Возможности обнаружения четырехчастичных аномальных калибровочных констант на будущем мюонном коллайдере

Александр Киселев

НИЦ «Курчатовский Институт» - ИФВЭ

Сессия-конференция секции ядерной физики ОФН РАН, посвященная 70-летию В.А. Рубакова, 19 февраля 2025 года

План доклада

- Почему мюоны? Будущий мюонный коллайдер.
- Эффективный Лагранжиан.
- Аномальные үүүү-константы в рождении пары фотонов на мюонном коллайдере.
- Чувствительность мюонного коллайдера к константам аномального Zүүү-взаимодействия.
- Заключение.

Ф.Ф. Тихонин, К эффектам на встречных µ мезонных пучках.
Препринт ОИЯИ Р2-4120. Дубна, 1968.
Г.И. Будкер, Ускорители и встречные пучки. Труды VII
Международной конференции по высокоэнергетическим ускорителям заряженных частиц (Ереван, 1969), Ереван 1970, т.1, с.33;
Труды Международной конференции по физике высоких энергий (Киев, 1970). Дубна, 1970, с.1017.

 Мюоны могут быть ускорены до мульти-ТэВных энергий в компактном кольце без ограничений на синхротронное излучение.

 Мюоны есть точечные частицы, поэтому вся энергия столкновения будет доступна для рождения вторичных частиц Сравнение сечений рождения пары тяжелых частиц с массами примерно равными половине энергии столкновения – для адронного и мюонного коллайдеров

100 T∍B (hh) ↔ 14 T∍B (μμ)

Схема будущего мюонного коллайдера

(Muon Collider Working Group, arXiv: 1901.06150)

Размер окружности (км): 4.5, 10, 14, 39, 200 Энергия столкновения (ТэВ): 3, 10, 14, 30, 100 Итегральная светимость (аб⁻¹): 2, 20, 40, 90, 1000 Лагранжиан Стандартной модели: отсутствуют вершины с четырьмя нейтральными калибровочными бозонами

Лагранжиан эффективной теории поля

Эффективный Лагранжиан, содержащий операторы размерности 8, которые дают вклад в аномальные квадратичные калибровочные константы (aQGCs)

$$L_{\text{EFT}} = \sum_{i} \frac{f_{S,i}}{\Lambda^4} O_{S,i} + \sum_{i} \frac{f_{M,i}}{\Lambda^4} O_{M,i} + \sum_{i} \frac{f_{T,i}}{\Lambda^4} O_{T,i}$$

Операторы минимальной размерности, не дающие вклад в аномальные 3-частичные калибровочные констатнты (aTGCs), – это операторы размерности 8

Операторы, состоящие целиком из тензоров напряженности калибровочных полей

 $O_{T,0} = Tr[W_{\mu\nu}W^{\mu\nu}] \times Tr[W_{\alpha\beta}W^{\alpha\beta}],$ $O_{T,1} = Tr[W_{\alpha\nu}W^{\mu\beta}] \times Tr[W_{\mu\beta}W^{\alpha\nu}],$ $O_{T,2} = Tr[W_{\alpha\mu}W^{\mu\beta}] \times Tr[W_{\beta\nu}W^{\nu\alpha}],$ $O_{T,5} = Tr[W_{\mu\nu}W^{\mu\nu}] \times B_{\alpha\beta}B^{\alpha\beta},$ $O_{T,6} = Tr[W_{\alpha\nu}W^{\mu\beta}] \times B_{\mu\beta}B^{\alpha\nu},$ $O_{T,7} = Tr[W_{\alpha\mu}W^{\mu\beta}] \times B_{\beta\nu}B^{\nu\alpha},$ $O_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta},$ $O_{T,9} = B_{\alpha\mu}B^{\mu\beta}B_{\beta\nu}B^{\nu\alpha}.$

тензорные

операторы

Ο_{τi}

Именно такие операторы дают вклад в аномальные вершины үүүү и Zүүү

Электрослабое нарушение симметрии

В нарушенной фазе Лагранжиан, описывающий взаимодействие үүүү, выражается через два оператора физических полей с аномальными константами g₁ и g₂

$$L_{\gamma\gamma\gamma\gamma} = g_1(F_{\mu\nu}F^{\mu\nu})(F_{\rho\sigma}F^{\rho\sigma}) + g_2(F_{\mu\nu}F^{\nu\rho}F_{\rho\sigma}F^{\sigma\mu})$$

Константы g_1, g_2 имеют размерность (-4). Они есть линейные комбинации констант исходного Лагранжиана $f_{T,i}/\Lambda^4$ (i = 0,1, ... 9)

Возможные источники аномального 4-фотонного взаимодействия

Новые заряженные частицы

g ~ Q⁴ m⁻⁴

Пример: партнер топ-кварка

Новые нейтральные частицы

 $g \sim f^{-2} m^{-2}$ Пример: КК-гравитоны в модели RS с дополнительной размерностью Если $f_{KK} \sim 1$ ТэВ и $m_{KK} \sim$ несколько ТэВ, получаем оценку: $g \sim 10^{-2}-10^{-1}$ ТэВ⁻⁴

Рождение пары фотонов в µ+µ- рассеянии путем слияния векторных нейтральных бозонов

V_{1,2} = γ, Ζ

Дифференциальное сечение процесса µ+µ- → µ+ үү µ-

$$d\sigma = \int_{\tau_{\min}}^{\tau_{\max}} d\tau \int_{x_{\min}}^{x_{\max}} \frac{dx}{x} \sum_{V_1, V_2} f_{V_1/\mu^+}(x, Q^2) f_{V_2/\mu^-}(\tau/x, Q^2) \, d\hat{\sigma}(V_1 V_2 \to \gamma \gamma)$$

$$x_{\rm max} = 1 - \frac{m_\mu}{E_\mu} \;, \; \tau_{\rm max} = \left(1 - \frac{m_\mu}{E_\mu}\right)^2, \; x_{\rm min} = \tau/x_{\rm max} \;, \; \tau_{\rm min} = \frac{p_\perp^2}{E_\mu^2}$$

 $f_{V/\mu}(x,Q^2)$ есть распределение векторного бозона V с долей энергии x = E_V/E_μ в мюонном пучке, где положено Q^2 = st

Распределение фотонов в фермионе *f* (приближение эквивалентных фотонов)

$$f_{\gamma \pm / f}(x, Q^2) = f_{\gamma / f}(x, Q^2) = \frac{\alpha}{4\pi} \frac{1 + (1 - x)^2}{x} \ln \frac{Q^2}{m_{\mu}^2}$$

Распределение поляризованных Z бозонов (главное логарифмическое приближение)

$$\begin{split} f_{Z_{\pm}/f}(x,Q^2) &= \frac{\alpha_Z}{4\pi} \frac{(g_V^f \mp g_A^f)^2 + (g_V^f \pm g_A^f)^2 (1-x)^2}{x} \ln \frac{Q^2}{m_Z^2} \\ f_{Z_0/f}(x,Q^2) &= \frac{\alpha_Z}{\pi} \frac{[(g_V^f)^2 + (g_A^f)^2](1-x)}{x} \,, \end{split}$$

Дифференциальное сечение процесса $V_1V_2 \rightarrow \gamma\gamma$

$$\frac{d\hat{\sigma}}{d\Omega}(V_1 V_2 \to \gamma \gamma) = \frac{1}{64\pi^2 \hat{s}} \sum_{\lambda_3, \lambda_4} |M_{\lambda_1 \lambda_2 \lambda_3 \lambda_4}|^2,$$

Ненулевые спиральные амплитуды для процесса рассеяния $\gamma\gamma \rightarrow \gamma\gamma$ с $\lambda_1 = +1$

$$\begin{split} M_{++++}(s,t,u) &= \frac{(4g_1 + 3g_2)}{2} s^2 ,\\ M_{++--}(s,t,u) &= \frac{(4g_1 + g_2)}{2} \left(s^2 + t^2 + u^2 \right) ,\\ M_{+-+-}(s,t,u) &= \frac{(4g_1 + 3g_2)}{2} u^2 , \end{split}$$

(Amarkhail, Inan & A.K., NPB 1005, 116592 (2024))

Области аномальных констант g_1 и g_2 , которые можно исключить в процессе рассеяния $\mu^+\mu^- \rightarrow \mu^+ \gamma \gamma \mu^-$ на мюонном коллайдере с достоверностью 95%. Энергия столкновения 14 ТэВ, интегральная светимость $\pounds = 20$ аб⁻¹. Систематическая ошибка δ : 0%, 5% и 10%. Размерность констант ТэВ⁻⁴.

Экспериментальные ограничения и феноменологические оценки на aQGCs

CMS & TOTEM (13 T₃B): $|g_1| < 2.9 \cdot 10^{-1} T_3B^{-4} (g_2 = 0)$ $|g_2| < 6.0 \cdot 10^{-1} T_3B^{-4} (g_1 = 0)$

HL-LHC (14 T \Rightarrow B, 3 a6⁻¹):FCC-hh (100 T \Rightarrow B, 3 a6⁻¹): $g_1 (g_2) < 1 \cdot 10^{-2} T \Rightarrow B^{-4}$ $g_1 (g_2) < 2 \cdot 10^{-4} T \Rightarrow B^{-4}$

Аномальное взаимодействие Zүүү

$$L_{\gamma\gamma\gamma Z} = \varsigma_1(F_{\mu\nu}F^{\mu\nu})(F_{\rho\sigma}Z^{\rho\sigma}) + \varsigma_2(F_{\mu\nu}\tilde{F}^{\mu\nu}F_{\rho\sigma}\tilde{Z}^{\rho\sigma})$$

Связь констант ζ₁, ζ₂ с константами f_{т,i} /Λ⁴ исходного Лагранжиана (без электрослабого нарушения)

$$\begin{split} \zeta_1 &= \frac{c_w^3 s_w}{\Lambda^4} [f_{T,5} + f_{T,6} - 4 f_{T,8}] + \frac{c_w s_w^3}{\Lambda^4} [f_{T,0} + f_{T,1} - f_{T,5} - f_{T,6}] ,\\ \zeta_2 &= \frac{c_w^3 s_w}{\Lambda^4} [f_{T,7} - 4 f_{T,9}] + \frac{c_w s_w^3}{\Lambda^4} [f_{T,2} - f_{T,7}] . \end{split}$$

Наши ограничения на аномальные константы

(Amarkhail, Inan & A.K., JPG 52, 015001 (2025))

		3 TeV	14 TeV	100 TeV
	$\delta = 0\%$	3.06×10^{-2}	9.68×10^{-5}	5.07×10^{-8}
$ f_{T,0}/\Lambda^4 , {\rm TeV^{-4}}$	$\delta = 5\%$	3.65×10^{-2}	1.78×10^{-4}	1.48×10^{-7}
1.569 St. 10.55771 85	$\delta = 10\%$	4.51×10^{-2}	2.48×10^{-4}	2.04×10^{-7}
	$\delta = 0\%$	3.06×10^{-2}	9.68×10^{-5}	5.07×10^{-8}
$ f_{T,1}/\Lambda^4 , {\rm TeV}^{-4}$	$\delta = 5\%$	$3.65 imes 10^{-2}$	$1.78 imes 10^{-4}$	1.48×10^{-7}
	$\delta = 10\%$	4.51×10^{-2}	2.48×10^{-4}	2.04×10^{-7}
	$\delta = 0\%$	2.23×10^{-1}	$7.05 imes 10^{-4}$	3.70×10^{-7}
$ f_{T,2}/\Lambda^4 , \text{ TeV}^{-4}$	$\delta = 5\%$	$2.65 imes 10^{-1}$	$1.65 imes 10^{-3}$	$1.10 imes 10^{-6}$
	$\delta = 10\%$	$3.30 imes 10^{-1}$	$1.80 imes 10^{-3}$	$1.49 imes 10^{-6}$
	$\delta = 0\%$	4.29×10^{-2}	$1.36 imes 10^{-4}$	7.11×10^{-8}
$ f_{T,5,6}/\Lambda^4 , \text{ TeV}^{-4} $	$\delta = 5\%$	$5.12 imes 10^{-2}$	$2.49 imes 10^{-4}$	$2.08 imes 10^{-7}$
	$\delta = 10\%$	$6.33 imes 10^{-2}$	$3.47 imes 10^{-4}$	$2.87 imes 10^{-7}$
	$\delta = 0\%$	8.98×10^{-2}	2.84×10^{-4}	1.49×10^{-7}
$ f_{T,7}/\Lambda^4 , {\rm TeV^{-4}}$	$\delta = 5\%$	1.07×10^{-1}	6.63×10^{-4}	4.42×10^{-7}
	$\delta = 10\%$	1.33×10^{-1}	7.24×10^{-4}	$5.98 imes 10^{-7}$
76. 52	$\delta = 0\%$	7.65×10^{-3}	2.42×10^{-5}	1.27×10^{-8}
$ f_{T,8}/\Lambda^4 , \text{ TeV}^{-4} $	$\delta = 5\%$	9.12×10^{-3}	4.44×10^{-5}	3.70×10^{-8}
WARKED STOVER	$\delta = 10\%$	$1.13 imes 10^{-2}$	$6.19 imes 10^{-5}$	$5.12 imes 10^{-8}$
	$\delta = 0\%$	1.6×10^{-2}	5.06×10^{-5}	2.65×10^{-8}
$ f_{T,9}/\Lambda^4 , {\rm TeV^{-4}}$	$\delta = 5\%$	$1.9 imes 10^{-2}$	$1.18 imes 10^{-4}$	7.88×10^{-8}
	$\delta = 10\%$	$2.37 imes 10^{-2}$	$1.29 imes 10^{-4}$	1.07×10^{-7}

Ограничения на аномальные константы полученные на БАК при энергии 13 ТэВ

(ATLAS Collaboration, JHEP 06, 082 (2023)

Coefficient	Observed limit $[\text{TeV}^{-4}]$	Expected limit $[\text{TeV}^{-4}]$		
f_{T0}/Λ^4	$[-9.4, 8.4] \times 10^{-2}$	$[-1.3, 1.2] \times 10^{-1}$		
f_{T5}/Λ^4	$[-8.8, 9.9] \times 10^{-2}$	$[-1.2, 1.3] \times 10^{-1}$	<i>q</i>	2
f_{T8}/Λ^4	$[-5.9, 5.9] imes 10^{-2}$	$[-8.1, 8.0] \times 10^{-2}$		
f_{T9}/Λ^4	$[-1.3, 1.3]\times 10^{-1}$	$[-1.7, 1.7] imes 10^{-1}$		L' Nz
f_{M0}/Λ^4	[-4.6, 4.6]	[-6.2, 6.2]	w.	24.0
f_{M1}/Λ^4	[-7.7, 7.7]	$[-1.0, 1.0] \times 10^{1}$		
f_{M2}/Λ^4	[-1.9, 1.9]	[-2.6, 2.6]		

Заключение

 Изучены возможности будущего мюонного коллайдера по поиску аномальных констант үүүү и Zүүү взаимодействия в рождении пары фотонов.

Получены пределы на константы, которые могут быть достигнуты в этом процессе.

Для энергии 14 ТэВ ограничения для үүүү констант имеют вид: g₁ = 2.2•10⁻⁵ ТэВ⁻⁴ (g₂ = 0), g₂ = 4.6•10⁻⁵ ТэВ⁻⁴ (g₁ = 0).
 Данные ограничения на несколько порядков более жесткие, чем имеющиеся предсказания для коллайдера HL-LHC с интегральной светимостью £=3 аб⁻¹.

- Найдены значения констант аномального үүүZ-взаимодействия, которые могут быть измерены на мюонном коллайдере. Так, для энергии 14 ТэВ имеем: $\zeta_1 = 3.1 \cdot 10^{-5}$ ТэВ⁻⁴, $\zeta_2 = 6.5 \cdot 10^{-5}$ ТэВ⁻⁴.
- Данные с LHC (ATLAS): пределы на константы слабее на несколько порядков.
 Предсказания для HL-LHC: 2.1 •10⁻¹ ТэВ⁻⁴; для HE-LHC с энергией 27 ТэВ и £=15 аб⁻¹: 2.8 •10⁻² TeV⁻⁴.
- Полученные результаты говорят о большом потенциале будущего мюонного коллайдера по поиску физики за пределами СМ.

Спасибо за внимание!

The target integrated luminosity is obtained by considering the cross-section of a typical $2 \rightarrow 2$ scattering processes mediated by the electroweak interactions, $\sigma \sim 1 \text{ fb} \cdot (10 \text{ TeV})^2 / E_{\text{cm}}^2$. In order to measure such crosssections with good (percent-level) precision and to exploit them as powerful probes of short distance physics, around ten thousand events are needed. The corresponding integrated luminosity is

$$\mathfrak{L}_{\rm int} = 10 \, \rm ab^{-1} \left(\frac{E_{\rm cm}}{10 \, {\rm TeV}}\right)^2$$

100 TeV muon collider based on FCC complex

100 TeV μ collider FCC-μμ with FCC-hh PSI μ[±] production

p- γ collision \rightarrow pion beam \rightarrow decay into muons

Differential cross sections for $\mu+\mu- \rightarrow \mu+\gamma\gamma \mu$ scattering at future muon collider vs. diphoton invariant mass m_{$\gamma\gamma$}. The center-of-mass energy is equal to 3 TeV, 14 TeV, and 100 TeV.

Total cross sections for $\mu+\mu- \rightarrow \mu+\gamma\gamma\mu$ - scattering at future muon collider vs. *minimal* value of diphoton invariant mass m_{$\gamma\gamma$}. The center-of-mass energy is equal to 3 TeV, 14 TeV, and 100 TeV.

(Amarkhail, Inan & A.K., NPB 1005, 116592 (2024))

Области аномальных констант g₁, g₂, которые можно исключить в процессе рассеяния µ+µ- → µ+ ү ү µ- на мюонном коллайдере с достоверностью 95%. Энергия столкновения 3 ТэВ, интегральная светимость 1 аb⁻¹. Систематическая ошибка равна 0%, 5% и 10%. Размерность констант ТэВ⁻⁴.

Unitarity bounds on anomalous couplings

Partial-wave expansion in c.m.s.

(Jacob & Wick Ann. Phys. 7, 404 (1959))

$$\begin{split} M_{\lambda_1\lambda_2\lambda_3\lambda_4}(s,\theta,\varphi) &= 16\pi \sum_J (2J+1)\sqrt{(1+\delta_{\lambda_1\lambda_2})(1+\delta_{\lambda_3\lambda_4})} \\ &\times e^{i(\lambda-\mu)\phi} \, d^J_{\lambda\mu}(\theta) \, T^J_{\lambda_1\lambda_2\lambda_3\lambda_4}(s) \;, \end{split}$$

$$\lambda = \lambda_1 - \lambda_2, \ \mu = \lambda_3 - \lambda_4$$

Partial-wave amplitude

$$T^{J}_{\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}}(s) = \frac{1}{32\pi} \frac{1}{\sqrt{(1+\delta_{\lambda_{1}\lambda_{2}})(1+\delta_{\lambda_{3}\lambda_{4}})}} \int_{-1}^{1} M_{\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}}(s,z) d^{J}_{\lambda\mu}(z) dz$$

Partial-wave unitarity

 $\left|T^J_{\lambda_1\lambda_2\lambda_3\lambda_4}(s)\right| \leq 1$

Unitarity bounds:

g₁ < 2π/s² g₂ < (16π/3)/s²

 $g_1 < 7.8 \cdot 10^{-2} \text{ TeV}^{-4}$ (3 TeV) < 1.6 \cdot 10^{-4} \text{TeV}^{-4} (14 TeV) $g_2 < 2.1 \cdot 10^{-1} \text{ TeV}^{-4}$ (3 TeV) < 4.4 \cdot 10^{-4} \text{TeV}^{-4} (14 TeV)

Differential cross sections for $\mu+\mu- \rightarrow \mu+\gamma\gamma \mu$ scattering at future muon collider vs. diphoton invariant mass m_{$\gamma\gamma$}. The collision energy is equal to 3 TeV, 14 TeV, and 100 TeV.

Total cross sections for $\mu+\mu- \rightarrow \mu+\gamma\gamma \mu$ - scattering at future muon collider vs. *minimal* value of diphoton invariant mass m_{$\gamma\gamma$}. The collision energy is equal to 3 TeV, 14 TeV, and 100 TeV.

Exclusion significance (δ = percentage systematic error) (Y.Zhang & J.Shen, EPJC 80, 811, 2020)

$$S_{\text{excl}} = \sqrt{2} \left[s - b \ln \left(\frac{b + s + x}{2b} \right) - \frac{1}{\delta^2} \ln \left(\frac{b - s + x}{2b} \right) - (b + s - x) \left(1 + \frac{1}{\delta^2 b} \right) \right]^{1/2}$$

s (b) = number of signal (background) events

In the limit $\delta = 0$ $S_{\text{excl}} = \sqrt{2\left[s - b\ln\left(1 + \frac{s}{b}\right)\right]}$ $s \ll b$ $S_{\text{excl}} = \frac{s}{\sqrt{b}}$

S_{excl} ≥ 1.645 is the region that can be excluded at 95% C.L.

(Amarkhail, Inan & A.K., JPG 52, 015001 (2025))

95% C.L. exclusion regions for couplings ζ_1 , ζ_2 for collision $\mu+\mu- \rightarrow \mu+\gamma \gamma \mu$ - at muon collider. Systematic errors are 0% (blue ellipse), 5% (red ellipse), and 10% (green ellipse). The collision energy is 3 TeV, integrated luminosity is 1 ab⁻¹.

Области аномальных констант ζ₁, ζ₂, которые можно исключить на мюонном коллайдере с достоверностью 95% . Энергия столкновения 14 ТэВ, интегральная светимость 20 ab⁻¹. Систематическая ошибка равна 0%, 5% и 10%. Размерность констант ТэВ⁻⁴.

Table 1: The 95% C.L. exclusion bounds on the anomalous quartic couplings ζ_1 and ζ_2 , with the integrated luminosity of 1 ab⁻¹, 20 ab⁻¹, and 1000 ab⁻¹ for the 3 TeV, 14 TeV, and 100 TeV muon collider.

		3 TeV	14 TeV	100 TeV
$ \mathcal{L} = T_{-}V_{-4}$	$\delta = 0\%$	$9.90 imes 10^{-3}$	3.13×10^{-5}	1.64×10^{-8}
$ \zeta_1 , \text{ iev}$	$\delta = 5\%$	$1.18 imes 10^{-2}$	5.75×10^{-5}	4.79×10^{-8}
$(\zeta_2 = 0)$	$\delta = 10\%$	$1.46 imes 10^{-2}$	8.01×10^{-5}	$6.61 imes 10^{-8}$
121 ToV-4	$\delta = 0\%$	2.07×10^{-2}	6.54×10^{-5}	$3.43 imes 10^{-8}$
$ \zeta_2 , \text{ iev}$	$\delta = 5\%$	2.46×10^{-2}	$1.53 imes 10^{-4}$	1.02×10^{-7}
$(\zeta_1 \equiv 0)$	$\delta = 10\%$	$3.06 imes10^{-2}$	$1.67 imes 10^{-4}$	$1.38 imes 10^{-7}$

Relations between couplings ζ_1 , ζ_2 and ``unbroken'' couplings $f_{T,i}$

$$\begin{aligned} \zeta_1 &= \frac{c_w^3 s_w}{\Lambda^4} [f_{T,5} + f_{T,6} - 4f_{T,8}] + \frac{c_w s_w^3}{\Lambda^4} [f_{T,0} + f_{T,1} - f_{T,5} - f_{T,6}] ,\\ \zeta_2 &= \frac{c_w^3 s_w}{\Lambda^4} [f_{T,7} - 4f_{T,9}] + \frac{c_w s_w^3}{\Lambda^4} [f_{T,2} - f_{T,7}] . \end{aligned}$$

Possible scenario of future colliders

Accelerator-based projects proposed by the community in recent years

Collider (type)	\sqrt{s} (GeV) [\mathcal{L}_{int} (ab ⁻¹), duration (years)]	
HE-LHC (circular, pp)	27×10^3 [15, 20]	
ILC (linear, e^+e^-)	91 [0.1, 1.5]; 250 [2, 11]; 350 [0.2, 0.75]; 500 [4, 9]	
CLIC (linear, e^+e^-)	380 [1.0, 8], 1.5×10^3 [2.5, 7], 3×10^3 [5, 8]	
FCC-ee (circular, e^+e^-)	88-94 [150, 4]; s-channel h [20, 3]; 157-163 [10, 2]; 240 [5, 2]; 340-365 [1.7, 5]	
FCC-hh (circular, pp)	100×10^3 [20–30, 25]	
FCC-eh (circular plus ERL, ep)	3.5×10^3 [3, 25]	
MuC (circular, $\mu^+\mu^-$)	3 TeV [1, 5]; 10 TeV [10, 5]; 10 TeV [20, 5]	
CepC (circular, e^+e^-)	91 [16, 2]; 160 [2.6, 1]; 240 [5.6, 7]; 360 [-, -]	

In unitary gauge

$$\Phi = \left(\frac{0}{\rho}\right)$$

kinetic term for the Higgs field looks like

$$(D^{\mu}\Phi)^{+}(D_{\mu}\Phi) = \frac{1}{4}g^{2}\rho^{2}\left[(W_{1}^{\mu}W_{1,\mu} + W_{2}^{\mu}W_{2,\mu}) + \frac{Z^{\mu}Z_{\mu}}{\cos^{2}\theta_{W}}\right] + \partial^{\mu}\rho\partial_{\mu}\rho$$

 $\rho = h$ (Higgs field) + V

Тогда Пилат опять вошёл в преторию, и призвал Иисуса, и сказал Ему: Ты Царь Иудейский? [...]

Иисус отвечал: Царство Моё не от мира сего; если бы от мира сего было Царство Моё, то служители Мои подвизались бы за Меня, чтобы Я не был предан Иудеям; но ныне Царство Моё не отсюда.

Пилат сказал Ему: итак Ты Царь? Иисус отвечал: ты говоришь, что Я Царь. Я на то родился и на то пришёл в мир, чтобы свидетельствовать о истине; всякий, кто от истины, слушает гласа Моего.

Пилат сказал Ему: *что есть истина?* И, сказав это, опять вышел к Иудеям и сказал им: я никакой вины не нахожу в Нём.

— Евангелие от Иоанна. 18: 33, 36-38

Operators with gauge boson field strength tensor only

$$O_{T,0} = Tr[W_{\mu\nu}W^{\mu\nu}] \times Tr[W_{\alpha\beta}W^{\alpha\beta}],$$

$$O_{T,1} = Tr[W_{\alpha\nu}W^{\mu\beta}] \times Tr[W_{\mu\beta}W^{\alpha\nu}],$$

$$O_{T,2} = Tr[W_{\alpha\mu}W^{\mu\beta}] \times Tr[W_{\beta\nu}W^{\nu\alpha}],$$

$$O_{T,5} = Tr[W_{\mu\nu}W^{\mu\nu}] \times B_{\alpha\beta}B^{\alpha\beta},$$

$$O_{T,6} = Tr[W_{\alpha\mu}W^{\mu\beta}] \times B_{\mu\beta}B^{\alpha\nu},$$

$$O_{T,7} = Tr[W_{\alpha\mu}W^{\mu\beta}] \times B_{\beta\nu}B^{\nu\alpha},$$

$$O_{T,8} = B_{\mu\nu}B^{\mu\nu}B_{\alpha\beta}B^{\alpha\beta},$$

$$O_{T,9} = B_{\alpha\mu}B^{\mu\beta}B_{\beta\nu}B^{\nu\alpha}.$$

Operator with covariant derivatives only

$$O_{S,0} = [(D_{\mu}\Phi)^{\dagger}(D_{\nu}\Phi)] \times [(D^{\mu}\Phi)^{\dagger}(D^{\nu}\Phi)],$$

$$O_{S,1} = [(D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi)] \times [(D_{\nu}\Phi)^{\dagger}(D^{\nu}\Phi)],$$

$$O_{S,2} = [(D_{\mu}\Phi)^{\dagger}(D_{\nu}\Phi)] \times [(D^{\nu}\Phi)^{\dagger}(D^{\mu}\Phi)].$$

Operator with covariant derivatives and field strength tensors

$$O_{M,0} = Tr[W_{\mu\nu}W^{\mu\nu}] \times [(D_{\beta}\Phi)^{\dagger}(D^{\beta}\Phi)],$$

$$O_{M,1} = Tr[W_{\mu\nu}W^{\nu\beta}] \times [(D_{\beta}\Phi)^{\dagger}(D^{\mu}\Phi)],$$

$$O_{M,2} = [B_{\mu\nu}B^{\mu\nu}] \times [(D_{\beta}\Phi)^{\dagger}(D^{\beta}\Phi)],$$

$$O_{M,3} = [B_{\mu\nu}B^{\nu\beta}] \times [(D_{\beta}\Phi)^{\dagger}(D^{\mu}\Phi)],$$

$$O_{M,4} = [(D_{\mu}\Phi)^{\dagger}W_{\beta\nu}(D^{\mu}\Phi)] \times B^{\beta\nu},$$

$$O_{M,5} = [(D_{\mu}\Phi)^{\dagger}W_{\beta\nu}(D^{\nu}\Phi)] \times B^{\beta\mu},$$

$$O_{M,7} = [(D_{\mu}\Phi)^{\dagger}W_{\beta\nu}W^{\beta\mu}(D^{\nu}\Phi)].$$

Scalar fields:

$$\begin{split} O_{S,0} &= \left[(D_{\rho} \Phi)^{\dagger} (D_{\sigma} \Phi) \right] \times \left[(D^{\rho} \Phi)^{\dagger} (D^{\sigma} \Phi) \right], \\ O_{S,1} &= \left[(D_{\rho} \Phi)^{\dagger} (D^{\rho} \Phi) \right] \times \left[(D_{\sigma} \Phi)^{\dagger} (D^{\sigma} \Phi) \right], \\ O_{S,2} &= \left[(D_{\rho} \Phi)^{\dagger} (D_{\sigma} \Phi) \right] \times \left[(D^{\sigma} \Phi)^{\dagger} (D^{\rho} \Phi) \right]. \end{split}$$

Tensor fields:

$$O_{T,0} = Tr[\widehat{W}_{\sigma\lambda}\widehat{W}^{\sigma\lambda}] \times Tr[\widehat{W}_{\alpha\beta}\widehat{W}^{\alpha\beta}],$$

$$O_{T,1} = Tr[\widehat{W}_{\lambda\mu}\widehat{W}^{\nu\beta}] \times Tr[\widehat{W}_{\nu\beta}\widehat{W}^{\lambda\mu}],$$

$$O_{T,2} = Tr[\widehat{W}_{\lambda\nu}\widehat{W}^{\nu\sigma}] \times Tr[\widehat{W}_{\sigma\mu}\widehat{W}^{\mu\lambda}],$$

$$O_{T,5} = Tr[\widehat{W}_{\lambda\sigma}\widehat{W}^{\lambda\sigma}] \times B_{\mu\nu}B^{\mu\nu},$$

$$O_{T,6} = Tr[\widehat{W}_{\lambda\mu}\widehat{W}^{\nu\sigma}] \times B_{\nu\sigma}B^{\lambda\mu},$$

$$O_{T,7} = Tr[\widehat{W}_{\lambda\nu}\widehat{W}^{\nu\sigma}] \times B_{\sigma\mu}B^{\mu\lambda},$$

$$O_{T,8} = B_{\sigma\lambda}B^{\sigma\lambda}B_{\mu\nu}B^{\mu\nu},$$

$$O_{T,9} = B_{\lambda\nu}B^{\nu\sigma}B_{\sigma\mu}B^{\mu\lambda}.$$

Mixed fields:

$O_{M,0} = Tr[\widehat{W}_{\nu\lambda}\widehat{W}^{\nu\lambda}] \times [(D_{\sigma}\Phi)^{\dagger}(D^{\sigma}\Phi)],$
$O_{M,1} = Tr[\widehat{W}_{\nu\lambda}\widehat{W}^{\lambda\sigma}] \times [(D_{\sigma}\Phi)^{\dagger}(D^{\nu}\Phi)],$
$O_{M,2} = [B_{\nu\lambda}B^{\nu\lambda}] \times [(D_{\sigma}\Phi)^{\dagger}(D^{\sigma}\Phi)],$
$O_{M,3} = [B_{\nu\lambda}B^{\lambda\sigma}] \times [(D_{\sigma}\Phi)^{\dagger}(D^{\nu}\Phi)],$
$O_{M,4} = [(D_{\nu}\Phi)^{\dagger}\widehat{W}_{\sigma\lambda}(D^{\nu}\Phi)] \times B^{\sigma\lambda},$
$O_{M,5} = [(D_{\nu}\Phi)^{\dagger}\widehat{W}_{\sigma\lambda}(D^{\lambda}\Phi)] \times B^{\sigma\nu} + h.c.,$
$O_{M,7} = [(D_{\nu}\Phi)^{\dagger}\widehat{W}_{\sigma\lambda}\widehat{W}^{\sigma\nu}(D^{\lambda}\Phi)].$

The first evidence of $\gamma\gamma \rightarrow \gamma\gamma$ process was observed by ATLAS & CMS in Pb-Pb collisions

(ATLAS Collab., Nat. Phys., 13, 852, 2017) (CMS Collab., Phys. Rev. Lett. 123, 052001, 2019)

Discovery significance (\delta = percentage systematic error)

$$S_{\rm dis} = \sqrt{2} \left[(s+b) \ln \left(\frac{(s+b)(1+\delta^2 b)}{b+\delta^2 b(s+b)} \right) - \frac{1}{\delta^2} \ln \left(1 + \frac{\delta^2 s}{1+\delta^2 b} \right) \right]^{1/2}$$

In the limit $\delta = 0$

$$S_{\text{dis}} = \sqrt{2\left[(s+b)\ln\left(1+\frac{s}{b}\right)-s\right]}$$

 $s << b$
 $S_{\text{dis}} = \frac{s}{\sqrt{b}}$

S_{dis} ≥ 5 as discovery region

Bounds on anomalous couplings for LHC

(S.Fichet et al., JHEP 02, 165, 2015)

Another effective Lagrangian for anomalous γγγZ couplings

$$L_{\gamma\gamma\gamma Z} = \widetilde{g}_1(F_{\mu\,\nu}F^{\mu\,\nu})(F_{\rho\sigma}Z^{\rho\sigma}) + \widetilde{g}_2(F_{\mu\,\nu}\widetilde{F}^{\mu\,\nu}F_{\rho\sigma}\widetilde{Z}^{\rho\sigma})$$

(C. Baldenegro et al., JHEP 06, 142, 2017)

Relations between two sets of coupling constants

$$g_1 = 8(\tilde{g}_2 - \tilde{g}_1), \quad g_2 = 8\tilde{g}_2$$

Partial-wave expansion of helicity amplitude

(M. Jacob & G. Wick, Ann. Phys. 7, 404, 1959; ibid 281, 774 2000)

$$M_{\lambda_1\lambda_2\lambda_3\lambda_4}(s,\theta,\varphi) = 16\pi \sum_J (2J+1)\sqrt{(1+\delta_{\lambda_1\lambda_2})(1+\delta_{\lambda_3\lambda_4})}$$
$$\times e^{i(\lambda-\mu)\phi} d^J_{\lambda\mu}(\theta) T^J_{\lambda_1\lambda_2\lambda_3\lambda_4}(s)$$

 $d_{\lambda u}^{J}$ = Wigner's (small) d-function

$$T^{J}_{\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}}(s) = \frac{1}{32\pi} \frac{1}{\sqrt{(1+\delta_{\lambda_{1}\lambda_{2}})(1+\delta_{\lambda_{3}\lambda_{4}})}} \int_{-1}^{1} M_{\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}}(s,z) d^{J}_{\lambda\mu}(z) dz$$

Partial-wave unitary bound

$$\left|T^{J}_{\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}}(s)\right| \leq 1$$

Feynman rule for anomaly vertex yyyZ

$$P^{\mu\nu\rho\alpha} = \mathcal{P}\left[g_1 [(p_1 \cdot p_2)(p_2 \cdot p_3)g^{\mu\nu}g^{\rho\alpha} - (p_1 \cdot p_3)p_2^{\mu}p_1^{\nu}g^{\rho\alpha} - (p_1 \cdot p_3)p_1^{\nu}p_2^{\alpha}g^{\mu\rho} + p_2^{\mu}p_1^{\nu}p_1^{\alpha}g^{\alpha} \right] + g_2 [-(p_1 \cdot p_2)(p_1 \cdot p_3)g^{\mu\alpha}g^{\nu\rho} + (p_2 \cdot p_3)p_1^{\nu}p_1^{\alpha}g^{\mu\rho} - (p_2 \cdot p_3)p_1^{\nu}p_1^{\rho}g^{\mu\alpha} + (p_2 \cdot p_3)p_1^{\nu}p_2^{\alpha}g^{\mu\rho} + 2(p_2 \cdot p_3)p_2^{\mu}p_1^{\rho}g^{\nu\alpha} - (p_1 \cdot p_3)p_2^{\rho}p_1^{\alpha}g^{\mu\nu} + p_3^{\mu}p_1^{\nu}p_2^{\rho}p_1^{\alpha} \right] \}$$

P- permutations (symmetrization with respect to photon's momenta and indices)

 $M_{\lambda_1\lambda_2\lambda_3\lambda_4}(p_1, p_2, p_3) = P_{\mu\nu\rho\alpha}(p_1, p_2, p_3) \,\varepsilon_{\mu}^{\lambda_1}(p_1)\varepsilon_{\nu}^{\lambda_2}(p_2)\varepsilon_{\rho}^{*\lambda_3}(p_3)\varepsilon_{\alpha}^{*\lambda_4}(p_4)$

24 helicity amplitudes proportional to g₁ 24 helicity amplitudes proportional to g₂ (S. Inan & A.K., JHEP 10, 121, 2021)

SM amplitudes are taken from G. Gounaris et al., EPJC 10, 499, 1999