JUNO: перспективы осцилляционного анализа реакторных антинейтрино

Должиков Дмитрий

ЛЯП, ОИЯИ ddolzhikov@jinr.ru

Сессия-конференция «Физика фундаментальных взаимодействий», посвященная 70-летию со дня рождения В.А. Рубакова

19.02.2025

JUNO и нейтринные осцилляции

Эксперимент JUNO

Jiangmen Underground Neutrino Observatory (JUNO) — многоцелевой нейтринный эксперимент, находящийся на юге Китая

- ◆ 20 кт Жидкого Сцинтиллятора (ЖС) внутри акриловой сферы диаметром 35 м
- З9.5 кт воды снаружи сферы (черенковский детектор)
- ♦ В 52.5 км от 8 ядерных реакторов (26.6 ГВт)
- ✤ Энергетическое разрешение σ < 3% на 1 МэВ</p>
- ♦ Неопределённость энергетической шкалы < 1%
- ✤ Нейтрино от реакторов, Солнца, Земли, сверхновых и др.

Должиков Дмитрий (ЛЯП ОИЯИ)

19.02.2025

Эксперимент JUNO

Jiangmen Underground Neutrino Observatory (JUNO) — многоцелевой нейтринный эксперимент, находящийся на юге Китая

- ✤ 20 кт Жидкого Сцинтиллятора (ЖС) внутри акриловой сферы диаметром 35 м
- З9.5 кт воды снаружи сферы (черенковский детектор)
- ♦ В 52.5 км от 8 ядерных реакторов (26.6 ГВт)
- ✤ Энергетическое разрешение σ < 3% на 1 МэВ</p>
- ♦ Неопределённость энергетической шкалы < 1%
- Нейтрино от реакторов, Солнца, Земли, сверхновых и др.

Основные задачи (реакторные антинейтрино):

- Определение упорядоченности масс нейтрино
- Измерение осцилляционных параметров

 $\sin^2 heta_{12}$, Δm^2_{21} и Δm^2_{31} с точностью < 1%

Осцилляции $\bar{\nu}_e$ в JUNO

- ✤ Наблюдаемый спектр JUNO зависит от:
 - параметров осцилляции Δm_{31}^2 , Δm_{21}^2 , $\sin^2 \theta_{12}$ и $\sin^2 \theta_{13}$
 - > упорядоченности масс нейтрино

Осцилляции $\bar{\nu}_e$ в JUNO

- ✤ Наблюдаемый спектр JUNO зависит от:
 - параметров осцилляции Δm_{31}^2 , Δm_{21}^2 , $\sin^2 \theta_{12}$ и $\sin^2 \theta_{13}$
 - > упорядоченности масс нейтрино
- Для определение порядка масс необходимо точное измерение спектра

Осцилляции $\bar{\nu}_e$ в JUNO

- ✤ Наблюдаемый спектр JUNO зависит от:
 - параметров осцилляции Δm_{31}^2 , Δm_{21}^2 , $\sin^2 \theta_{12}$ и $\sin^2 \theta_{13}$
 - > упорядоченности масс нейтрино
- Для определение порядка масс необходимо точное измерение спектра
- Чтобы разрешить пики, необходимо
 хорошее энергетическое разрешение
- Чтобы определить позиции пиков, необходима хорошо определённая
 энергетическая шкала

Детектирование $\bar{\nu}_e$ в JUNO

♦ Реакция Обратного Бета Распада (ОБР):

 $\bar{\nu}_e + p \rightarrow e^+ + n$

v_e передаёт бо́льшую часть энергии позитрону

Детектирование $\bar{\nu}_e$ в JUNO

♦ Реакция Обратного Бета Распада (ОБР):

 $\bar{\nu}_e + p \rightarrow e^+ + n$

- *v
 _e* передаёт бо́льшую часть энергии позитрону
- Мгновенный сигнал: энергия, высаженная позитроном в сцинтиллятор (кинетическая + аннигиляция)
- Запаздывающий сигнал: фотоны от релаксации ядра, захватившего нейтрон

Детектирование $\bar{\nu}_e$ в JUNO

♦ Реакция Обратного Бета Распада (ОБР):

 $\bar{\nu}_e + p \rightarrow e^+ + n$

- *v
 _e* передаёт бо́льшую часть энергии позитрону
- Мгновенный сигнал: энергия, высаженная позитроном в сцинтиллятор (кинетическая + аннигиляция)
- Запаздывающий сигнал: фотоны от релаксации ядра, захватившего нейтрон

Метод двойного совпадения позволяет эффективно отделять сигнал от ОБР от фоновых событий

Должиков Дмитрий (ЛЯП ОИЯИ)

JUNO: перспективы осцилляционного анализа реакторных антинейтрино

Отклик детектора JUNO

w/o NL&Res

LPMT w/ NL&Res

SPMT w/ NL&Res

4

6

Energy [MeV]

w/ NL

2

Приблизительная модель преобразования энергии:

 $E_{\nu} \rightarrow E_{dep} \rightarrow E_{vis} \rightarrow E_{rec}$

Энергия Выделенная Наблюдаемая Реконструированная антинейтрино энергия энергия энергия

2. JUNO 6 years data taking 1.05

a^{dəp} ≝ ≅

Energy Resolution [%]

8

20

1. Учёт кинематики реакции ОБР и аннигиляции позитрона \rightarrow выделенная энергия e^+

 $E_{\rm dep} \simeq E_{\overline{\nu}_{\rho}} - 0.782 \,\,{\rm MeV}$

Гашение, черенковское излучение → Нелинейность ЖС (NL):

$$E_{\rm vis} = f_{\rm LSNL}(E_{\rm dep}) \cdot E_{\rm dep}$$

3. Размытие → Энергетическое разрешение (Res): $\frac{\sigma_{E^{\text{rec}}}}{E^{\text{vis}}} = \sqrt{\frac{a}{\sqrt{E^{\text{vis}}}} + b^2 + \left(\frac{c}{E^{\text{vis}}}\right)}$

Chinese Phys. C 46 123001

500

400

300

200

100

0

0

Events per 20 keV

Должиков Дмитрий (ЛЯП ОИЯИ)

12

-NL

-LPMT

-SPMT

8 10

2 4 6 8 10 Deposited Energy E_{dep} [MeV]

4 6

Visible Energy E^{*}_{vis} [MeV]

10

2

Ожидаемый сигнал и фон

- ♦ Эффективность отбора событий ОБР: 82.2%
 - Критерии: доверительный объем, энергия, временная задержка, относительное расстояние
 - Мюонное вето для подавления фона от космических мюонов

- Ожидаемая скорость счёта событий ОБР: 47.1/день
- Ожидаемая скорость счёта фоновых событий: 4.11/день

Должиков Дмитрий (ЛЯП ОИЯИ)

JUNO: перспективы осцилляционного анализа реакторных антинейтрино

arXiv 2405.18008

19.02.2025

Вспомогательный детектор JUNO-TAO

Вспомогательный детектор Taishan Antineutrino Observatory (TAO):

- 2.8 т ЖС с добавлением гадолиния
- В 44 м от реактора TS-1 (4.6 ГВт) *
- Кремниевые фотоумножители и ЖС при -50°С *
- Энергетическое разрешение $\sigma < 2\%$ на 1 МэВ **

Вспомогательный детектор JUNO-TAO

Вспомогательный детектор Taishan Antineutrino Observatory (TAO):

- 2.8 т ЖС с добавлением гадолиния
- ✤ В 44 м от реактора TS-1 (4.6 ГВт)
- ✤ Кремниевые фотоумножители и ЖС при –50°С
- Энергетическое разрешение $\sigma < 2\%$ на 1 МэВ **

Основная задача: предоставить точное измерение начального спектра антинейтрино

Зачем: чтобы определить порядок масс нейтрино без использования моделей спектра антинейтрино

Как: одновременная подгонка спектров JUNO и TAO

8

arXiv 2405.18008

Оценка чувствительности

Осцилляционные параметры и упорядоченность масс нейтрино

Чувствительность к осцилляционным параметрам

- ЈUNO достигнет точности лучше, чем 1%, на параметры Δm_{31}^2 , Δm_{21}^2 и $\sin^2 \theta_{12}$ за первые 2 года набора данных
- Как можно использовать этот результат:
 - > Ограничение для других экспериментов
 - > Ограничение при построении моделей
 - Возможность поиска физики за пределами
 Стандартной Модели с большей точностью

	Значение	PDG2020	100 дней	6 лет
$\Delta m_{31}^2 (imes 10^{-3} \text{ eV}^2)$	2.5253	±0.034 (1.3%)	±0.021 (0.8%)	±0.0047 (0.2%)
$\Delta m_{21}^2 (imes 10^{-5} \text{ eV}^2)$	7.53	±0.18 (2.4%)	±0.074 (1.0%)	±0.024 (0.3%)
$\sin^2 \theta_{12}$	0.307	±0.013 (4.2%)	±0.0058 (1.9%)	±0.0016 (0.5%)
$\sin^2\theta_{13}$	0.0218	±0.0007 (3.2%)	±0.010 (47.9%)	±0.0026 (12.1%)
олжиков Дмитрий (ЛЯП ОИЯИ)	JUNO: перспе	ктивы осцилляционного анализа	реакторных антинейтрино	19.02.2025

Чувствительность к упорядоченности масс нейтрино

 Медианная чувствительность к порядку масс нейтрино (данные Азимова):

 $\Delta \chi^2_{\rm min} = \min \chi^2_{\rm IO} - \min \chi^2_{\rm NO}$

- Медианная чувствительность в 3*σ* после 7.1 лет набора данных
 - В предположении, что реакторы будут работать 11 месяцев в год
 - Соответствующая экспозиция:
 6.5 лет × 26.6 ГВт
- Основные источники систематической неопределенности: фон, спектр антинейтрино от реакторов, нелинейность ЖС

Заключение

- JUNO внесёт вклад как в прецизионное измерение осцилляционных параметров, так и в определение упорядоченности масс нейтрино
- Используя антинейтрино от реакторов, JUNO:
 - Достигнет точности, лучше чем 1%, к Δm²₃₁, Δm²₂₁, и sin²θ₁₂ за первый два года набора данных
 - Определит упорядоченность масс нейтрино с медианной чувствительностью Зσ после 7 лет набора данных
- Текущий статус
 - > Сборка центрального детектора JUNO завершена
 - Внутренний и внешний объемы детектора заполнены водой
 - > В данный момент происходит заполнение жидким сцинтиллятором

Backup

Смешивание нейтрино

Слабые (е, μ , τ) и массовые (1,2,3) собственные состояния отличаются:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Матрица смешивания Понтекорво-Маки-Накагавы-Сакаты

 $c_{ij} \equiv \cos \theta_{ij}, \ s_{ij} \equiv \sin \theta_{ij}$

Смешивание нейтрино

Слабые (е, μ , τ) и массовые (1,2,3) собственные состояния отличаются:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Матрица смешивания Понтекорво-Маки-Накагавы-Сакаты

Смешивание параметризуется с помощью:

- Трёх углов смешивания: $\theta_{12}, \theta_{23}, \theta_{13}$
- Фазы нарушения *СР*-четности: δ_{CP}

ν_3		
ν_2		
ν_1		
ν_e	$ u_{\mu}$	ν_{τ}

 $c_{ij} \equiv \cos \theta_{ij}, \ s_{ij} \equiv \sin \theta_{ij}$

Смешивание нейтрино

Слабые (е, μ , τ) и массовые (1, 2, 3) собственные состояния отличаются:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Матрица смешивания Понтекорво-Маки-Накагавы-Сакаты

Смешивание параметризуется с помощью:

- Трёх углов смешивания: $\theta_{12}, \theta_{23}, \theta_{13}$
- Фазы нарушения *СР*-четности: δ_{CP}

Три расщепления масс нейтрино ($\Delta m_{ij}^2 = m_i^2 - m_j^2$):

- Участвуют в вычислении вероятности осцилляций
- ✤ Только два расщепления независимы: Δm_{21}^2 , $|\Delta m_{31}^2|$ (или $|\Delta m_{32}^2|$)

 $c_{ii} \equiv \cos \theta_{ii}, \ s_{ii} \equiv \sin \theta_{ii}$

На данный момент (PDG 2024) известно, что:

- ✓ $\Delta m_{21}^2 \sim 7.5 \times 10^{-5} \text{ eV}^2 (\pm 2.4\%)$
- ✓ $|\Delta m_{31}^2| \sim 2.5 \times 10^{-3} \text{ eV}^2 \ (\pm 1.1\%)$
- ✓ $\sin^2\theta_{12} \sim 0.3 ~(\pm 4.2\%)$
- ✓ $\sin^2\theta_{13}$ ~0.02 (±3.2%)
- ✓ $\sin^2\theta_{23}$ ~0.5 (±3.2%)

На данный момент (PDG 2024) известно, что:

- ✓ $\Delta m_{21}^2 \sim 7.5 \times 10^{-5} \text{ eV}^2 \ (\pm 2.4\%)$
- ✓ $|\Delta m_{31}^2| \sim 2.5 \times 10^{-3} \text{ eV}^2 \ (\pm 1.1\%)$
- ✓ $\sin^2 \theta_{12} \sim 0.3 ~(\pm 4.2\%)$
- ✓ $\sin^2 \theta_{13} \sim 0.02 \ (\pm 3.2\%)$
- ✓ $\sin^2\theta_{23}$ ~0.5 (±3.2%)

Открытые вопросы:

 \Im Упорядоченность масс: $\Delta m^2_{31} > 0$ или $\Delta m^2_{31} < 0$

Две возможные Упорядоченности масс нейтрино

На данный момент (PDG 2024) известно, что:

- ✓ $\Delta m_{21}^2 \sim 7.5 \times 10^{-5} \text{ eV}^2 \ (\pm 2.4\%)$
- ✓ $|\Delta m_{31}^2| \sim 2.5 \times 10^{-3} \text{ eV}^2 \ (\pm 1.1\%)$
- ✓ $\sin^2 \theta_{12} \sim 0.3 ~(\pm 4.2\%)$
- ✓ $\sin^2 \theta_{13} \sim 0.02 \ (\pm 3.2\%)$
- ✓ $\sin^2 \theta_{23} \sim 0.5 \ (\pm 3.2\%)$

Открытые вопросы:

-
 \Im Упорядоченность масс: $\Delta m^2_{31} > 0$ или $\Delta m^2_{31} < 0$
- ? Значение фазы *CP*-нарушения δ_{CP} ?

Две возможные Упорядоченности масс нейтрино

На данный момент (PDG 2024) известно, что:

- ✓ $\Delta m_{21}^2 \sim 7.5 \times 10^{-5} \text{ eV}^2 \ (\pm 2.4\%)$
- ✓ $|\Delta m_{31}^2| \sim 2.5 \times 10^{-3} \text{ eV}^2 \ (\pm 1.1\%)$
- ✓ $\sin^2 \theta_{12} \sim 0.3 ~(\pm 4.2\%)$
- ✓ $\sin^2 \theta_{13} \sim 0.02 \ (\pm 3.2\%)$
- ✓ $\sin^2 \theta_{23} \sim 0.5 \ (\pm 3.2\%)$

Открытые вопросы:

-
 \Im Упорядоченность масс: $\Delta m^2_{31} > 0$ или $\Delta m^2_{31} < 0$
- Октант θ₂₃: θ₂₃ > 45° или θ₂₃ < 45°</p>
- Значение фазы *СР*-нарушения δ_{CP} ?

JUNO внесёт вклад как в прецизионное измерение осцилляционных параметров, так и в определение порядка масс нейтрино

Две возможные Упорядоченности масс нейтрино

- ✤ JUNO будет наблюдать дефицит v̄_e, связанный с осцилляциями
- Вероятность выживания $\bar{\nu}_e$:

$$\mathcal{P}(\overline{\nu}_e \to \overline{\nu}_e) = 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \Delta_{21}$$
$$- \sin^2 2\theta_{13} c_{12}^2 \sin^2 \Delta_{31}$$
$$- \sin^2 2\theta_{13} s_{12}^2 \sin^2 \Delta_{32}$$

- ✤ JUNO будет наблюдать дефицит v̄_e, связанный с осцилляциями
- Вероятность выживания $\bar{\nu}_e$:

$$egin{array}{rl} \mathcal{P}(\overline{
u}_e o \overline{
u}_e) &=& 1 - \sin^2 2 heta_{12} \, c_{13}^4 \, \sin^2 \Delta_{21} & {\sf M}$$
едл. $& - \sin^2 2 heta_{13} \, c_{12}^2 \sin^2 \Delta_{31} & \ & - \sin^2 2 heta_{13} \, s_{12}^2 \sin^2 \Delta_{32} \end{array}$

- ✤ JUNO будет наблюдать дефицит v̄_e, связанный с осцилляциями
- Вероятность выживания $\bar{\nu}_e$:

$$\begin{aligned} \mathcal{P}(\overline{\nu}_e \to \overline{\nu}_e) &= 1 - \sin^2 2\theta_{12} \, c_{13}^4 \, \sin^2 \Delta_{21} \\ &- \left[\sin^2 2\theta_{13} \, c_{12}^2 \sin^2 \Delta_{31} \right] \\ &- \sin^2 2\theta_{13} \, s_{12}^2 \sin^2 \Delta_{32} \end{aligned}$$

- ✤ JUNO будет наблюдать дефицит v̄_e, связанный с осцилляциями
- Вероятность выживания $\bar{\nu}_e$:

$$\mathcal{P}(\overline{\nu}_e \to \overline{\nu}_e) = 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \Delta_{21}$$
 Медл.
- $\sin^2 2\theta_{13} c_{12}^2 \sin^2 \Delta_{31}$
- $\sin^2 2\theta_{13} s_{12}^2 \sin^2 \Delta_{32}$ Быстр.

- ✤ JUNO будет наблюдать дефицит v̄_e, связанный с осцилляциями
- Вероятность выживания $\bar{\nu}_e$:

$$egin{array}{rll} \mathcal{P}(\overline{
u}_e o \overline{
u}_e) &=& 1 - \sin^2 2 heta_{12} \, c_{13}^4 \, \sin^2 \Delta_{21} & {
m Megn.} \ & & - \sin^2 2 heta_{13} \, c_{12}^2 \sin^2 \Delta_{31} \ & - \sin^2 2 heta_{13} \, s_{12}^2 \sin^2 \Delta_{32} & {
m Быстр.} \end{array}$$

- ♣ Вероятность выживания не зависит от δ_{CP} и θ_{23} → нет вырождений

Сист. неопределенности для осц. параметров

Основные источники систематической неопределенности:

- ✤ Δm²₃₁: неопределенность формы спектра антинейтрино, эффекты нелинейности детектора, фон
- ✤ Δm²₂₁: фон, вклад в спектр антинейтрино от отработанного ядерного топлива, неравновесная поправка на конверсионные спектры изотопов ²³⁵U, ²³⁹Pu и ²⁴¹Pu
- sin² θ_{12} , sin² θ_{13} : нормировка потока антинейтрино от реакторов, эффективность детектора

Δm_{31}^2	1σ (%)		Δm_{21}^2	lσ (%)			
Statistics	0.17		Statistics	0.16			
Reactor:			Reactor:				
- Uncorrelated	< 0.01		- Uncorrelated	0.01			
- Correlated	0.01		- Correlated	0.03			
- Reference spectrum	0.05		- Reference spectrum	0.07			
- Spent Nuclear Fuel	< 0.01		- Spent Nuclear Fuel	0.07		1	
- Non-equilibrium	< 0.01		- Non-equilibrium	0.14			
Detection:			Detection:	1			
- Efficiency	0.01		- Efficiency	0.02			
- Energy resolution	< 0.01		- Energy resolution	0.01			
- Nonlinearity	0.04		- Nonlinearity	0.05			
- Backgrounds	0.04		- Backgrounds	0.18			
Matter density	0.01		Matter density	0.01			
All systematics	0.08		All systematics	0.27			
Total	0.19		Total	0.32			
	0.0	0.1 %		(5.0	%	<u>.</u>
	0.0	0.1 %	. 2-	(J.U T	%	-
$\sin^2 \theta_{12}$	0.0	0.1 %	 $\sin^2\theta_{13}$	1σ (%)]	%	_
$sin^2 \theta_{12}$ Statistics	0.0 1σ (%) 0.34	0.1 %	$\sin^2 \theta_{13}$ Statistics	(1σ (%) 8.94		%	
$sin^2 \theta_{12}$ Statistics Reactor:	0.0	0.1 %	sin ² θ ₁₃ Statistics Reactor:	1σ (%) 8.94		%	_
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated	0.0 1σ (%) 0.34 0.10	0.1 %	sin ² θ ₁₃ Statistics Reactor: - Uncorrelated	1σ (%) 8.94 2.53		%	_
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated	0.0 1σ (%) 0.34 0.10 0.27	0.1 %	sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated	1σ (%) 8.94 2.53 6.83		%	
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum	0.0 1σ (%) 0.34 0.10 0.27 0.09		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum	1σ (%) 8.94 2.53 6.83 3.48		%	
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel	0.0 1σ (%) 0.34 0.10 0.27 0.09 0.05	0.1 %	sin ² $ heta_{13}$ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel	1σ (%) 8.94 2.53 6.83 3.48 1.55		%	
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium	0.0 1σ (%) 0.34 0.10 0.27 0.09 0.05 0.10		sin ² $ heta_{13}$ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65		%	
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection:	0.0 1σ (%) 0.34 0.10 0.27 0.09 0.05 0.10 0.10		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection:	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65		0.2 %	
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency	0.0 1 \sigma (%) 0.34 0.10 0.27 0.09 0.05 0.10 0.10 0.23 0.23		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81		0.2	
sin ² θ_{12} Statistics Reactor: - Uncorrelated - Correlated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution	0.0 1σ (%) 0.34 0.10 0.27 0.09 0.05 0.10 0.23 0.01		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81 0.39		0.2	
sin ² θ_{12} Statistics Reactor: - Uncorrelated - Correlated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity	0.0 1 \sigma (%) 0.34 0.10 0.27 0.09 0.05 0.10 0.23 0.23 0.01 0.09		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81 0.39 2.09		0.2 %	
sin ² θ ₁₂ Statistics Reactor: - Uncorrelated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity - Backgrounds	0.0 1 \sigma (%) 0.34 0.10 0.27 0.09 0.05 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.05 0.10 0.05 0.0 0.05 0.0 0.0 0.0 0.0		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Efficiency - Energy resolution - Nonlinearity - Backgrounds	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81 0.39 2.09 4.89		0.2 %	
sin ² θ_{12} Statistics Reactor: - Uncorrelated - Correlated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity - Backgrounds Matter density	0.0 1 \(\sigma\) (\sigma\) 0.34 0.10 0.27 0.09 0.05 0.10 0.09 0.05 0.10 0.02 0.02 0.09 0.09 0.09 0.000 0.00		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Correlated - Reference spectrum - Spent Nuclear Fuel - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Nonlinearity - Backgrounds Matter density	1σ (%) 8.94 2.53 6.83 3.48 1.55 2.65 5.81 0.39 2.09 4.89 0.98		0.2	
sin ² θ_{12} Statistics Reactor: - Uncorrelated - Correlated - Correlated - Reference spectrum - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Energy resolution - Nonlinearity - Backgrounds Matter density All systematics	0.0 1 \(\sigma\) (\sigma\) 0.34 0.10 0.27 0.09 0.05 0.10 0.10 0.23 0.10 0.23 0.01 0.09 0.20 0.20 0.07 0.40		sin ² θ ₁₃ Statistics Reactor: - Uncorrelated - Correlated - Correlated - Reference spectrum - Spent Nuclear Fuel - Spent Nuclear Fuel - Non-equilibrium Detection: - Efficiency - Energy resolution - Energy resolution - Nonlinearity - Backgrounds Matter density All systematics	$ \begin{array}{r} 1\sigma (\%) \\ 8.94 \\ 2.53 \\ 6.83 \\ 3.48 \\ 1.55 \\ 2.65 \\ \hline 5.81 \\ 0.39 \\ 2.09 \\ 4.89 \\ 0.98 \\ 8.16 \\ \end{array} $			

Сист. неопределенности для порядка масс нейтрино

- ✤ JUNO and TAO common uncertainties:
 - Reactors information
 - Liquid Scintillator non-linearity parameters
- ✤ JUNO only uncertainties:
 - > Oscillation parameter $\sin^2 2\theta_{13}$
 - Reference antineutrino spectrum
 - Detector normalization
 - Background rate and shapes
 - Energy resolution
 - Matter density (MSW effect)
- ✤ TAO only uncertainties:
 - Background rate and shapes
 - Energy scale
 - Fiducial volume

Relative impact on the NMO sensitivity:

Uncertainties	$ \Delta\chi^2_{ m min} $	$ \Delta \chi^2_{\rm min} $ change
Statistics of JUNO and TAO	11.5	
+ Common uncertainty	10.8	-0.7
+ TAO uncertainty	10.2	-0.6
+ JUNO geoneutrinos	9.7	-0.5
+ JUNO world reactors	9.4	-0.3
+ JUNO accidental	9.2	-0.2
+ JUNO ⁹ Li/ ⁸ He	9.1	-0.1
+ JUNO other backgrounds	9.0	-0.05
Total	9.0	

Dominant sources of uncertainty: backgrounds, reference spectrum, non-linearity