Searches for BSM physics at LHC

A. Nikitenko,

NRC Kurchatov Institute (KKTEF), Moscow, Russia, JINR, Dubna, Russia, also Imperial College, London, UK

devoted to memory of V. Rubakov

V. Rubakov said at one of RDMS CMS Collaboration conference in Alushta (2011): «Physics is in confusion...» meaning (I guess) no SUSY discovered at LHC

Gerard 't Hooft Institute for Theoretical Physics Utrecht University the Netherlands

Presented at the Symposium to celebrate Carlo Rubbia's 90th birthday, October 18, 2024.

I wish theoreticians could say:

Experimentalists should not worry, we'll make a theory that explains what you are finding

In 2012 SUSY people were happy to say: h₁₂₅ is the first discovered SUSY particle

A lot of SUSY (and BSM) analyses in Higgs sector are still going on these days in ATLAS and CMS

BSM physics with Higgs bosons

Summary of coupling strength modifiers for h_{125}

 B_i – probability to decay to invisible mode (h_{125} →DM DM) B_u – probability to decay to yet undetected BSM modes h_{125} → µτ, hh,... + unknown/undetectable

$$\frac{\Gamma_{\rm H}}{\Gamma_{\rm H}^{\rm SM}} = \frac{\kappa_{\rm H}^2}{1-({\rm BR}_{\rm undet.}+{\rm BR}_{\rm inv.})}$$

Room for New Physics with non SM decays of h_{125} : $B_u < 0.12$ (expected 0.21) $B_{inv} < 0.13$ (expected 0.08) at 95 % CL

Nature 607, 52-59, (2022)

Additional Higgs bosons in MSSM $h,H,A,H^{\pm}(m_h < m_H)$ most probably h (not H) is discovered h₁₂₅

At tree level Higgs sector of MSSM is determined by only two parameters:

 M_A and tan(β)

 $1 < \tan(\beta) = v_2/v_1 = (v \sin(\beta)) / (v \cos(\beta)) < 60$

From 2010 to 2024 in MSSM Higgs searches

Additional Higgs bosons in 2HDM

h,H,A,H[±] (m_h < m_H), h or H is discovered

Free parameters of 2HDM:

 m_h , m_H , m_A , m_{H+} , α, tanβ, m_{12} (soft Z₂ symmetry (Φ_1 -> Φ_1 , Φ_2 ->- Φ_2) breaking parameter)

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 36.1 - 139 \text{ fb}^{-1}$

 m_{12} != 0 to have a new mass scale. This allows the model to have a decoupling limit. When m_{12} goes to infinity we recover the SM m_{12} is often taken as in MSSM: $m_A^2 = m_{12}^2 / (\sin\beta\cos\beta) - \lambda_5 v^2$ with $\lambda_5 = 0$ as in MSSM arXiv:2402.05742

wrong sign Yukawa coupling ($C_p \approx -1$, $C_v = C_u \approx 1$) scenario, sin($\beta + \alpha$) ≈ 1 , can be excluded or confirmed with h $\rightarrow \gamma \gamma$ at HL-LHC,3 ab⁻¹

Anaysis which does not make a sence in MSSM but does in 2HDM: $A(H) \rightarrow ZH(A)$, $h=h_{125}$

- contrary to MSSM
 - A-boson can have a small mass
 - m_A !≈ m_H at large masses
- A→ZH decay (m_A > m_H) is the signature of a strongly first order electroweak phase transition (EWPT) in 2HDMs, as needed for Electroweak Baryogenesis <u>G. C. Dorsch, S. Huber, K. Mimasu and J. M. No,</u> <u>arXiv:1405.5537</u>

See also: Strong First Order Electroweak Phase Transition in the CP-Conserving 2HDM Revisited, M. Meuhlleitner at al, arXiv:1612.04086

2HDM Type I Promising fast sim. result for IIbb final state, m_A =400 GeV m_H =180 GeV. σ =5 at L=40fb⁻¹ at 14 TeV LHC

Electroweak baryogenesis

Sakharov Conditions:

A.D. Sakharov, ZhETF Pis'ma 5 (1967) 32 (JETP Letters 5 (1967) 24)

- B number violation (sphaleron processes).
- C- and CP-violation.
- Out-of-equilibrium

The EW phase transition must be a first order

create bubbles in early Universe with $\langle \Phi \rangle \neq 0$ and get system jumping from false to truth vev minimim

$$\xi_c \equiv rac{\langle \Phi_c
angle}{{\cal T}_c} \geq 1$$

M. Quiros, Helv. Phys. Acta 67 (1994) 451.G.D. Moore, Phys. Rev. D 59 (1999) 014503.

In SM m_H should be less than 125 GeV in order to get barion asymmetry in universe due to EWPT of the first order.

Possible appearance of the baryon asymmetry of the universe in an electroweak theory

M. E. Shaposhnikov

Institute of Nuclear Research, Academy of Sciences of the USSR

(Submitted 2 September 1986) Pis'ma Zh. Eksp. Teor. Fiz. 44, No. 8, 364–366 (25 October 1986)

A new mechanism is proposed for the generation of the baryon asymmetry of the universe in an electroweak theory. This mechanism involves an anomalous nonconservation of baryon number at high temperatures. A cosmological limitation on the mass of a Higgs boson is derived: 10 GeV $\leq m_H \leq 60$ GeV. The sign of the baryon asymmetry is determined by the sign of the CP breaking in the decays of K^0 mesons.

Electroweak baryogenesis

Duarte Azevedo

Condition for EWPT to be of strong first-order:

$$\xi_c \equiv \frac{v_c}{T_c} \gtrsim 1 \,,$$

where $v_c \equiv \sqrt{\omega_1^2 + \omega_2^2}|_{T_c}$ is the Higgs VEV at the critical temperature T_c , which is defined when the would-be true vacuum and false vacuum are degenerate.

In the SM, we would need $m_H \approx 70$ GeV for $\xi_c \ge 1$ [Kajantie et. al; Jansen]

(14)

500

300

400

The largest excess over the SM background prediction, amounting to a local significance of 2.85 σ , is observed in the ℓ + ℓ -tt channel, for the signal hypothesis corresponding to $(m_A, m_H) = (650, 450)$ GeV.

 m_H [GeV]

600

500

ATLAS exp.: $gg \to A \to ZH \to \ell^+ \ell^- t\bar{t}$ ATLAS obs.: $gg \to A \to ZH \to \nu\nu b\bar{b}$

ATLAS exp.: $gg \rightarrow A \rightarrow ZH \rightarrow \nu\nu b\bar{b}$ HiggsBounds comb. 95% C.L. excl.

700

800

Prospects for $A \rightarrow ZH \rightarrow l^+l^-$ tt at HL-LHC

ournal of Cosmology and Astroparticle Physics

The trap in the early Universe: impact on the interplay between gravitational waves and LHC physics in the 2HDM

Thomas Biekötter,^a Sven Heinemeyer,^b José Miguel No,^{b,c} María Olalla Olea-Romacho^a and Georg Weiglein^{a,d}

Searches for the light scalars from h₁₂₅ decay

CMS and ATLAS searches for $h_{125} \rightarrow ss \rightarrow xxyy$ on one plot

M. Carena et al arXIv:2203.08206 see also M. Cepeda at el arXiv:2111.12751

- Recent ATLAS analyses of 2024
 - <u>h₁₂₅→aa→4γ</u>
 - $h_{125} \rightarrow Za \rightarrow ll\gamma\gamma$

R. Aggleton at al, arXiv:1609.06089 Br's in NMSSM

Extended Scalar Workshop in CERN, 21-25 October, 2024

Searches for h₁₂₅ decay to aa(hh) vs models (I)

mass range, $m_a \approx 10-15 \text{ GeV}$ was not accessible. $\mu\mu(\tau\tau)bb$ could do it using a «fat jet», with two b-quarks inside.

M. Carena et al arXiv:2203.08206

h125+singlet model Already sensitive to parameter regions for strong 1st order EWPT

R. Aggleton at al, arXiv:1609.06089

this plot need to be updated for

13 TeV (Run II) analyses. CMS:

- μμbb: <u>arXiv:2402.13358</u> m_a range is 20-60 GeV
- ττbb: <u>arXIv:2402.13358</u> m_a range is 15-60 GeV
- $\mu\mu\tau\tau$: <u>arXiv:2005.08694</u> m_a range is 3.6-21 GeV
- ττττ : <u>arXiv:1907.07235</u> m_a range is 4.0-15 GeV
- μμμμ: <u>arXiv:1812.00380</u> m_a range is 0.25-8.5 GeV
- bbbb: <u>arXiv:2403.10341</u> m_a range is 15-60 GeV

17

searches for H(A) \rightarrow h₁₂₅h(a)_S decays

search for $H(A) \rightarrow h_{125}h(a)_{S} \rightarrow \tau \tau bb$ decay

• 240 < m_{H(A)} < 3000 GeV, 60 < m_{hS} < 2800 GeV

$\tau_e \tau_h, \tau_\mu \tau_h, \tau_h \tau_h$ plus at least two jets (at least one b-tagged) final states are used

- Multi-class NN used, 4x background classes + 1 signal class
- Output is 5 scores, yi, that sum to 1
- Allocate events to categories based on largest y_i
- In each category fit maximum y_i as discriminating variable

arXiv:2106.10361

already sensitive to NMSSM

search for $H(A) \rightarrow h_{125}h(a)_{s} \rightarrow \gamma \gamma bb$

arXiv:2310.01643

- Largest excess for m_Y=90 GeV, m_X = 650 GeV
 - Local (global) significance of 3.8 (2.8)σ @ m_Y=90 GeV

Combination assuming SM BR

$h_{125} \rightarrow \gamma \gamma, \tau \tau, bb arXIV:2403.16926$

138 fb⁻¹ (13 TeV)

Do not show $H \rightarrow h_{125} h_{125}$ CMS and ATLAS results since signal model taken in the analyses does not take into account interference with non resonant hh production

- Importance of taking into account non-resonance production
 - S. Heinemeier at al. arXiv:2403.14776
 - T. Robens at al. arXiv:2409.06651

Two BP in 2HDM Type I were claimed to be excluded using resonance model only and neglecting non-resonance contributions

Search for Dark Matter in non-SM h(125) decays: $h_{125} \rightarrow invisible$

Connection between LHC H->inv. and direct DM searches"

23

DM (WIMP) detection on Earth with XENON experiment

Start data taking in 2007 at Gran Sasso in Italy. Current XENON100 – 165 L xenon. Plan for 1000 L

most sensitive mode qq'→qq'h (VBF h)

Eur. Phys. J. C 83 (2023) 933

Expect to reach \approx 4 % at HL-LHC with 3 ab⁻¹ (FTR-19-001)

How it is compared with MSSM and NMSSM predictions

 seems not interesting for pMSSM with new limits from LZ experiment

Figure 4: The neutralino relic density $\log_{10}(\Omega_{\chi}h^2)$ as a function of $M_{\chi_1^0}$ (left) and $\operatorname{BR}(h \to \chi_1^0 \chi_1^0)$ (right) for the accepted set of pMSSM points (black dots), those with $\operatorname{BR}(h \to \chi_1^0 \chi_1^0) \geq 15\%$ (green dots) and those compatible at 90% C.L. with the Higgs data (light green dots). The horizontal lines show the constraint imposed on $\Omega_{\chi}h^2$ and the vertical lines on the panel on the right the 68% and 95% C.L. constraints on the Higgs invisible decay branching fraction obtained by [26].

latest update in R. Godbole at al. <u>arXiv:2402.07991</u>, BR(h $\rightarrow\chi_1\chi_1$) < 0.1 %

interesting in NMSSM

U. Ellwanger et al, arXiv:2403.16884

Scenarios with light neutralino 1

	BP1
M_{H3}	3966
M_{A1}	21
LSP	singl.
$M_{\rm LSP}$	9.0
NLSP	$wino^{\pm}$
$M_{\rm NLSP}$	115
Slepton	$\tilde{ u}_{ au}$
$M_{\rm Slepton}$	140

BR h→invisible can reach ≈10-15 % due to destructive interferences among processes mediated by the CP-even scalars. *Cyril Hugonie, private communication*

limits on the anomalous electromagnetic moments of the τ lepton (Rep. Prog. Phys. 87 (2024) 107801)

27

photon-lepton coupling, ie Γ^{μ}

 $\Gamma^{\mu} = \gamma^{\mu} F_1\left(q^2\right) + \frac{\sigma^{\mu\nu} q_{\nu}}{2m} \left[iF_2\left(q^2\right) + F_3\left(q^2\right)\gamma_5\right]$

 $F_2(0) = a_\ell \equiv (g_\ell - 2)/2 \text{ and } F_3(0) = -2md_\ell/e_\ell$

the gyromagnetic ratio g_e is a constant term that relates the magnetic moment of the lepton to its spin, and d_e is the lepton anomalous electric dipole moment.

 $a_{\tau} = 1.17721 \pm 0.00005 \times 10^{-3}$ in the SM (<u>arXiv:hep-ph/0701260</u>) $d_{\tau} = -7.3 \times 10-38$ e cm in SM (<u>arXiv:2003.08195</u>)

$qq \rightarrow Z^* \rightarrow A+h/H \rightarrow 4\tau$ (CMS-PAS-SUS-23-007)

- motivated by the Type III 2HDM at large tanβ as an explanation of the muon g_{μ} -2 anomaly (<u>arXiv:2104.10175</u>)
 - Four possible Z₂ charge assignments that forbid tree-level Higgs-mediated FCNC effects in the 2HDM

		Φ_1	Φ_2	t_R	b_R	$ au_R$	t_L,b_L,ν_L,e_L
Type I		+		_	_	_	+
Type II		+	—	—	+	+	+
$Type \ X$	(lepton specific)	+	—	—	—	+	+
Type Y	(flipped)	+	—	—	+	_	+

Couplings of Higgs particles to quarks and leptons

	I .			• •	*d	normal scenario (NS)	inverted scenario (IS)
	u-type	d-type	leptons	ξ^{u}_{A}	ξ^a_A		
type I	Φ_2	Φ_2	Φ_2	$\cot eta$	$-\cot\beta$	$h_{ m SM}=h, arphi^0=H$	$h_{\rm SM} = H, \varphi^0 = h$
type II	Φ_2	Φ_1	Φ_1	\coteta	aneta	$a^{h_{\text{SM}}} = 1$ $a_{\text{SM}} = 1$	$h_{\rm SM} = 1$ $c = 1$
type III (lepton-specific)	Φ_2	Φ_2	Φ_1	$\cot eta$	$-\coteta$		$y_f = 1, c_{\beta-\alpha} = 1$
type IV (flipped)	Φ_2	Φ_1	Φ_2	$\cot eta$	aneta	$y^A_t=-y^{arphi^0}_t=rac{1}{t_eta}, y^A_\ell=y^{arphi^0}_\ell=t_eta$	$y_t^A = y_t^{\varphi^0} = \frac{1}{t_\beta}, y_\ell^A = -y_\ell^{\varphi}$

and couplings of A and φ^0 to leptons are enlarged by tan β

$y_t^A = y_t^{\varphi^0} = rac{1}{t_s}, \quad y_\ell^A = -y_\ell^{\varphi^0} = t_eta$ In Type III 2HDM couplings of A to up and down quarks are suppressed by $1/\tan\beta$

SM contribution to magnetic momentum of muon

 $\Delta a_{\mu}^{\rm obs} = a_{\mu}^{\rm exp} - a_{\mu}^{\rm SM} = 251(59) \times 10^{-11}$

4.2 σ deviation from SM, **in 2HDM** ϕ^0 , A, H[±] contribute to loop

$$h_{\rm SM} = s_{\beta - \alpha} h + c_{\beta - \alpha} H.$$

28

 \bar{q} Z^* τ^- h/H τ^-

 $\xi_A^t = -\xi_A^b = 1/\tan\beta$

- search excludes the allowed region for the g_{μ} -2 anomaly with a Type III 2HDM

a complete exclusion of the type III 2HDM for many of the mass points scanned.

Searches for processes with Lepton Number Violation

FCNC forbidden in SM imposing Z2 symmetry

Sheldon L. Glashow and Steven Weinberg Phys. Rev. D 15, 1958

FCNC in Higgs sector: $h125 \rightarrow \mu\tau$, $e\tau$

ATLAS JHEP07(2023)166

B(H → μ τ) –B(H → eτ) measured is (0.25 ±0.10)%, compatible with zero within 2.5σ

CMS

PHYSICAL REVIEW D 104, 032013 (2021)

	Best fit branching fractions (%)	
$\begin{array}{l} H \to \mu \tau \\ H \to e \tau \end{array}$	<0.15 (0.15) <0.22 (0.16)	$\begin{array}{c} 0.00 \pm 0.07 \\ 0.08 \pm 0.08 \end{array}$

Mijorana neutrino. searches for N_R and W_R in L-R SM

Pati, Salam '74 Mohapatra, Pati '74 Mohapatra, Senjanović '75 Senjanović '79

$$\left(\begin{array}{c}\nu_L\\e_L\end{array}\right)\leftrightarrow\left(\begin{array}{c}\nu_R\\e_R\end{array}\right)$$

Left-Right Symmetry

Automatically implies massive neutrinos

 $m_{
u} \,\overline{
u_L}
u_R$

See-saw Mechanism

$$M_{\nu} = -M_D^T \frac{1}{M_N} M_D \qquad \begin{array}{l} M_D \propto \langle \Phi \rangle = v = \text{scale of } W_L \\ M_N \propto \langle \Delta_R \rangle = v_R = \text{scale of } W_R \end{array}$$

 $m_{
u} \propto rac{M_{W_L}^2}{M_{W_R}}$ Minkoswski '77 Mohapatra, Senjanović '79 Yanagida '79 Glashow '79 Gell-man et al. '79

Eur. Phys. J. C 83 (2023) 1164

32

Lepton Number Violation in B-decays (LHCb)

Eur. Phys. J. Spec. Top. 233, 225-240 (2024)

Decay mode	Data analysed	Limit at 90% CL
$B^0 \to K^{*0} \mu^\pm e^\mp$	$9 {\rm ~fb^{-1}}$	9.9×10^{-9}
$B_s \to \phi \mu^{\pm} e^{\mp}$	$9 {\rm ~fb^{-1}}$	$15.9 imes 10^{-9}$
$B^+ \to K^+ \mu^- e^+$	3 fb^{-1}	7.0×10^{-9}
$B^+ \rightarrow K^+ \mu^+ e^-$	3 fb^{-1}	6.4×10^{-9}
$B^+ \to K^+ \mu^- \tau^+$	$9 {\rm ~fb^{-1}}$	3.9×10^{-5}
$B_s \to \mu^{\pm} \tau^{\mp}$	3 fb^{-1}	3.9×10^{-5}
$B^0 o \mu^{\pm} \tau^{\mp}$	3 fb^{-1}	1.2×10^{-5}
$B_s o \mu^\pm e^\mp$	3 fb^{-1}	5.4×10^{-9}
$B^0 ightarrow \mu^\pm e^\mp$	3 fb^{-1}	$1.0 imes 10^{-9}$
$\tau \rightarrow 3\mu$	3 fb^{-1}	4.6×10^{-8}

Testing lepton universality ratios

Eur. Phys. J. Spec. Top. 233, 225-240 (2024)

$$\mathcal{R}(D^*) \equiv \mathcal{B}\left(\overline{B} \to D^*\tau^-\overline{\nu}_\tau\right) / \mathcal{B}\left(\overline{B} \to D^*\ell^-\overline{\nu}_\ell\right)$$
$$\mathcal{R}(D) \equiv \mathcal{B}\left(\overline{B} \to D\tau^-\overline{\nu}_\tau\right) / \mathcal{B}\left(\overline{B} \to D\ell^-\overline{\nu}_\ell\right)$$

The combined average is 3.3σ tension with the Standard Mode

Lepton Universality in W decays

Recent result from ATLAS: W decays to electrons and muons from top-pair events

•2x improvement on single-experiment precision

Searches for SUSY particles

ATL-PHYS-PUB-2023-025

ATLAS Preliminary

ATLAS SUSY Searches* - 95% CL Lower Limits

A	ugust 2023	Circulation	e Colum	-1	$\sqrt{s} = 13 \text{ TeV}$	
	Model	Signatur		Mass limit	Reference	
ş	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$	0 e, µ 2-6 jets mono-jet 1-3 jets	E_T^{miss} 140 E_T^{miss} 140	q [1x, 8x Degen.] 1.0 1.85 m(t_1^0)<400 GeV q q [8x Degen.] 0.9 m(a)·m(t_1^0)=5 GeV q [8x Degen.] 0.9 m(a)·m(t_1^0)=5 GeV [8x Degen.] 0.9 m(a)·m(t_1^0)=5 GeV [8x Degen.] [8x Degen.] <th [8<="" td=""><td>2010.14293 2102.10874</td></th>	<td>2010.14293 2102.10874</td>	2010.14293 2102.10874
arche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 <i>e</i> , μ 2-6 jets	E_T^{miss} 140	ĝ 2.3 m(k̂')=0 GeV ĝ Forbidden 1.15-1.95 m(k̂')=1000 GeV	2010.14293 2010.14293	
Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 e, µ 2-6 jets	140	ž 2.2 m(ž ⁰)<600 GeV	2101.01629	
8	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_{1}^{0}$	ee, μμ 2 jets	E_T^{miss} 140	x 2.2 m(x_1^0)<700 GeV	2204.13072	
clusi	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & 7-11 \ \text{jets} \\ \text{SS} \ e, \mu & 6 \ \text{jets} \end{array}$	$E_T^{\text{mass}} = 140 \\ 140$	x 1.97 m($\tilde{\chi}_1^{-}$) < 600 GeV \tilde{g} 1.15 m(\tilde{g})-m(χ_1^{-}) = 200 GeV	2008.06032 2307.01094	
4	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	$\begin{array}{ccc} \text{0-1 } e, \mu & \text{3 } b \\ \text{SS } e, \mu & \text{6 jets} \end{array}$	E_T^{miss} 140 140	ž 2.45 m(t_1^0)<500 GeV ž 1.25 m(g)-m(r_1^0)=300 GeV	2211.08028 1909.08457	
	$b_1 b_1$	0 e, μ 2 b	E_T^{miss} 140	b₁ 1.255 m(k1)/400 GeV b₁ 0.68 10 GeV<Δm(b₁, ζ₁)/<20 GeV	2101.12527 2101.12527	
arks	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	$ \begin{array}{cccc} 0 e, \mu & 6 b \\ 2 \tau & 2 b \end{array} $	$E_T^{\text{miss}} = 140$ $E_T^{\text{miss}} = 140$	b1 Forbidden 0.23-1.35 Δm(χ ⁰ ₂ , ζ ⁰ ₁)=130 GeV, m(ζ ⁰ ₁)=100 GeV b1 0.13-0.85 Δm(χ ⁰ ₂ , ζ ⁰ ₁)=130 GeV, m(ζ ⁰ ₁)=00 GeV	1908.03122 2103.08189	
and	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 $e, \mu \ge 1$ jet	E_T^{miss} 140	\bar{t}_1 1.25 m(\bar{t}_1^0)=1 GeV	2004.14060, 2012.03799	
n. s pro	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	1 e, μ 3 jets/1 b	E_T^{miss} 140	<i>i</i> 1 Forbidden 1.05 m(x_1^0)=500 GeV 2	2012.03799, ATLAS-CONF-2023-043	
ge	$\tilde{I}_1 \tilde{I}_1, \tilde{I}_1 \rightarrow \tilde{\tau}_1 b_V, \tilde{\tau}_1 \rightarrow \tau G$	1-2 7 2 jets/1 b	$E_T^{\text{miss}} = 140$	ti Forbidden 1.4 m(r)=800 GeV -	2108.07665	
3 rd dir	$t_1 t_1, t_1 \rightarrow c \chi_1 / c c, c \rightarrow c \chi_1$	$0 e, \mu$ mono-jet	E_T 30.1 E_T 140	\vec{r}_1 0.55 $m(\vec{r}_1)=0$ GeV $m(\vec{r}_1,\vec{c})-m(\vec{r}_1)=5$ GeV	2102.10874	
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	$1-2 e, \mu = 1-4 b$ $3 e, \mu = 1 b$	E_T^{miss} 140 E_T^{miss} 140	\tilde{r}_1 0.067-1.18 m(\tilde{r}_2^0)=500 GeV \tilde{r}_2 Forbidden 0.86 m(\tilde{r}_1^0)=360 GeV, m(\tilde{r}_1)-m(\tilde{r}_1^0)=40 GeV	2006.05880 2006.05880	
	${ ilde \chi}_1^{\pm} { ilde \chi}_2^0$ via WZ	Multiple ℓ /jets $ee, \mu\mu \ge 1$ jet	E_T^{miss} 140 E_T^{miss} 140	$ \vec{\chi}_{1}^{*}/\vec{\chi}_{0}^{0} = m(\vec{\chi}_{1}^{0})=0, \text{ wino-bino} \\ m(\vec{\chi}_{1}^{0})=0, \vec{\chi}_{1}^{0}/\vec{\chi}_{0}^{0} = 0, \text{ wino-bino} \\ m(\vec{\chi}_{1}^{0})=m(\vec{\chi}_{1}^{0})=0, \text{ wino-bino} \\ m(\vec{\chi}_{1}^{0})=m(\vec{\chi}_{1}^{0})=0, \text{ wino-bino} \\ m(\vec{\chi}_{1}^{0})=0, wino-$	2106.01676, 2108.07586 1911.12606	
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW	2 e, µ	E_T^{miss} 140	$\tilde{\chi}_1^{\pm}$ 0.42 $m(\tilde{\chi}_1^0)=0$, wino-bino	1908.08215	
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	Multiple <i>ℓ</i> /jets	E_T^{miss} 140	$\bar{\chi}_1^{\pm}/\bar{\chi}_2^0$ Forbidden 1.06 m $(\bar{\chi}_1^0)$ =70 GeV, wino-bino	2004.10894, 2108.07586	
*	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via $\tilde{\ell}_{L}/\tilde{\nu}$	2 e, µ	E_T^{miss} 140	$\tilde{\chi}_1^{\pm}$ 1.0 $m(\tilde{c}, \tilde{v})=0.5(m(\tilde{\chi}_1^{\pm})+m(\chi_1^0))$	1908.08215	
N: N	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_{1}^{0}$	2 7	E_T^{miss} 140	$\bar{\tau}$ [$\bar{r}_{R}, \bar{r}_{R,L}$] 0.34 0.48 m(\bar{t}_{1}^{h})=0	ATLAS-CONF-2023-029	
шë	$\hat{\ell}_{\mathrm{L,R}}\hat{\ell}_{\mathrm{L,R}}, \hat{\ell} \rightarrow \ell \hat{\chi}_1^0$	$2 e, \mu$ 0 jets $ee, \mu\mu$ ≥ 1 jet	$E_T^{\text{miss}} = 140$ $E_T^{\text{miss}} = 140$	\tilde{l} $m(\tilde{k}_1^n)=0$ \tilde{l} 0.26	1908.08215 1911.12606	
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	$0 e, \mu \ge 3 b$	E_T^{miss} 140	H 0.94 BR $(\tilde{k}_d^0 \rightarrow hG)=1$	To appear	
		$0 e, \mu \ge 2$ large je	ts E_T 140 140	H 0.35 BH($V_{1} \rightarrow ZO = 1$ H 0.45-0.93 BB($V_{1} \rightarrow ZO = 1$	2103.11684 2108.07586	
		$2 e, \mu \ge 2 \text{ jets}$	E_T^{miss} 140	<i>H</i> 0.77 $BR(\tilde{\chi}_1^0 \to ZG) = BR(\tilde{\chi}_1^0 \to hG) = 0.5$	2204.13072	
л	Direct $\tilde{\chi}_1^* \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk 1 jet	$E_T^{\rm miss}$ 140	X ⁺ ₁ 0.66 Pure Wino X ⁺ ₁ 0.21 Pure higgsino	2201.02472 2201.02472	
ive	Stable g R-hadron	pixel dE/dx	E_T^{miss} 140	ž 2.05	2205.06013	
ric l	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	pixel dE/dx	E_T^{miss} 140	\bar{g} [$\tau(\bar{g}) = 10 \text{ ns}$] 2.2 m($\bar{\chi}_1^0$)=100 GeV	2205.06013	
pa pa	$\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell\tilde{G}$	Displ. lep	E_T^{miss} 140	\tilde{e}_{μ} 0.7 $\tau(\tilde{e}) = 0.1$ ns	2011.07812	
1		pixel dE/dx	E_T^{miss} 140	$\vec{\tau}$ 0.34 $\vec{\tau}(\ell) = 0.1$ ms $\vec{\tau}(\ell) = 10$ ns	2011.07812	
	$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{1}^{0}$, $\tilde{\chi}_{1}^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e, µ	140	$\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}$ [BR(Z τ)=1, BR(Z e)=1] 0.625 1.05 Pure Wino	2011.10543	
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 e, μ 0 jets	E_T^{miss} 140	$\tilde{\chi}_1^+ / \tilde{\chi}_2^0 [\mu_{433} \neq 0, \lambda_{12k} \neq 0]$ 0.95 1.55 m($\tilde{\chi}_1^0$)=200 GeV	2103.11684	
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	≥8 jets	140	<u>\$ [m(k[*]₁)=50 GeV, 1250 GeV] 1.6</u> 2.25 Large u^{*}_{112}	To appear	
>	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$	Multiple	36.1	$t [X_{yyy}^{n}=2e-4, 1e-2]$ 0.55 1.05 $m(X_{1}^{n})=200$ GeV, bino-like	ATLAS-CONF-2018-003	
RF	$tt, t \rightarrow b\chi_1^-, \chi_1^- \rightarrow bbs$	≥ 4b 2 jete , 2 i	140 b 367	$m(\hat{r}_1)=500 \text{ GeV}$	2010.01015	
	$\tilde{h}_{1}\tilde{h}_{1}, \tilde{h}_{1} \rightarrow a\ell$	2 e. u 2 h	36.1	1 (qq, ss) 0.41	1710.05544	
		1μ DV	136	$\frac{1}{I_1} [1e \cdot 10 < \lambda'_{23k} < 1e \cdot 8, 3e \cdot 10 < \lambda'_{23k} < 3e \cdot 9] $ 1.0 1.6 BR($\hat{t}_1 \rightarrow q_{\mu}$)=100%, cos _{\$\mathcal{B}\$} =1	2003.11956	
	$\tilde{\chi}_1^{\pi}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 \rightarrow tbs, \tilde{\chi}_1^{\tau} \rightarrow bbs$	$1-2 e, \mu \ge 6 \text{ jets}$	140	X''_1 0.2-0.32	2106.09609	
*Only	a selection of the available ma	ass limits on new state	es or	0 ⁻¹ Mass scale [TeV]		

simplified models, c.f. refs. for the assumptions made.

Excitements at the end: some event excesses observed in CMS in searches for BSM Higgs bosons

Search for dimuon resonance with mass of ≈28 GeV in µ⁺µ⁻ + b-jet events using CMS Run I and Run II data

Motivation of $\mu^+\mu^-$ +b analysis

- M.M. Almarashi and S. Moretti,
 "Low mass Higgs signals at the LHC in NMSSM",
 <u>Eur. Phys. J. C71 (2011) 1618</u>
- J. Bernon, J. F. Gunion, Y. Jiang, and S. Kraml, "Light Higgs bosons in two-Higgs-doublet models", <u>Phys. Rev. D 91 (2015) 075019</u>

Selections • $p_T^{\mu_1} > 25 \text{ GeV}, |\eta_{\mu_1}| < 2.1;$ • $p_T^{\mu_2} > 5 \text{ GeV}, |\eta_{\mu_2}| < 2.4;$ • $p_T^{\text{b jet}} > 20 \text{ GeV and } |\eta| < 2.4;$ • $p_T^{\text{miss}} < 40 \text{ GeV}.$

JHEP 10 (2014) 160

zoom at low mass

40

Observation of event excess at 8 TeV in 2014

- due to good luck: selection
 p_T^{μ1,2}>25 GeV instead of 25,10 GeV
 was applied due to typo in code
 for Search Region 1 (SR1)
- once bump was observed in SR1
 Higgs PAG conveners
 wanted to be convinced by finding
 the same bump in different event
 category (SR2). It was done.

41

Once paper of 8 TeV analysis was ready to be out in 2016 we were requested to add 13 TeV 2016 data with <u>the same selection</u>. We published analysis (JHEP 11 (2018) 161) 2 years later in 2018.

Event		SR1		SR2							
category	Additi	ional forwa	rd jet	Ac	Additional central jet						
Muons	OS, $p_{\rm T} > 25 {\rm GeV}, \eta < 2.1$										
$m_{\mu\mu}$		$m_{\mu\mu} > 12 \mathrm{GeV}$									
b-tagged jet	$p_{\rm T} > 30 {\rm GeV}, \eta \le 2.4$										
Additional jet	$p_{\rm T} > 300$	GeV, $2.4 < n$	$\eta < 4.7$	$p_{\rm T}$	$> 30 \text{GeV}, \eta\rangle$	$ \leq 2.4$					
Jet veto	No other jets	$p_{\rm T} > 30 {\rm Ge}$	$V, \eta \le 2.4$	No jets p_1	> 30 GeV, 2	$4 < \eta < 4.7$					
$p_{\rm T}^{\rm miss}$,	_		, ,	< 40 GeV	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
$\Delta \phi(\mu \mu, jj)$		_			>2.5 rad	L					
	Event	SF	81	S	R2	-					
	category	Additional	forward jet	Additiona	l central jet						
	$m_{\rm X}$ (GeV)	28.4	± 0.6	28.2	± 0.7	-					
	Γ_{uu} (GeV)	1.9±	-1.3	1.9	± 1.1						
	/					-					
	-										
	\sqrt{s} (TeV)		8	3		13					
Ev	vent category		SR1	SR2	SR1	SR2					
Local s	significance (s	.d.)	4.2	2.9	2.0	1.4 deficit					
$m_{\rm X}$ (GeV)			28.3 ± 0.4 27.2 ± 0.6								
	Γ_{uu} (GeV)		1.8	-0.8	$0.7{\pm}1.0$						
	Ns			22.8 ± 9.5	14.5 ± 9.3	-14.9 ± 10.1					
	5										

M. Mangano: no observation at 13 TeV might be explained by the increase of tt background by a factor of 3.3

Extended Scalar Workshop in CERN, 21-25 October, 2024

Analysis is on the way with full Run II data and re-optimized muon sélections using 13 TeV 2016 data. Stay tuned.

Conclusions

- very reach program for BSM physics at LHC and HL-LHC
- we hope for BSM discovery with Run II+III data and at HL-LHC

CMS: event classification according to di-photon BDT score (Class 0, 1, 2) + VBF in 2017, 2018 Class 0 has a largest sensitivity

can be explained in S2HDM, <u>arXiv:2306.03889</u> 10⁻⁵ can be explained in 2HDM, <u>JHEP11(2023)017</u> 7 can be explained in NMSSM, <u>arXiv:2403.16884</u>

Two Higgs Doublet Model (I)

Consider two complex EW doublets

$$\Phi_{1} = \begin{pmatrix} \phi_{1}^{+} \\ \frac{1}{\sqrt{2}}(v_{1} + \rho_{1} + i\eta_{1}) \end{pmatrix}, \quad \Phi_{2} = \begin{pmatrix} \phi_{2}^{+} \\ \frac{1}{\sqrt{2}}(v_{2} + \rho_{2} + i\eta_{2}) \end{pmatrix}, \quad \langle \Phi_{1} \rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 0 \\ v_{1} \end{pmatrix}, \quad \langle \Phi_{2} \rangle = \frac{1}{\sqrt{2}}\begin{pmatrix} 0 \\ v_{2} \end{pmatrix}$$

• For the correct gauge bosons mass $v_1^2+v_2^2=v^2pprox(246)^2~{
m GeV^2}$

Higgs potential

$$\mathcal{V} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left\{ \frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + [\lambda_6 (\Phi_1^{\dagger} \Phi_1) + \lambda_7 (\Phi_2^{\dagger} \Phi_2)] \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right\}.$$
(1)

parameters $\lambda_6, \lambda_7=0$ as result of Z₂ symmetry imposed to avoid FCNC ($\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow \Phi_2$) Soft Z₂ symmetry breaking: $m_{12} = 0$

 m_{12} != 0 to have a new mass scale. This allows the model to have a decoupling limit. when m_{12} goes to infinity we recover the SM

Two Higgs Doublet Model (II)

Yukawa interaction with fermions

 $-\mathscr{L}_{\text{Yuk}} = \mathcal{Y}_b^1 \overline{b}_R \Phi_1^{i*} Q_L^i + \mathcal{Y}_b^2 \overline{b}_R \Phi_2^{i*} Q_L^i + \mathcal{Y}_\tau^1 \overline{\tau}_R \Phi_1^{i*} L_L^i + \mathcal{Y}_\tau^2 \overline{\tau}_R \Phi_2^{i*} L_L^i + \epsilon_{ij} \left[\mathcal{Y}_t^1 \overline{t}_R Q_L^i \Phi_1^j + \mathcal{Y}_t^2 \overline{t}_R Q_L^i \Phi_2^j \right] + \text{h.c.}$

Four possible Z₂ charge assignments that forbid tree-level Higgs-mediated FCNC effects in the 2HDM

								_
		Φ_1	Φ_2	t_R	b_R	$ au_R$	t_L,b_L,ν_L,e_L	
Type I		+	_	_	_	_	+	
Type II		+	-	—	+	+	+	
Type X	(lepton specific)	+	_	_	_	+	+	
Type Y	(flipped)	+	-	-	+	_	+	
				-			-	_
_								
		u-	-type	9	d-ty	pe	leptons	
_	Type I		Φ_2		Φ_2)	Φ_2	same as in MSSM
			Φ_2		Φ_1		Φ_1	Same as in Mission
	Lenton-specific		Φ ₂		ወ		Φ1	
			Ψ2 Φ				Ψ⊥ Φ	
	Flipped		Ψ_2		Ψ_1		Ψ_2	

Searches for h₁₂₅ decay to aa(hh) vs models (II)

Regions 3-5, 9-11 GeV are covered with calculations taking into account effect of mixing of pseudoscalar and η_c , η_b states (h-> $\eta_b\eta_c$ ->aa, η_ba ->aa, ...). U. Haisch et al. arXiv:1802.02156