Последние результаты поисков распада бозона Хиггса на частицы темной материи в эксперименте ATLAS

Марина Покидова, лаф ОФВЭ ПИЯФ, СПБПУ

Введение

• В рамках СМ предсказывается

«невидимый распад» $BR(H \rightarrow ZZ^* \rightarrow 4v) \sim$

0.1%

 Модели невидимого распада, где бозон Хиггса действует как частица-посредник между частицами ТМ и частицами СМ называются "порталом Хиггса"

Модели «Портала Хиггса» лежат в основе исследований по поиску Н→inv в экспериментах ATLAS и CMS на БАК

Поиск $H \rightarrow inv$ в эксперименте ATLAS

Последние исследования по поиску $H \rightarrow inv$ в эксперименте ATLAS были проведены с использованием данных за Run-2 (L~139 fb⁻¹)

• VBF+MET

- MET+Z(ll)
- tt+MET
- VBF+MET+Y
- monojet

Подробнее: <u>Phys. Lett. B 842 (2023) 137963</u>

Результаты *Н→іпv* поиска в эксперименте ATLAS для Run2

 Значения верхнего предела на вероятность Н → inv представлено для всех каналов, Run 1, Run 2 и их комбинации

В(H→inv) < 10.7 (7.7) % при 95% CL

 Полученные ограничения являются наиболее жесткими на данный момент

Подробнее: <u>Phys. Lett. B 842 (2023) 137963</u>

Results	Expected	+1 σ	-1σ	+2 σ	-2σ	Observed
Jet + $E_{\rm T}^{\rm miss}$	0.381	0.538	0.275	0.749	0.205	0.329
$VBF + E_T^{miss} + \gamma$	0.346	0.497	0.249	0.704	0.186	0.375
tī	0.295	0.420	0.212	0.573	0.158	0.376
$(Z \rightarrow)\ell\ell + E_{\rm T}^{\rm miss}$	0.185	0.263	0.133	0.370	0.099	0.185
VBF + $E_{\rm T}^{\rm miss}$	0.104	0.144	0.075	0.195	0.056	0.145
Run-1	0.265	0.370	0.191	0.501	0.142	0.252
comb. Run2	0.080	0.111	0.058	0.151	0.043	0.113
combined	0.077	0.107	0.055	0.144	0.041	0.107

Н → *inv* при рождении в слиянии векторных бозонов (VBF+MET)

Самым «чувствительным» процессом рождения бозона Хиггса для Н→inv является VBF+MET канал

В обоих экспериментах нет статистически значимого отклонения от прогнозов СМ

ATLAS Run2:

• B(H→inv) < 0.145 (0.103) при 95% CL

CMS Run2:

• B(H→inv) < 0.17 (0.11) при 95% CL

JHEP 08 (2022) 104

Н → *inv* при рождении в слиянии векторных бозонов (VBF+MET)

В VBF+MET анализе исследуемое конечное состояние $H \rightarrow inv$ характеризуется двумя струями с большим разделением по псевдобыстроте и большой инвариантной массой двух струй и E_T^{miss} .

VBF topology

- Two jets with $p_{\rm T}(j1/j2) > 80/50 \text{ GeV}$
- Small add. jet activity: *p*_T(j3) < 25 GeV ...
 3 or 4 jets, if compatible with FSR
- Jets in opposite hemispheres
- $\Delta \eta(jj) > 3.8$
- m(jj) > 0.8 TeV

EWK suppression

• Lepton (electron and muon) veto

Multijet suppression

- MET > 160 GeV
- $\Delta \Phi(jj) < 2.0$

Н → *inv* при рождении в слиянии векторных бозонов (VBF+MET)

- Хорошее разделение фоновых и сигнальных событий разделение SR на 16 категорий. CR заданы отдельно для методов оценки фоновых событий.
- V+jets фоновые процессы составляют около 95% фоновых событий в SR, их вклад оценивается с помощью выделенных контрольных областей.
- Меньший вклад обусловлен многоструйными (*Multijet*) процессами и оценивается data-driven методами.
- Незначительный вклад от *tt*, *VV*, *VVV* оценивается с помощью МС моделирования.

N _{jet} =2 & MET>200 GeV							
Δφ _{ij} <1 0.8 <m<sub>ij<1 bin1</m<sub>		Δφ _{ij} <1 1 <m<sub>ij<1.5 bin2</m<sub>	Δφ _{ij} <1 1.5 <m<sub>ij<2 bin3</m<sub>	Δφ _{ij} <1 2 <m<sub>ij<3.5 bin4</m<sub>	Δφ _{ij} <1 3.5 <m<sub>jj bin5</m<sub>		
1≤Δφ _{ii} < 0.8 <m<sub>ii⊲ bin6</m<sub>	1≤Δφ _{ij} <2 1≤Δφ _{ij} < 0.8 <m<sub>ij<1 1<m<sub>ij<1 bin6 bin7</m<sub></m<sub>		1≤Δφ _{ij} <2 1.5 <m<sub>ij<2 bin8</m<sub>	1≤Δφ _{ij} <2 2 <m<sub>ij<3.5 bin9</m<sub>	1≤Δφ _{ij} <2 3.5 <m<sub>ij bin10</m<sub>		
	N _{jet} >2 MET>200 GeV		N _{jet} >2 Δφ _{ij} <2 1.5 <m<sub>ij<2 bin11</m<sub>	N _{jet} >2 Δφ _{ij} <2 2 <m<sub>ij<3.5 bin12</m<sub>	N _{jet} >2 Δφ _{ij} <2 3.5 <mj bin13</mj 		
N _{jet} =2 160 <met<200 gev<="" th=""><th><u>Δφ</u>ij<2 1.5<mij<2 bin14</mij<2 </th><th><u>Δφ</u>յյ<2 2<mյj<3.5 bin15</mյj<3.5 </th><th><u>∆ф</u>ij<2 3.5<m<sub>ij bin16</m<sub></th></met<200>		<u>Δφ</u> ij<2 1.5 <mij<2 bin14</mij<2 	<u>Δφ</u> յյ<2 2 <mյj<3.5 bin15</mյj<3.5 	<u>∆ф</u> ij<2 3.5 <m<sub>ij bin16</m<sub>			

Результаты *Н*→*inv* поиска VBF+MET в эксперименте ATЛAC для Run2

- Нет значительного отклонения от прогнозов СМ.
- B(H→inv) < 0.145 (0.103) при 95% CL

SR и все CR области после фитирования ۲

JHEP **08** (2022) 104

Верхние пределы спин-независимого поперечного сечения WIMP-нуклона с использованием интерпретаций портала Хиггса В_{іпу} для 90% СС в зависимости от т_{шир}.

Планы Run3 *H*→*inv* поиска в эксперименте АТЛАС

- В Run3 энергия центра масс достигла 13.6 ТэВ → увеличение статистики
- Исследования в процессах, которые были статистически ограничены (такие как VBF+MET, monoZ, tt+MET и VBF+MET+gamma), могут достигнуть большую чувствительность
- В некоторых процессах, рассмотренных в Run2 продолжаются исследования, с использованием частичных данных Run3

- Анализ для комбинации данных Run2 + частично Run3
 - Оптимизация отбора фоновых процессов и оценка вклада фоновых процессов с помощью методов машинного обучения (MVA/ML подходов)
 - Сравнение экспериментальных данных с предсказаниями СМ
 - Определение более точных верхних пределов на ширину распада

 $BR(H \rightarrow inv)$ в VBF+MET канале (pyhf)

Классификатор на основе ML-фреймворка TMVA root для оптимизации критериев отбора сигнальных и фоновых событий

- Сигнал: $VBF H \rightarrow inv$,
- Фоновые процессы:
 - W strong
 - Z strong
 - *WEWK*

- *Z EWK*
- Multijet
- *dpyrue* (*singletop*, *ttbar*, *etc*)
- Метод ускоренного дерева решений (BDT) с использованием GradBoost (AdaBoost, DNN)

Оптимизация отбора событий с помощью MVA/ML подходов

Для данных исследований используется метод BDT c Gradient Boosting

• Бинарная классификация (S/B) с BDTG

Многоклассовая классификация – Бинарная классификация с BDTG для каждого фонового процесса (1 vs rest)

in progress

Интерпретация результатов

- VBF+MET+photon <u>https://arxiv.org/pdf/</u> 2109.00925.pdf
- Наблюдаемый (ожидаемый) предел 0.37(0.34)

 Процесс H→inv в процессе VBF+MET+gamma

- Compressed SUSY <u>https://arxiv.org/</u> pdf/2102.10194.pdf
- В процессах VBF электрослабые частицы SUSY (нейтралино) производятся парами в ассоциации двумя струями

 Диаграмма Фейнмана процесса рождения Хиггсино посредством процесса VBF.

Заключение

- Последние результаты по поиску $H \rightarrow$ inv полученных в различных каналах вошли в статью <u>Phys. Lett. B 842 (2023) 137963</u>
 - Последние результаты VBF+MET <u>JHEP 08 (2022) 104</u>
- В данный момент происходит работа над исследованиями $H \rightarrow \text{inv}$ в канале VBF+MET с использованием данных полученных за Run2 и частично Run3
 - Планируется увеличение статистики
 - Новые ML исследования
 - Дополнительные интерпретации полученных результатов

Спасибо за внимание

Backup slides

- Mono-Z анализ Run2 <u>Phys. Lett. B 829 (2022) 137066</u>
 - Оценка вклада фонового процесса Z+jets с помощью методов ABCD и One sideband
 - Исследования систематики Z+jets
- Комбинация результатов по поиску невидимых распадов бозона Хиггса Run2 полученных в различных каналах <u>Phys. Lett. В 842 (2023) 137963</u>
 - Исследования перекрытия событий между каналами (overlap check)
- VBF+MET анализ Run2+Run3 (частично?) <u>atlas-glance</u> (EDboard пока нет)

почему VBF+MET наиболее чувствительный канал?

• $Z \rightarrow vv$ (strong production) is large compared to ggF:

$$\frac{\sigma_{ggF}(H + jet)}{\sigma(Z + jet) \cdot Br(Z \to \nu\nu)} \sim \frac{1}{300}$$

• VBF: signal and bg are comparable

$$\frac{\sigma_{\mathsf{VBF}}(H+qq)}{\sigma_{\mathsf{VBF}}(Z+qq)\cdot Br(Z\to\nu\nu)}\sim\frac{4}{3}$$

V + *jets* фоновый процессы

• Вклад V+jets фоновых событий оценивается с помощью метода «контрольных областей» содержащих выбранные $W (\rightarrow l\nu) + jets (1L)$ и Z ($\rightarrow ll$) + jets (2L) события

Полученные в Run2 распределения по m_{ii} для (a) W (\rightarrow l ν) u (б) Z (\rightarrow ll) контрольных областей

Multijet фоновый процесс

Rebalance and Smear метод

• R+S метод обеспечивает две разных оценки для двух начальных топологий — HS и HS+PU с помощью множественного применение функции отклика детектора для каждого сбалансированого события, что позволяет увеличить статистику

Полученные в Run2 распределения (а) $\Delta \phi_{jj}$ и (б) m_{jj} в MJ region (100 GeV < E_{miss}^T < 200 GeV, m_{jj} > 400 GeV, $N_{jet} = 2$, $\Delta \eta_{jj} > 2.5$)

Multijet фоновый процесс

Pileup CR (FJVT CR) метод

 Выбор контрольной области, обогащенной многоструйными событиями (PU-CR) путем инвертирования fJVT score лидирующей струи (представления лидирующей струи по p_T как forward pile-up струи).

Полученные в Run2 распределения (а) $\Delta \phi_{jj}$ и (б) m_{jj} в low- E_{miss}^{T} validation region (100 GeV < E_{miss}^{T} < 160 GeV). Форма multijet получена с помощью Pileup CR метода

- SR : критерии отбора + FJVT > 0.5
- CR : критерии отбора + FJVT < 0.5

$$B_{\mathrm{MJ},i}^{\mathrm{SR}} = R_{\mathrm{MJ},i} \cdot \left(N_i^{\mathrm{PU-CR}} - B_{\mathrm{non-MJ},i}^{\mathrm{PU-CR}} \right),$$

$$R_{\text{MJ},i} = \frac{N_i^{\text{low-MET}} - B_{\text{non-MJ},i}^{\text{low-MET}}}{N_i^{\text{PU-CR,low-MET}} - B_{\text{non-MJ},i}^{\text{PU-CR,low-MET}}}.$$

Результаты *Н→іпv* поиска VBF+MET в эксперименте АТЛАС для Run2

• Результаты были интерпретированы для массы медиатора до 2 ТэВ

Верхний предел сечения, умноженного на BRinv для скалярного медиатора как функции его массы. Для сравнения наложено сечение VBF в NLO в QCD, т.е. без электрослабых поправок, для частицы с бозонными связями Хиггса SM, умноженное на значение Binv 15%.

JHEP 08 (2022) 104

Переход с фреймворка Run2 (HistFitter) на pyhf

- pyhf использует облегченный файл .json, его легче изменять и он гораздо эффективнее
- время выполнения: $\mathcal{O}(50 \text{ часов}) \rightarrow \mathcal{O}(2 \text{ часа})$

	Observed	Expected	+1σ	-1σ	+2σ	- 2σ
Published	0.145	0.103	0.144	0.075	0.196	0.055
Pyhf	0.146	0.105	0.146	0.077	0.197	0.059