельным параметром

BM@N setup overview

Метод прямой реконструкции(Г-fit): основные положения

Флуктуации множественности рожденных частиц при фиксированном прицельном параметре описываются Гамма распределением:

$$P(M \mid c_b) = \frac{1}{\Gamma(k(c_b))\theta^2} M^{k(c_b)-1} e^{-M/\theta} \mathfrak{I}$$

$$c_b = \int_0^b P(b')db'$$
 – центральность по имп. параметру

h

$$\theta = \frac{D(M)}{\langle M \rangle}, \quad k = \frac{\langle M \rangle}{\theta}$$

 $\langle M \rangle, D(M)$ – средние значение и дисперсия множественности

$$\langle M \rangle = m_1 \cdot \langle M' \rangle$$

 $D(M) = m_1^2 \cdot D(M') + m_1 \cdot m_2 \langle M' \rangle$

 m_1, m_2 — Параметры фита $\left< M'(c_b) \right>$ — средние значение и дисперсия $D(M'(c_b))$ Множественности из модели

 Аппроксимируются с помощью полиномов или других гладких функций

$$P(M) = \int_{0}^{b_{\text{max}}} P(M \mid b) P(b) db = \int_{0}^{1} P(M \mid c_{b}) dc_{b}$$

Результаты фита

Vertex Cuts: CCT2, $N_{vtxTr} > 1$, $|V_{x,y} - (0.3, 0.14)| < 1 \text{ cm}$, $|V_z - 0.07| < 0.1 \text{ cm}$ Track selection: Nhit>4, $\eta < 3$, Pt>0.02 GeV/c

Хорошее согласие фита с данными

Метод прямой реконструкции: двумерный случай

• флуктуационное ядро может быть описано двумерным

Гамма распределением

 $P(E, M \mid c_b) = G_{2D}(E, M, \langle E \rangle, \langle M \rangle, D(E), D(M), R)$

 $c_b = \int_{0}^{b} P(b')db'$ – центр. на основе приц. параметра

 $\langle E \rangle, D(E)$ — средние значение и дисп. энергии

 $\langle M
angle, D(M)$ — средние значение и дисп. множественности

R(*E*,*M*) – коэффициент корреляции

 $R(E,M) = \varepsilon_1 \cdot m_1 \cdot R(E',M') \sqrt{\frac{D(E')D(M')}{D(E)D(M)}}$

 $\mathcal{E}_0, \mathcal{E}_1, \mathcal{E}_2, m_1, m_2$ - Параметры подгонки

 $ig \langle E'(c_b) ig
angle$ — средние значение и дисп. энергии $D(E'(c_b))$ из реконструированных данных

$$\langle E \rangle = \varepsilon_1 \langle E'(c_b) \rangle + \varepsilon_0, \quad D(E) = \varepsilon_2 D(E'(c_b)) \langle M \rangle = m_1 \langle M'(c_b) \rangle, \quad D(M) = m_1^2 \cdot D(M') + m_1 \cdot m_2 \langle M' \rangle$$

 $\left\langle E'(c_b) \right\rangle$, $D(E'(c_b))$ - может быть описано полиномом.

$$\langle E'(c_b) \rangle = \sum_{j=1}^{12} a_j c_b^j, \quad D(E'(c_b)) = \sum_{j=1}^{19} b_j c_b^j$$

 $\langle M'(c_b) \rangle = \sum_{j=1}^{12} a_j c_b^j, \quad D(M'(c_b)) = \sum_{j=1}^{6} b_j c_b^j$

Двумерное Гамма распределение

С помощью поворота осей, можно найти такую систему координат cov(x, y) = 0

Тогда двумерное Гамма распределение в новой с.к находиться как

Средние значение и дисперсия в новой системе координат

8

$$\langle x \rangle = \cos(\alpha) \langle E \rangle + \sin(\alpha) \langle M \rangle \qquad D(x) = D(E) \cos(\alpha)^2 + R(E, M) \sqrt{D(E)D(M)} \sin(2\alpha) + D(M) \sin(\alpha)^2$$

$$\langle y \rangle = -\sin(\alpha) \langle E \rangle + \cos(\alpha) \langle M \rangle \qquad D(y) = D(E) \sin(\alpha)^2 - R(E, M) \sqrt{D(E)D(M)} \sin(2\alpha) + D(M) \cos(\alpha)^2$$

Флуктуации множественности и энергии при фиксированном значении прицельного параметра

Распределение энергии и множественности при фиксированном значении b

Распределение прицельного параметра для фиксированного диапазона Е и М может быть получен с помощью теоремы Байеса:

$$P(b \mid E_{1} < E < E_{2}, M_{1} < M < M_{2}) = P(b) \frac{\int_{E_{1}}^{E_{2}} \int_{M_{1}}^{M_{2}} P(E, M \mid c_{b}) dM dE}{\int_{E_{1}}^{E_{2}} \int_{M_{1}}^{M_{2}} \int_{D}^{1} P(E, M \mid c_{b}) dM dE dc_{b}}$$

Результаты двумерного фита

Функция фита качественно воспроизводит корреляцию множественности и энергии из FHCal

Деление на классы центральности с помощью k-means

Двумерное распределение поделено на 10 классов центральности

Результаты фита сигналов из калориметра и годоскопа

Хорошие согласие результатов фита для калориметра Процедура фита для годоскопа находиться в процессе доработки

Определение центральности с помощью переднего калориметра и годоскопа

Метод К-средних позволяет разбить двумерное распределение на классы центральности. Что бы корректно применить границы классов необходимо согласовать результаты симуляций с экспериментом 13

Процедура определения центральности на основе MC-Glauber

Сравнение результатов

Согласие в пределах 5%.

Заключение

- Предложен новый подход для определения центральности на основе теоремы Байеса и модели DCM-QSM-SMM
- Разработан новый подход для определения центральности на основе двумерного распределения энергии спектаторов и множественности заряженных частиц
- Предложенный метод был протестирован на данных эксперимента BM@N
 - Результаты в хорошем согласии с классическим подходом MC-Glauber
- Предложен метод для согласования результатов симуляции откликов годоскопа и калориметра с экспериментальными данными
 - Полученное двумерное распределение было использовано для определения центральности, полученные классы находятся в согласии с другими методами

Спасибо за внимание!

Распределение энергии спектаторов

Хорошие согласие между фитом и данными

Вероятностная модель пайлапа

 $M_{pu}(b_1, b_2) = M_1(b_1) + M_2(b_2)$ - Пайлап можно представить как два не зависимых события с b_1, b_2

$$\langle M_{pu}(b_1, b_2) \rangle = \langle M_1(b_1) \rangle + \langle M_2(b_2) \rangle, \quad D(M_{pu}(b_1, b_2)) = D(M_1(b_1)) + D(M_2(b_2))$$

$$P_{pu}(M_{pu} | b_1, b_2) = \frac{1}{\Gamma(k_p) \theta_p^2} M_{pu}^{k_p - 1} e^{-M_{pu}/\theta_p}$$

Флуктуации так же описываються Гамма
 распределением

$$\theta_{p} = \frac{D(M(b_{1}, b_{2}))}{\left\langle M(b_{1}, b_{2}) \right\rangle}, \quad k_{p} = \frac{\left\langle M(b_{1}, b_{2}) \right\rangle}{\theta_{p}}$$

• Параметры Гамма распределения

 $P_{pu}(M_{pu}) -$ Плотность вероятности пайлапа

$$P_{pu}(M_{pu}) = \int_{0}^{b_{\max}} \int_{0}^{b_{\max}} P(M_{pu} | b_1, b_2) P(b_1) P(b_2) db_1 db_2 = \int_{0}^{c_{b1}} \int_{0}^{c_{b2}} P_{pu}(M_{pu} | c_{b1}, c_{b2}) dc_{b1} dc_{b2}$$

Коррекция на эффективность и пайлап

• Коррекция на эффективность распределения множественности P(M)

$$P(M) = \frac{dN}{dM} / N_{ideal}^{ev} = \underbrace{\frac{N_{raw}^{ev}}{N_{ideal}^{ev}}}_{K_{raw}} \underbrace{\frac{1}{N_{raw}^{ev}}}_{N_{raw}} \frac{dN_{r}}{dM} = \frac{1}{K} \cdot Norm.Histogr$$

$$Eff = \frac{N_{raw}^{ev}}{N_{ideal}^{ev}} = \frac{1}{K} \quad \text{integral efficiency}$$

• Функция фита для распределения множественности F(M)

$$F(M) = K \cdot P_{total}(M), P_{total}(M) = N_p \cdot P_{pu}(M) + (1 - N_p) \cdot P(M)$$

 m_1, m_2, K, N_p -fit parameters, F(M) – fit function, corrected for efficiency and pileup

Dependence of the variance of multiplicity and energy on centrality

Dependence of the average value of multiplicity and energy on centrality

Energy distr. fit

23

Mult distr. fit

24

Определение центральности с помощью переднего калориметра и годоскопа

XeCs@3.8A GeV. DCM-QGSM-SMM 100k minbias

Метод К-средних позволяет разбить двумерное распределение на классы центральности. Что бы корректно пременить границы классов необходимо согласовать результаты симуляций с экспериментом

h [fm]

Эффективность триггерной системы

Эффективность триггерной системы, полученная из Байессовского подхода, согласуется с результатами, полученными на основе симмуляций

https://indico.jinr.ru/event/4762/contributions/28478/attachments/20298/35273/lashmanov_report_BM@N-meeting_Oct-2024.pdf 26

Сравнение результатов

Согласие в пределах 5%.

Коррекция на эффективность и пайлап

 $M_{pu}(b_1, b_2) = M_1(b_1) + M_2(b_2)$ - Пайлап можно представить как два не зависимых события с b_1, b_2

$$\langle M_{pu}(b_1, b_2) \rangle = \langle M_1(b_1) \rangle + \langle M_2(b_2) \rangle, \quad D(M_{pu}(b_1, b_2)) = D(M_1(b_1)) + D(M_2(b_2))$$

$$P_{pu}(M_{pu}) = \int_{0}^{c_{b1}} \int_{0}^{c_{b2}} P_{pu}(M_{pu} | c_{b1}, c_{b2}) dc_{b1} dc_{b2}$$
 - Плотность вероятности пайлапа

• Коррекция на эффективность распределения множественности P(M)

$$P(M) = \frac{dN}{dM} / N_{ideal}^{ev} = \frac{N_{raw}^{ev}}{N_{ideal}^{ev}} \cdot \frac{1}{N_{raw}^{ev}} \frac{dN_r}{dM} = \frac{1}{K} \cdot Norm.Histogr \qquad Eff = \frac{N_{raw}^{ev}}{N_{ideal}^{ev}} = \frac{1}{K} \quad \text{integral efficiency}$$

• Функция фита для распределения множественности F(M)

$$F(M) = K \cdot P_{total}(M), P_{total}(M) = N_p \cdot P_{pu}(M) + (1 - N_p) \cdot P(M)$$

 m_1, m_2, K, N_p -fit parameters, F(M) – fit function, corrected for efficiency and pileup

Двумерное Гамма распределение

С помощью поворота осей, можно найти такую систему координат cov(x, y) = 0

Тогда двумерное Гамма распределение в новой с.к находиться как

Средние значение и дисперсия в новой системе координат

29

$$\langle x \rangle = \cos(\alpha) \langle E \rangle + \sin(\alpha) \langle M \rangle \qquad D(x) = D(E) \cos(\alpha)^2 + R(E, M) \sqrt{D(E)D(M)} \sin(2\alpha) + D(M) \sin(\alpha)^2$$

$$\langle y \rangle = -\sin(\alpha) \langle E \rangle + \cos(\alpha) \langle M \rangle \qquad D(y) = D(E) \sin(\alpha)^2 - R(E, M) \sqrt{D(E)D(M)} \sin(2\alpha) + D(M) \cos(\alpha)^2$$

Определение центральности в эксперименте

- Эволюция материи, образующейся при столкновениях тяжелых ионов, зависит от ее начальной геометрии
- Процедура определения центральности сопоставляет параметры начальной геометрии с измеряемыми величинами(множественность или энергия нуклонов спектаторов).
- Это позволит сравнить будущие результаты BM@N с данными из других экспериментов (STAR BES, NA49/NA61) и теоретическими моделями

$$c(b) = \frac{\int_0^b \frac{d\sigma}{db'} db'}{\int_0^\infty \frac{d\sigma}{db'} db'} = \frac{1}{\sigma_{A-A}} \int_0^b \frac{d\sigma}{db'} db$$

Распределения множественности (черные маркеры) для области -0.5 < y < 0 и 0.4 < pT < 2.0 ГэВ/с , GM (красная гистограмма), а также результаты для пайлапа и без него.

NA61/SHINE experimental setup

Data samples:

- Pb-Pb @ p_{beam} = 13A GeV/c
- data from 2016 physics run
- DCM-QGSM-SMM x Geant4 M.Baznat et al. PPNL 17 (2020) 3, 303

Subsystems

- Multiplicity: TPCs
- Spectators energy: PSD

Dependence of the average value and variance of energy on centrality

The average value and dispersion of energy from the DCM-QGSM-SMM model are well described by polynomials

Fit results for NA61

The method reproduces the energy distribution well. The difference in the peripheral region is due to the trigger efficiency

Comparison with MC-Glauber fit

34

Reconstruction of *b*

- Normalized energy distribution P(E) $P(E) = \int_{0}^{1} P(E \mid c_{b}) dc_{b}$
- Find probability of *b* for fixed range of E using Bayes' theorem:

$$P(b \mid E_{1} < E < E_{2}) = P(b) \frac{\int_{E_{1}}^{E_{2}} P(b \mid E) dE}{\int_{E_{1}}^{E_{2}} P(E) dE}$$

- The Bayesian inversion method consists of 2 steps:
- –Fit normalized energy distribution with P(E)
- –Construct P(b|E) using Bayes' theorem with parameters from the fit

Good agreement between fit and data in wide energy range

2D Gamma distribution

It is possible to find such a rotation angle of the system that cov(x, y) = 0

Then the two-dimensional distribution in the new coordinate system will be

mean value and variance in the new coordinate system

$$\langle x \rangle = \cos(\alpha) \langle E \rangle + \sin(\alpha) \langle M \rangle \qquad D(x) = D(E) \cos(\alpha)^2 + R(E, M) \sqrt{D(E)D(M)} \sin(2\alpha) + D(M) \sin(\alpha)^2 \langle y \rangle = -\sin(\alpha) \langle E \rangle + \cos(\alpha) \langle M \rangle \qquad D(y) = D(E) \sin(\alpha)^2 - R(E, M) \sqrt{D(E)D(M)} \sin(2\alpha) + D(M) \cos(\alpha)^2 36$$

Определение центральности в эксперименте

- Эволюция материи, образующейся при столкновениях тяжелых ионов, зависит от ее начальной геометрии
- Процедура определения центральности сопоставляет параметры начальной геометрии с измеряемыми величинами(множественность или энергия нуклонов спектаторов).
- Это позволяет сравнить будущие результаты BM@N с данными из других экспериментов (STAR BES, NA49/NA61) и теоретическими моделями

$$c(b) = \frac{\int_0^b \frac{d\sigma}{db'} db'}{\int_0^\infty \frac{d\sigma}{db'} db'} = \frac{1}{\sigma_{A-A}} \int_0^b \frac{d\sigma}{db'} db$$

HADES; Phys.Rev.C 102 (2020) 2, 024914

- Множественность рожденных протонов сильнее коррелирует с множественностью заряженных частиц (треки в RPC+TOF хиты), чем с суммарным зарядом фрагментов-спектров (FW)
- для подавления эффекта автокорреляции необходимо использовать спектаторы для оценки центральности

Impact parameter distribution for centrality classes

The fluctuation of energy and multiplicity at fixed impact

The distribution of energy and multiplicity at a fixed impact parameter is well described by the gamma distribution

• Find probability of *b* for fixed range of E and M using Bayes' theorem:

$$P(b \mid E_1 < E < E_2, M_1 < M < M_2) = P(b) \frac{\int_{E_1}^{E_2} \int_{M_1}^{M_2} P(E, M \mid c_b) dM dE}{\int_{E_1}^{E_2} \int_{M_1}^{M_2} \int_{0}^{1} P(E, M \mid c_b) dM dE dc_b}$$

Event cleaning

Event cleaning

The most of the background has been suppressed after cuts for Erat >0.29 and vertex position $(V_x-0.3)^2+(V_y-0.14)^2<1$ cm

Event cleaning in HADES

Segmented gold target:

- ¹⁹⁷Au material
- 15 discs of Ø = 2.2 mm mounted on kapton strips

Z^{hit}

200

150

100

50

diamond

-80

-60

250 START

- ∆z = 3.6 mm
- 2.0% interaction prob.

Kindler et al., NIM A 655 (2011) 95

Remove Au+C bkgd on the kapton with a cut on $ERAT = \sum E_t / \sum E_l$ Event vertex cut on target region ERAT Au target **HARMENERS** 104 10^{3} 10^{3} 1.5 START Au target 10² 10² 0.5 10 10 rejected

-80

-60

-20

-40

20

3

 v_z [mm]

٥

beam direction

30/11/2021 FANI-2021 | R. Holzmann (GSI) for the HADES collaboration

20

0

v_z [mm]

http://indico.oris.mephi.ru/event/221/session/1/contribution/1/material/slides/0.pdf

-20

-40

Reconstruction of *b*

• Normalized multiplicity distribution P(N_{ch})

$$P(N_{ch}) = \int_0^1 P(N_{ch}|c_b) dc_b$$

• Find probability of *b* for fixed range of N_{ch} using Bayes' theorem:

$$P(b|n_1 < N_{ch} < n_2) = P(b) \frac{\int_{n_1}^{n_2} P(N_{ch}|b) dN_{ch}}{\int_{n_1}^{n_2} P(N_{ch}) dN_{ch}}$$

- The Bayesian inversion method consists of 2 steps:
- –Fit normalized multiplicity distribution with $P(N_{ch})$
- –Construct $P(b|N_{ch})$ using Bayes' theorem with parameters from the fit

