Исследование ЭМ свойств нейтрино в эксперименте ν GeN Сессия-конференция секции ядерной физики ОФН РАН,

посвященная 70-летию В.А.Рубакова

Игнатов Георгий для *v*GeN

МФТИ, ФИАН

19.02.2025

• • • • • • • • • • • •

Эксперимент ν GeN

- Третий энергоблок КАЭС (защита от космики ~50 метров в.э.).
- Расстояние от центра активной зоны реактора 11 меторв.
- Поток антинейтрино 4.4×10^{13} см⁻² с⁻¹.

Основные цели эксперимента *v*GeN:

- Поиск УКРН (Доклады И.Житникова и Д.Саутнера сегодня);
 - Исследование ЭМ свойств антинейтрино.

Игнатов Г.Д.

Магнитный момент нейтрино (ММН)

ММН в минимальных расширениях СМ:

$$\mu_{\nu} = \frac{3eG_F m_{\nu}}{8\sqrt{2}\pi^2} \approx 3.2 \times 10^{-19} (\frac{m_{\nu}}{1eV}) \mu_B.$$
(1)

• Однако есть модели, допускающие

 $\mu_{\nu} \sim 10^{-14} \mu_B$ (дираковское нейтрино),

 $\mu_{\nu} \sim 10^{-11} \mu_B$ (майорановское нейтрино).

Некоторые из экспериментальных ограничений на ММН:

Предел, $10^{-11} \mu_B$	C.L.	Эксперимент			
28	90%	D-II & COHERENT [P. Coloma et al., 2022]			
7.5	90%	CONUS [H. Bonet et al., 2022]			
7.4	90%	TEXONO [H.T. Wong et al., 2007]			
2.9	90%	GEMMA [A.G. Beda et al., 2013]			
0.64	90%	XENONnT [E. Aprile et al., 2022]			

- Астрофизические ограничения: µ_ν < 1.2 × 10^{−12} (95%С.L.) [F. Capozzi, 2022].
- Лучшие ограничения ММН в реакторных экспериментах НРGе детекторы.

Магнитный момент нейтрино (ММН)

• Вклад ММН в $\nu - e$ рассеяние:

$$\frac{d\sigma_{MM}}{dT} = \pi \frac{\alpha^2}{m_e^2} (\frac{\mu_\nu}{\mu_B})^2 (\frac{1}{T} - \frac{1}{E_\nu}).$$
 (2)

Рис.: Сечения для $E_{\nu} = 5$ МэВ.

Игнатов Г.Д.

< ロ > < 回 > < 回 > < 回 >

Экспериментальные данные

- *ON*: 140.2 суток, *OFF*: 69.2 суток.
- Собраны в период с октября 2022 по май 2023.

Стабильность фона

Источники нестабильности:

- Флуктуации радона (график справа+backup).
- Космогенные изотопы в детекторе: интенсивность 10.37 кэВ – ON : 15.4 ± 0.5, OFF : 15.2 ± 0.3.
- Тепловые (графики снизу) и быстрые (идет анализ) нейтроны.
- 8
 214Bi (609 keV) line intensity

 6
 +

 4
 +

 2
 +

 4
 +

 2
 +

 +
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +

 -2
 +
 </tr

• Мюоны (след. слайд).

Нестабильность потока мюонов

В период останова реактора объем воды в бассейне меняется \rightarrow меняется поток μ . Вклад учитывается штрафным членом при фитировании.

Рис.: Энерговыделения в совпадении с μ вето.

 $\delta = (1.1\pm 0.3)\%$

イロト イロト イヨト イ

Чувствительность и ограничение

Чувствительность (90% С.L.):

$$\mu_{\nu} < 5.3 \times 10^{-11} \mu_B$$

Верхний предел (90% С.L.):

$$\mu_{\nu} < 7.5 \times 10^{-11} \mu_B$$

 $\leftarrow Amplitude = (\mu_{\nu} \times 10^{-12} \mu_B)^2$

Игнатов Г.Д.

Ожидаемая чувствительность

- Чувствительность к ММН можно оценить как: $\mu_{\nu}^{lim} \sim \sqrt[4]{\frac{Background}{Time}} \sqrt{\frac{1}{Flux}}$.
- Предполагаем идеальную модель фона. На начало 2025 общая экспозиция $ON \sim 1300$ суток.

Предел GEMMA достигается при $T_{ON}\sim 680$ суток. \checkmark \blacksquare \checkmark \blacksquare \checkmark

Игнатов Г.Д.

Миллизаряд нейтрино

• При наличии у нейтрино миллизаряда сечение СМ изменятся:

$$\frac{d\sigma_{SM+Q}}{dT} = \frac{d\sigma_{SM+Q_{ii}}}{dT} + \frac{d\sigma_{SM+Q_{ij}}}{dT}.$$
(3)

$$\frac{d\sigma_{SM+Q_{ii}}}{dT} = \frac{d\sigma_{SM}}{dT}, g_V \to g_V - \frac{\sqrt{2}\pi\alpha}{G_F m_e T} \frac{q_{ii}}{e}.$$
(4)

$$\frac{d\sigma_{SM+Q_{ij}}}{dT} = \frac{\pi\alpha^2}{m_e T^2} \left[1 + (1 - \frac{T}{E})^2 - \frac{m_e T}{E^2}\right] \left|\frac{q_{ij}}{e}\right|^2.$$
(5)

Игнатов Г.Д.

Чувствительность и ограничение

Игнатов Г.Д.

Чувствительность и ограничение

Чувствительность (90% С.L.):

$$q_{\nu_{ee}} \in (-1.6, 1.8) \times 10^{-12} e$$

Верхний предел (90% С.L.):

$$q_{\nu_{ee}} \in (-2.2, 2.3) \times 10^{-12} e$$

イロト イロト イヨト イヨト

2

Миллизаряд нейтрино, ограничения

• Некоторые из экспериментальных ограничений на миллизаряд:

Предел, $10^{-12}e$	C.L.	Эксперимент			
0.224*	90%	LZ [J. Aalbers et al., 2023]			
$\sim 9^{**}$	90%	Dresden-II [M. Corona et al., 2022]			
$\sim 3.3^{***}$	90%	CONUS [H. Bonet et al., 2022]			
2.7*	90%	GEMMA [V.B. Brudanin et al., 2016]			
2.1*	90%	TEXONO [J.W. Chen et al., 2014]			
2.4	90%	νGeN			

* – в работах нет разделения на q_{ii} и q_{ij} ,

** – в работе множество пределов для разных вариантов квенчинга и моделей спектров реакторных антинейтрино,

*** - в работе приведена оценка по порядку величины.

• Космологические ограничения: $q_{\nu}^{lim} \sim 10^{-35}$ [С. Caprini, 2003] (электронейтральность вселенной).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Заключение

Результаты:

• На основе статистики 140.2 и 69.2 суток *ON* и *OFF* соответственно получены ограничения (90%С.L.) на величину MMH:

$$|\mu_{\nu_e}| < 7.5 \times 10^{-11} \mu_B$$

и миллизаряда нейтрино:

$$|q_{\nu_{e\mu}}|, |q_{\nu_{e\tau}}| < 2.4 \times 10^{-12} e$$

 $q_{\nu_{ee}} \in (-2.2, 2.3) \times 10^{-12} e$

10

- Ограничение на ММН соизмеримо с результатами экспериментов CONUS [H. Bonet et al., 2022], TEXONO [H.T. Wong et al., 2007].
- Ограничение на миллизаряд нейтрино второе в мире среди реакторных экспериментов.

・ロト ・四ト ・ヨト ・ヨト

Спасибо за внимание!

2

19.02.2025 1

æ

イロト イロト イヨト イヨト

Стабильность, радон

Backup

Игнатов Г.Д.

2025

Backup

Нестабильность потока мюонов

Максимальный вклад вторичных частиц, индуцированных μ ограничен по линии 511 кэВ.

Коэффициент скейлинга: $\frac{1}{C} = 16.0$

<ロト <回 > < 三 > < 三 >

Backup

ν GeN & GEMMA

Эксперимент	Масса, кг	Поток, $cm^{-2}c^{-1}$	Порог, кэВ	ОN, суток	ОFF, суток
νGeN	1.4	4.4×10^{13}	0.4	140	69
GEMMA	1.5	2.7×10^{13}	2.8	756	187

Эффективный заряд

R(T) – доля электронов, которые после рассеяния могут получить энергию $T_{\!\!\!\!}$

$$R(T) \times 32 = \begin{cases} 32 & , T > 11.103 \text{ kpB} \\ 30 & , 11.103 \text{ kpB} \ge T > 1.4146 \text{ kpB} \\ 28 & , 1.4146 \text{ kpB} \ge T > 1.2481 \text{ kpB} \\ 26 & , 1.2481 \text{ kpB} \ge T > 1.217 \text{ kpB} \\ 22 & , 1.217 \text{ kpB} \ge T > 0.1801 \text{ kpB} \\ \dots \end{cases}$$

<ロト <回 > < 三 > < 三 >

20/21

æ

Backup

Космогенные изотопы в германии

	K		I	_	М	
Изотоп	Т, кэВ	$\mathcal{B}r,\%$	Т, кэВ	$\mathcal{B}r,\%$	Т, кэВ	$\mathcal{B}r,\%$
^{71}Ge	10.37	87.6	1.3	10.5	0.16	1.8
^{68}Ge	10.37	86.5	1.3	11.5	0.16	1.8
^{68}Ga	9.66	88.6	1.2	9.8	0.14	1.6
^{65}Zn	8.98	88.6	1.1	9.8	0.122	1.6
57Co	7.11	88.8	0.84	9.6	0.091	1.5
^{55}Fe	6.54	88.6	0.77	9.8	0.082	1.6
^{54}Mn	5.99	89.6	0.7	9.0	0.066	1.4
^{49}V	4.97	89.3	0.56	9.3	0.059	1.4

◆□▶ ◆圖▶ ◆理▶ ◆理▶

21/21

æ –