Сессия-конференция секции ядерной физики ОФН РАН, посвящённая 70-летию В. А. Рубакова

Исследование характеристик сцинтилляционных детекторов с помощью мюонного годоскопа УРАГАН

М. Ю. Целиненко, Д. М. Громушкин, К. Г. Компаниец, Н. А. Пасюк, А. А. Петрухин, С. С. Хохлов, В. В. Шутенко, И. И. Яшин.

Национальный исследовательский ядерный университет «МИФИ» <u>MYTselinenko@mephi.ru</u>

> г. Москва 17-21 февраля 2025 г.

Постановка задачи

В настоящее время для экспериментов в физике высоких энергий важную роль играют сцинтилляционные детекторы (СД) различных форм и размеров, в связи с чем возникает задача оценки их характеристик, таких: средние амплитуды отклика и пространственная неоднородность световыхода. Классические методы анализа на основе применения мюонных телескопов зачастую дают заметную неточность и затрачивают достаточно много времени на набор необходимой статистической обеспеченности.

Наша лаборатория использует метод оценки пространственной неоднородности световыхода СД различной геометрии с помощью потока мюонов с известными параметрами треков, выделяемыми мюонным годоскопом.

Угловое разрешение	< 1°
Пространственная	~ 1 см
точность	
Площадь	4 × 11.5 м ²

Структура мюонного годоскопа УРАГАН

- > Режим работы ограниченный стример.
- ➢ Трёхкомпонентная газовая смесь (Ar, CO2, пентан).
- ≻ Размеры камер 357×16.7×1.5 см³.
- ≻ Стримерная трубка квадрат 9×9 мм².

Методика тестирования

Эксперимент sPhenix

- Проводится на коллайдере тяжелых ионов (RHIC) Брукхейвен, США.
- Изучение кварк-глюонной плазмы.
- Проводились работы по калибровке детекторов Outer HCAL и INNER HCAL
- Регистрирующими элементами являются сцинтилляционные тайлы – параллелограммы ризличных геометрических размеров, производства АО Унипласт, г. Владимир.

https://www.sphenix.bnl.gov/system/files/2022-07/HCal%20cosmic%20calibration.pdf Carlos E. Pérez Lara «The sPHENIX Experiment», EPJ Web of Conferences 171, 10002 (2018), https://doi.org/10.1051/epjconf/201817110002

Детекторы адронного калориметров эксперимента sPhenix

Средняя амплитуда, мВ	221.1 ± 0.9	$\Lambda < \Lambda > - \frac{\sigma_A}{\sigma_A} + 10006$
Среднеквадратичное отклонение (σ _A), мВ	51.2 ± 2.1	$\Delta < A > - \frac{1}{\bar{A}} * 100\%$
Количество мюонов в ячейке, шт	18	
Неоднородность отклика, %	23	6

Детекторы адронного калориметров эксперимента sPhenix

19

Неоднородность отклика, %

7

Детекторы адронного калориметров эксперимента sPhenix

Нейтринный детектор

4

Регистрация реакторных антинейтрино.

≻ Механизм регистрации $\overline{v_e} + p \rightarrow n + e^+$.

1320

≻ Геометрические размеры 50 × 50 × 640 мм³.

1 - Светоизолирующее покрытие
2 - Сцинтиллятор на основе
полистирола с добавлением РОРОР
3 - Световод

3

4 - ФЭУ

Нейтринный детектор

Средняя амплитуда, мВ	476.1 ± 1.6
Средний заряд, пКл	379.7 ± 1.8
Среднеквадратичное отклонение (σ _A), мВ	27.5 ± 3.6
Среднеквадратичное отклонение (σ _Q), пКл	38.1 ± 5.2
Количество мюонов в ячейке, шт	15
Неоднородность отклика, %	10

 $\Delta < A > = \frac{\sigma_A}{\bar{A}} * 100\%$

10

Тестирование многоканальных систем (мобильный мюонный годоскоп)

Тестирование многоканальных систем (мобильный мюонный годоскоп)

Процедура настройки откликов заключается в следующем:

 Проводится специальный набор, по результатам которого оценивается неравномерность откликов каналов и проверяется их работоспособность

Производится изменение конфигурации считывающей платы путем выбора напряжения питания SiPM и настройки порогов компараторов.

После настройки $\Delta < A > = 14\%$

12

Калибровка с помощью мюонного годоскопа дает возможность:

- □ эффективно проводить тестирование детектора в потоке мюонов с известными треками;
- анализировать спектры откликов на одиночные мюоны;
- □ проводить оценку эффективности срабатывания;
- оценивать пространственную однородность светосбора детекторов.

В случае калибровки многоканальных систем:

- □ проверять работоспособность всех каналов детектора;
- проводить настройку откликов каналов;
- оценивать уровень кросс-канальных наводок.

