

Статус и результаты эксперимента vGeN

Житников Игорь от коллаборации vGeN

Сессия-конференция секции ядерной физики ОФН РАН, посвященная 70-летию В.А.Рубакова 2025-02-19

Цели и задачи

- Поиск упругого когерентного рассеяния нейтрино (УКРН)
- Поиск магнитного момента нейтрино (ММН):

См. выступление Г.Игнатова «Исследование электромагнитных свойств нейтрино в эксперименте vGeN»

- Поиск Новой физики через исследование нестандартных взаимодействий нейтрино.
- Определение угла Вайнберга при низких энергиях, ядерная физика, стерильные нейтрино.
- Возможное прикладное применение: мониторинг работы ядерных реакторов с помощью компактных германиевых детекторов на основе **УКРН**

Упругое Когерентное рассеяние нейтрино

- Упругое когерентное рассеяние нейтрино процесс, предсказанный в рамках Стандартной модели (СМ).
- Детектирование данного процесса является важным тестом СМ.
- С помощью УРКН можно провести поиск нестандартных взаимодействий нейтрино, стерильных нейтрино и др.
- $E_v < 50 \text{ M} \Rightarrow B$
- Сечение УКРН превышает на несколько порядков «обычное» рассеяние
- Пропорционально квадрату числа нейтронов N²
- Энергия отдачи ядра мала меньше нескольких кэВ.
- Детектируется лишь часть оставленной энергии (для HPGe детекторов ≈ 20%)

В настоящее время в нескольких экспериментах (COHERENT, DRESDEN-II, CONUS+, PandaX-4T, XENONnT, ...) было заявлено об обнаружении УКРН.

«Coherent effect of a weak neutral current», D. Freedman, PRD v.9, iss.5 (1974)

Nucleus	T_{max} , keV ($E_{\nu} = 5$ MeV)	T_{max} , keV ($E_{\nu} = 30$ MeV)
^{12}C	4.44	159.0
^{23}Na	2.32	83.2
^{40}Ar	1.33	47.9
^{74}Ge	0.72	25.9
^{133}Cs	0.40	14.4

Эксперименты по поиску УКРН

Сравнение условий экспериментов по поиску УКРН от реакторных антинейтрино

Experiment	Location	Neutrino flux v/(cm² s)	Overburden [m w. e.]
vGeN	KNPP, Russia	~(3.6-4.4)×10 ¹³	~50
CONUS	Brokdorf, Germany	2.3×10 ¹³	10-45
CONUS+	Leibstadt, Switzerland	1.45×10 ¹³	7-8
TEXONO	Kuo-Sheng NPP, Taiwan	6.4×10 ¹²	~30
RED-100	KNPP, Russia	1.7×10 ¹³	>50
CONNIE	Angra 2, Brazil	7.8×10 ¹²	0
RICOCHET	ILL, France	2×10 ¹²	~15
MINER	Texas A&M, USA	2×10 ¹²	~5
NUCLEUS	Chooz, France	2×10 ¹²	~3
NCC-1701	Dresden-II, USA	4.8×10 ¹³	-
NEON	Hanbit 6, Korea	7.1×10 ¹²	~8
SBS	Laguna Verde, Mexico	3×10 ¹² ?	?

Место измерений

- Спектрометр **vGeN** расположен под энергоблоком №3 КлнАЭС (ВВЭР-1000, тепловая мощность 3,1 ГВт)
- Поток антинейтрино, проходящий через детектор на расстоянии 11 метров > **4*10**¹³*ν*/**(с*см**²)
- Реактор, бетонные конструкции здания и технологическое оборудование обеспечивают защиту от космического излучения ~50 м.в.э.

Измерительная установка

Расстояние от детектора до центра активной зоны реактора:

11.1 м - верхнее положение

12.5 м–нижнее положение

Низкопороговый HPGe детектор точечным контактом производства **CANBERRA** (Mirion, Lingosheim). Охлаждение осуществляется С CP5+. Macca помощью криокулера детектора 1.4 КГ. Разрешение (FWHM) области В интереса – 102 эВ (получено с помощью генератора сигналов).

Набор данных

Всего с ноября 2019 года набрано около **1472 дней** работающего реактора и **160 дней** выключенного.

В представленном анализе использовались данные с Октября 2022 по Май 2023 в 11.1 м от активной зоны реактора:

Включенный реактор (ON) - 137 дней (195.5 кг·д) Выключенный реактор (OFF) – 38 дней (54.6 кг·д)

7

Отбор событий

Для отсеивания шумовых событий используются спектрометрические усилители с разной формировкой сигнала

Эффективность триггера с учетом отсеивания шумовых событий:

> ~40% для 0.2 кэВ ~80% для 0.3 кэВ

Отбор событий от сброса предусилителя и при срабатывании мюонного вето приводит к **суммарному** мертвому времени ~10%

8

Проблема QF (квенчинг фактор)

Результаты

10

Разница в спектрах ON-OFF:

Результаты

11

Планы на 2025

- Установка системы комптоновского вето (на основе NaI) для подавления событий многократного рассеяния в детекторной установке
- Модификация системы охлаждения детектора для уменьшения вибраций и связанных с ними акустических шумов в области интереса
- Обновление электроники и системы накопления данных для записи и последующего анализа форм сигналов.
- Цель всех изменений уменьшение порога 290 эВ -> 150-200 эВ

Тестовые измерения с НРGе детектором массой 1 кг

Заключение

- Достигнутый в измерительной установке на КлнАЭС уровень фона не меняется при включенном/выключенном реакторе, что позволяет напрямую сравнивать данные без использования моделей фона.
- Поставлено верхнее ограничение на величину сечения УКРН. Результаты эксперимента не подтверждают самую оптимистичную модель квенчинга (QF), используемую в эксперименте Drezden-II
- Идет подготовка к апгрейду измерительной установки в середине 2025 года. Цель достичь меньший энергетический порог в 150-200 эВ
- В следующий анализ будет включен больший набор накопленных данных
- Продолжаются работы по составлению полной модели фона для достижения большей чувствительности при поиске УКРН
- Идет анализ по оценке влияния используемых моделей спектров антинейтрино при поиске УКРН (См. доклад Д.Саутнера Расчёт ожидаемого сигнала от упругого когерентного рассеяния нейтрино в эксперименте vGeN)
- Представленные результаты отправлены на публикацию в Chinese Physics C
- Продолжается набор данных на КлнАЭС

Система накопления данных

В предусилителе используется схема сбросом сигнала. Типичная CO сброса фоновых частота В измерениях \approx 5-30 Hz. Предусмотрен (Inhibit) сигнал запрета ДЛЯ идентификации нефизических сигналов вызванных сбросом.

Результаты эксперимента CONUS+

Ionization energy [eV]

- 4 НРСе детектора, ~1 кг каждый (С2-С5)
- Расположен в 20.8м от 3.6 ГВт(тепловая мощность) реактора Лайбштадт, Швейцария (ККL)
- 347+-59 событий предсказано в рамках СМ
- 395+-106 событий зарегистрировано
- 327 кг-д данных с включенным реактором
- Результат согласуется с моделью квенчинга Линдхарда и соответствующим значением k = 0.162

Data - model [odata]

Сравнение с экспериментом DRESDEN-II

PHYSICAL REVIEW LETTERS 129, 211802 (2022)

- 1 НРСе детектор, ~3 кг
- <u>Заявлено сильное согласие в данных, подтверждающее УКРН (p<1.2·10⁻³)</u>
- Данные: 96.4 дней при включенном реакторе, 25 дней при выключенном
- Умеренное энергетическое разрешение >160 эВ (FWHM)
- Большая разница в фоне при включенном и выключенном реакторах
- Разная защита при включенном и выключенном реакторах
- Почти нет защиты от быстрых нейтронов

Результаты эксперимента COHERENT

CsI[Na], 14.6 кг

Жидкий Ar, 24 кг

3.1 (2020 г.) -> результат на полной статистике (2024 г.)

Новый результат (2023!): HPGe (ICPC) — 8 детекторов × 2.2 кг

