

Петра Великого

Исследование рождения φ(1020)-, заряженных K*(892)мезонов и заряженных Σ(1385)-барионов в столкновениях ядер висмута при энергии 9,2 ГэВ в эксперименте MPD на ускорителе NICA

Я.А. Бердников, <u>Д.А. Иванищев</u>, Д.О. Котов, М.В. Малаев, А.Ю. Рябов (СПбПУ и НИЦ «Курчатовский Институт» - ПИЯФ) для коллаборации МРD

Сессия-конференция секции ядерной физики ОФН РАН, посвященная 70-летию В.А. Рубакова

Работа выполнена в рамках Государственного задания на проведение фундаментальных исследований (код темы FSEG-2025-0009)

21 Февраля 2025

Эксперимент MPD на ускорителе NICA

•Один из двух экспериментов на ускорителе NICA по изучению столкновений тяжелых ядер при энергии $\sqrt{s_{NN}} = 4 - 11 \ \Gamma$ эВ

•NICA будет изучать КХД-материю при больших значениях барионной плотности → фазовый переход 1 рода + КХД критическая точка

•Другие действующие (NA61/Shine, STAR-BES) и будущие эксперименты (CBM) в ~ одинаковой области энергий 2

Резонансы как пробники столкновений тяжелых ядер

Резонансы в столкновениях тяжелых ядер

• Наиболее часто/легко измеряемые резонансы:

ρ

(770)	K*(892)) ⁰ K*(892) ⁺	φ(1020)	Σ(1385) [±] Λ	A(1520) Ξ(153	
$\frac{u\overline{u} + d\overline{d}}{\sqrt{2}}$	ds	นริ	SS	uus dds	uds uss	
Particle		Mass (MeV/ c^2)	Width (MeV/ c^2)	Decay	BR (%)	
ρ0		770	150	π+π	100	
$K^{\star \pm}$		892	50.3	π±Ks	33.3	
K*0		896	47.3	πK+	66.7	
φ		1019	4.27	K+K-	48.9	
Σ^{\star_+}		1383	36	π*Λ	87	
Σ*-		1387	39.4	πΛ	87	
Λ(1520)		1520	15.7	K-p	22.5	
Ξ*0		1532	9.1	π+Ξ-	66.7	

- •Свойства резонансов в вакууме измерены достаточно хорошо (*m*, τ, КВ и т.д.)
- •Обильно рождаются в столкновениях тяжелых ионов при энергиях порядка ~ ГэВ, имеют большие вероятности распада в адронные каналы → возможно измерить
- •Используются для исследования динамики реакций и механизмов рождения частиц в зависимости от размера системы и энергии $\sqrt{s_{NN}}$:
 - ✓адронная химия и рождение странности, ф обладает скрытой странностью и является одним из ключевых пробников
 - ✓ динамики реакций и форма спектров по p_T , p/K^* , p/ϕ в зависимости от p_T
 - ✓ время жизни и свойства адронной фазы
 - ✓ спиновая ориентация векторных мезонов во вращающейся КГП (поляризация кварков вследствие спин-орбитальных взаимодействий)
 - ✓ поток, сравнение с измерениями пар e^+e^- , гашение струй, фон в других исследованиях и т.д.

Адронная фаза и модификации в среде

•Резонансы обладают малым $\tau \sim 1 - 45 \text{ фм/}c$, часть резонансов распадается в Файерболе

	ρ(770)	K*(892)	Σ(1385)	Λ(1520)	Ξ(1530)	\$(1020)
τ (fm/c)	1.3	4.2	5.5	12.7	21.7	46.2
σ _{rescatt}	$\sigma_{\pi}\sigma_{\pi}$	$\sigma_{\pi}\sigma_{K}$	$\sigma_\pi\sigma_\Lambda$	$\sigma_K \sigma_p$	$\sigma_{\pi}\sigma_{\Xi}$	$\sigma_K \sigma_K$

Восстанавливаемые выходы резонансов в столкновениях тяжелых ядер определяются

✓Выходами резонансов при химической заморозке

✓Адронными процессами между химической и кинетической заморозками:

перерассеяние: упругое или псевдо-упругое дочерних частиц с окружающими адронами → материнская частицы на восстанавливается → потеря сигнала

регенерация: псевдо-упругое рассеяние адронов ($\pi K \to K^{*0}, KK \to \phi$ и т.д.) \to избыточный выход

 Подавление выхода короткоживущих резонансов (τ < 20 фм/с) в центральных А+А столкновениях → перерассеяние преобладает на регенерацией

- •Модификации не наблюдаюется для долгоживущих резонансов, ϕ -мезон ($\tau \sim 40 \ \phi$ м/c)
- •Изменение выхода зависит от множественности частиц, а не от сталкивающейся системы/энергии

Восстановление резонансов

- •Свойства адронных резонансов восстанавливают в экспериментах с использованием метода инвариантной массы
- •После вычитания некоррелированного комбинаторного фона (оценивается методом смешивания событий, пар одинаково заряженных частиц и т.д.), пики резонансов аппроксимируются с использованием заданной модели пика (например, функция Брейта-Вигнера + разрешение по массе + зависящая от массы ширина + поправка на фазовое пространство + ...) и функцией, описывающей фон.

- •В большинстве случаев модели пиков основаны на теории и результатах измерений в элементарных столкновениях e^+e^- и/или *pp*, где эффекты среды не столь значительны.
- •Модификации в среде могут приводить к изменению измеряемого выхода и масс/ширин резонансов.

Возможности MPD измерять $\phi(1020)$, $K^*(892)^{\pm}$ и $\Sigma(1385)^{\pm}$ в Bi + Bi при $\sqrt{s_{NN}} = 9,2$ ГэВ

Эффективность регистрации и массовое разрешение

- •Полная последовательность модельных расчетов и восстановления событий с использованием UrQMD v.3.4 (BiBi@9,2, 50 млн событий)
- Прохождение частиц через MPD посредством MPDroot (Geant v.4):
- ✓ реалистичное моделирование отклика подсистем
- ✓ восстановление треков

•Типичные эффективности восстановления (A $\times \epsilon$) при различных центральностях, |y| < 0,5

•Приемлемые значения эффективностей в широком диапазоне p_T , |y| < 0,5

•Измерения возможны начиная с 0 p_T для $K^*(892)^{\pm}$ и с 0,2 – 0,4 ГэВ/с для $\phi(1020)$ и $\Sigma(1385)^{\pm}$

•Умеренная зависимость от центральности

•Массовое разрешение достаточно хорошее для регистрации изменения спектра массы

ф(1020), восстановленные пики

•Полная последовательность модельных расчетов и восстановления параметров

- •Комбинаторный фон нормируется на распределение в области больших масс и вычитается
- •Распределения аппроксимируются функцией Фойгта + полином (разрешение по массе фиксируется на оцененном значении, Г свободный параметр)
- •Сигнал может быть восстановлен при $p_T > 0,2$ ГэВ/с, верхний предел по p_T ограничен доступной статистикой
- •Отношение сигнал/фон ухудшается с увеличением центральности

 $K^{*}(892)^{\pm}$, восстановленные пики

•Полная последовательность модельных расчетов и восстановления параметров

 $p_T = 0, 2 - 0, 4 \text{ GeV}/c, K^*(892)^{\pm} \rightarrow K_S + \pi^{\pm} (K_S \rightarrow \pi^- + \pi^+), |y| < 0, 5$

•Комбинаторный фон нормируется на распределение в области больших масс и вычитается

- •Распределения аппроксимируются функцией Фойгта + полином (разрешение по массе фиксируется на оцененном значении, Г свободный параметр)
- •Сигнал может быть восстановлен при $p_T > 0$ ГэВ/*c*, верхний предел по p_T ограничен доступной статистикой
- •Отношение сигнал/фон ухудшается с увеличением центральности

$\Sigma(1385)^{\pm}$, восстановленные пики

•Полная последовательность модельных расчетов и восстановления параметров

 $p_T = 0.6 - 0.8 \text{ GeV}/c, \Sigma(1385)^{\pm} \rightarrow \Lambda + \pi^{\pm} (\Lambda \rightarrow p + \pi), |y| < 0.5$

- •Комбинаторный фон нормируется на распределение в области больших масс и вычитается
- •Распределения аппроксимируются функцией Фойгта + полином (разрешение по массе фиксируется на оцененном значении, Г свободный параметр)
- •Сигнал может быть восстановлен при $p_T > 0,2$ ГэВ/с в полу-центральных и $p_T > 0,4$ ГэВ/с в центр. и перефир. столкновениях, верхний предел по p_T ограничен доступной статистикой
- •Отношение сигнал/фон ухудшается с увеличением центральности

Спектры рождения и тест на замкнутость

•Полная последовательность модельных расчетов и восстановления параметров, диапазоны ограничены возможностью извлечения сигналов, |y| < 0,5

•Реконструированные спектры совпадают со сгенерированными в пределах погрешностей

- •Первые измерения резонансов в зависимостью от центральности станут возможными при накоплении ~ 10⁸ Bi+Bi@9,2 ГэВ столкновений
- •Измерения возможно выполнить начиная с импульсов, близких к нулю → регистрируется большая часть выхода, возможно зарегистрировать возможные модификации

Заключение

- •Систематическое исследование рождения резонансов является важной частью физической программы MPD
- ✓Свойства адронной фазы, рождение странности, механизмы адронизации и коллективные эффекты, адронная химия, спиновая ориентация и др.
- •Первые измерения рождения $K^*(892)^{\pm}$, $\Sigma(1385)^{\pm}$, $\phi(1020)$ резонансов в зависимости от поперечного импульса и центральности возможно будет осуществить при набранной статистике ~10⁸ Bi + Bi столкновений при $\sqrt{s_{NN}} = 9,2$ ГэВ
- •Измерения возможны начиная с малых импульсов (от $0 0,4 \ \Gamma \Rightarrow B/c$) с хорошим массовым разрешением \rightarrow высокая чувствительность к различным физическим явлениям, наиболее выраженным при малом p_T
- •Дополняют результаты исследования других резонансов (р, $K^*(892)^0$ и т.д.) формируя картину рождения резонансов в Bi+Bi столкновений при $\sqrt{s_{NN}} = 9,2$ ГэВ

Запасные

Структура анализа

- •Смоделировано 50 миллионов Bi+Bi столкновений при энергии $\sqrt{s_{NN}} = 9,2$ ГэВ генератором событий UrQMD 3.4 с настройками по умолчанию
- •Взаимодействие частиц с веществом детектора MPD и трекинг *MPDpdroot*
- •Распады $\phi(1020) \rightarrow K^+K^-$ (~46) и с каскадными модами распада (с наличием вторичной вершины распада): $K^*(892)^{\pm}$ (~4) $\rightarrow K_S + \pi^{\pm} (K_S \rightarrow \pi^+ + \pi^-), \Sigma(1385)^{\pm} (~5) \rightarrow \Lambda + \pi^{\pm} (\Lambda \rightarrow p + \pi^-)$ были восстановлены объединением в пары сразу или после восстановления вторичной вершины всех дочерних частиц в пределах события.
- •Критерии отбора были оптимизированы с целью повышения значимости сигнала
- •Отбор столкновений:

```
✓ |z_{vrtx}| < 130 см, реалистичное распределение с \sigma_z ~ 50 см
```

• Базовый отбор треков:

```
✓Число точек ТРС > 10
```

```
\checkmark |\eta| < 1
```

```
\checkmark p_T > 100 \text{ M} \Rightarrow \text{B/}c
```


 \checkmark TPC-TOF идентификация в пределах
 2σ

✓Повторное восстановление треков в ТРС для частиц, идентифицированных каонами и протонами

```
• Основные треки:

\checkmark |DCA(x,y,z)| < 2\sigma

• Пары:

\checkmark |y| < 0,5

\checkmark Дополнительные критерии отбора <math>\Lambda и K_S + ассоциация с первичной вершиной руда руда и \Lambda р

• Комбинаторный фон:

\checkmark Смешивание событий (|\Delta_{Zvrtx}| < 2 \text{ см}, |\Delta_{Mult}| < 20, N_{ev} = 10)
```


Эффективности восстановления 2D

- •Приемлемые эффективности в широком диапазоне p_T , |y| < 0,5
- •Измерения осуществимы начиная с 0 импульсов для $K^*(892)^{\pm}$ и с 0,2 0,4 ГэВ/с для $\phi(1020)$ и $\Sigma(1385)^{\pm}$