

Определение центральности столкновений тяжелых ионов в эксперименте BM@N

Деманов А.Е., Парфенов П.Е., Тараненко А.В. (ОИЯИ, НИЯУ МИФИ)

Научная сессия секции ядерной физики ОФН РАН 17-21 февраля 2025

Работа поддержана Министерством науки и высшего образования РФ, проект "Фундаментальные и прикладные исследования на экспериментальном комплексе класса мегасайенс NICA (ОИЯИ)" № FSWU-2025-0014

Motivation for centrality determination

- Evolution of matter produced in heavy-ion collisions depends on its initial geometry
- Impact parameters (b) one of the important collision parameters
 - impossible to measure experimentally
- **Goal of centrality determination:** map (on average) the collision geometry parameters to experimental observables (centrality estimators)

Centrality determination

HADES, Au+Au 1.23A GeV

Eur. Phys. J. A (2018) 54: 85

Centrality	b_{\min}	$b_{\rm max}$	$\langle b \rangle$
Classes			
0-5%	0.00	3.30	2.20
5 - 10 %	3.30	4.70	4.04
10 - 15 %	4.70	5.70	5.22
15 - 20 %	5.70	6.60	6.16
20 - 25 %	6.60	7.40	7.01
25 - 30 %	7.40	8.10	7.75
30 - 35 %	8.10	8.70	8.40
35 - 40 %	8.70	9.30	9.00
40 - 45 %	9.30	9.90	9.60
45 - 50 %	9.90	10.40	10.15
50 - 55 %	10.40	10.90	10.65
55 - 60 %	10.90	11.40	11.15

STAR, Au+Au, BES

	10 ⁻³ (a) 7.7 GeV		(b) 11.5 GeV	(c) 19.6 GeV	Phys. Rev. C 86, 054908 (2012)		
("	10 ⁻⁴ 10 ⁻⁵				Centrality (%)	$\langle N_{\rm part} \rangle$	$\langle N_{\rm coll} \rangle$
(1/N _{evts})(dN _{evts} /dN ^{raw}	$ \begin{array}{c} 10^{-6} \\ 10^{-7} \\ 10^{-8} \\ 10^{-3} \\ 10^{-4} \\ 10^{-5} \\ 10^{-6} \\ 10^{-7} \\ 10^{-8} \\ \end{array} $	(d) 27 GeV	(e) 39 GeV	DataGlauber MC □ 40-80% □ 10-40% □ 0-10%	$\begin{array}{c} 0-5\%\\ 5-10\%\\ 10-20\%\\ 20-30\%\\ 30-40\%\\ 40-50\%\\ 50-60\%\\ 60-70\%\\ 70-80\%\\ \end{array}$	$\begin{array}{l} 337 \pm 2 \\ 290 \pm 6 \\ 226 \pm 8 \\ 160 \pm 10 \\ 110 \pm 11 \\ 72 \pm 10 \\ 45 \pm 9 \\ 26 \pm 7 \\ 14 \pm 4 \end{array}$	$774 \pm 28 \\ 629 \pm 20 \\ 450 \pm 22 \\ 283 \pm 24 \\ 171 \pm 23 \\ 96 \pm 19 \\ 52 \pm 13 \\ 25 \pm 9 \\ 12 \pm 5$
	,	200 400	N ^{raw} _{ch}	200 400			

Centrality determination based on multiplicity provides with:

impact parameter (b)

350 400

Npart

number of participating nucleons (N_{part})

Similar centrality estimator is needed for comparisons with STAR, HADES, etc.

Model dependence of b, N_{part}

- MC-Glauber x NBD multiplicity fitting procedure is standard method for centrality determination
- The MC Glauber non-realistic **N**_{part} simulations at low energies
- Differences in of number of participant nucleons (**N**_{part}) distributions from UrQMD and MC
- The impact parameter (b) model independent centrality estimator

The BM@N experiment

SImulation:

- DCM-QGSM-SMM, Xe-Cs
- **GEANT4** transport

<u>Data</u>:

- run8 Xe-Csl @3.8A GeV
- Event selection:
 - Physical runs Ο
 - Centrality trigger (CCT2) Ο
 - More than 1 track in vertex Ο reconstruction
 - $Vtx_R < 1.0 \text{ cm}$ Ο
 - $Vtx_7 < 0.1 \text{ cm}$ Ο

Multiplicity of charged particles from tracking system FSD+GEM

5

Centrality determination based on Monte-Carlo sampling of produced particles

MC-Glauber fit result Xe-Cs

- Good agreement between model data and fit
- Impact parameter distributions in different centrality classes reproduces ones from DCM-QGSM-SMM

The Bayesian inversion method (Γ-fit)

Relation between multiplicity N_{ch} and impact parameter b is defined by the fluctuation kernel:

$$P(N_{ch}|c_b) = \frac{1}{\Gamma(k(c_b))\theta^k} N_{ch}^{k(c_b)-1} e^{-n/\theta}$$

$$\frac{\sigma^2}{\langle N_{ch} \rangle} = \theta \simeq const, \ k = \frac{\langle N_{ch} \rangle}{\theta}$$

 $c_b = \int_0 P(b')db'$ – centrality based on impact parameter

Mean multiplicity as a function of c_b can be defined as follows:

R. Rogly, G. Giacalone and J. Y. Ollitrault, Phys.Rev. C98 (2018) no.2, 024902 Implementation for MPD and BM@N by D. Idrisov: https://github.com/Dim23/GammaFit Example of application in MPD: P. Parfenov et al., Particles 4 (2021) 2, 275-287 2 main steps of the method:

Fit experimental (model) distribution with P(N)

Γ-fit result Xe-Cs

- Good agreement between model data and fit
- Impact parameter distributions in different centrality classes reproduces ones from DCM-QGSM-SMM

Result of centrality determination at Xe-CsI @ 3.8 AGeV

- Centrality determination methods were applied on experimental Xe-CsI data
- Good agreement between data and fit for both methods
- New centrality classes is used in analysis (see talk by M.Mamaev)

Comparison between impact parameter distributions

- For Γ-fit all centrality classes are comparable
- **F-fit and MC-Glauber fit are now in more agreement with each other**

Implementation of "pileup" in the centrality determination procedure

Pileup events occur with the probability α_m at the **m** multiplicity bin.

The probability to find **N** particles of interest at multiplicity **m** with the pileup effects is given by:

 $\mathsf{P}_{\mathsf{m}}(\mathsf{N}) = (1 - \alpha_{\mathsf{m}})\mathsf{P}_{\mathsf{m}}^{\mathsf{single}}(\mathsf{N}) + \alpha_{\mathsf{m}}^{\mathsf{P}}\mathsf{P}_{\mathsf{m}}^{\mathsf{pileup}}(\mathsf{N})$

Result of centrality determination (with "pileup")

13

Summary and outlook

- The first version of it is performed
- A new approach to accounting for pileup is considered
- The MC-Glauber and the Bayesian inversion method reproduce charged particle multiplicity for fixed-target experiment at BM@N
- Relation between impact parameter and centrality classes is extracted
- These results are used in the physics analysis
- Consider the multiplicity h- / π +- to determine centrality

Thank you for your attention!

Result of centrality determination at Xe-CsI @ 3.8 AGeV

MC-Glauber

Γ-fit

ICPPA-2024, "Comparison of different centrality determination methods at the BM@N experiment"

- Centrality determination methods were applied on experimental Xe-CsI data
- Good agreement between data and fit for both methods
- New centrality classes are used in physics analysis (see talk by M.Mamaev tomorrow)

Centrality determination after remove "pileup"

Change fit result

- f: 0.5 -> 0.4
- k: 0.25 -> 0.28
- µ: 0.44 -> 0.42
- pileup: 5.5% -> 0.3%

After pileup rejection the "pileup" events contribution is less 1%

Centrality determination after refMult correction: vs cent

The Bayesian inversion method (Γ-fit): main assumptions

 $\mbox{.}$ Relation between multiplicity N_{ch} and impact parameter b is defined by the fluctuation kernel:

Five fit parameters

$$N_{knee}, \theta, a_j$$

Reconstruction of b

- Normalized multiplicity distribution P(N_{ch}) $P(N_{ch}) = \int_{0}^{1} P(N_{ch}|c_b) dc_b$
- Find probability of *b* for fixed range of N_{ch} using Bayes' theorem:

$$P(b|n_1 < N_{ch} < n_2) = P(b) \frac{\int_{n_1}^{n_2} P(N_{ch}|b) dN_{ch}}{\int_{n_1}^{n_2} P(N_{ch}) dN_{ch}}$$

The Bayesian inversion method consists of 2 steps:

Fit normalized multiplicity distribution with P(N_{ch})
 Construct P(b|N_{ch}) using Bayes' theorem with parameters from the fit

R. Rogly, G. Giacalone and J. Y. Ollitrault, Phys.Rev. C98 (2018) no.2, 024902 Implementation for MPD and BM@N by D. Idrisov: <u>https://github.com/Dim23/GammaFit</u> Example of application in MPD: **P. Parfenov et al., Particles 4 (2021) 2, 275-287**

The BM@N experiment

SImulation:

- Xe-Cs
- GEANT4 transport

Data:

- run8 Xe-CsI @3.8A GeV
- Physical runs

Multiplicity of charged particles from tracking system FSD+GEM

Why several alternative centrality estimators

Anticorrelation between charge of the spectator fragments (FW) and particle multiplicity (hits)

HADES; Phys.Rev.C 102 (2020) 2, 024914

A number of produced protons is stronger correlated with the number of produced particles (track & RPC+TOF hits) than with the total charge of spectator fragments (FW)

HADES; Phys.Rev.C 102 (2020) 2, 024914

Avoid self-correlation biases when using spectators fragments for centrality estimation