Смешанная неоднородная фаза во вращающейся кварк-клюонной плазме (Mixed inhomogeneous phase in rotating quark-gluon plasma)

 $\underline{\operatorname{Artem}}\,\underline{\operatorname{Roenko}}^1,$

in collaboration with

V. V. Braguta, M. N. Chernodub, Ya. A. Gershtein A. Yu. Kotov, I. E. Kudrov, D. A. Sychev

¹Joint Institute for Nuclear Research (JINR), Dubna roenko@theor.jinr.ru

Сессия-конференция секции ядерной физики ОН
Ф РАН, посвящённая 70-летию В. А. Рубакова Москва, РАН, 17-21 февраля
 2025

Introduction

- In non-cetral heavy ion collisions, the droplets of QGP with angular momentum are crated.
- The rotation occurs with relativistic velocities.

 $\begin{bmatrix} L. Adamczyk et al. (STAR), Nature 548, \\ 62-65 (2017), arXiv:1701.06657 [nucl-ex] \end{bmatrix} \\ \langle\omega\rangle \sim 7 \ {\rm MeV} \ \left(\sqrt{s_{NN}}\text{-averaged}\right)$

A D F A D F A D F A D F

Introduction

- In non-cetral heavy ion collisions, the droplets of QGP with angular momentum are crated.
- The rotation occurs with relativistic velocities.

• How does the rotation affect QCD properties?

 $\begin{bmatrix} L. Adamczyk et al. (STAR), Nature 548, \\ 62-65 (2017), arXiv:1701.06657 [nucl-ex] \end{bmatrix} \\ \langle\omega\rangle \sim 7 \ {\rm MeV} \ \left(\sqrt{s_{NN}}\text{-averaged}\right)$

イロト イボト イヨト イヨト

ELE SQO

Lattice study of rotating QCD properties

Formulation of rotating QCD on the lattice

• A. Yamamoto and Y. Hirono, Phys. Rev. Lett. 111, 081601 (2013), arXiv:1303.6292 [hep-lat]

Bulk-averaged critical temperature in rotating gluodynamics:

- V. Braguta, A. Kotov, D. Kuznedelev, and A. Roenko, JETP Lett. 112, 6–12 (2020)
- V. Braguta, A. Kotov, D. Kuznedelev, and A. Roenko, Phys. Rev. D 103, 094515 (2021), arXiv:2102.05084 [hep-lat]

Rotating gluodynamics in laboratory frame $(\Omega_I = \pi/(2T))$:

• M. N. Chernodub, V. A. Goy, and A. V. Molochkov, Phys. Rev. D 107, 114502 (2023), arXiv:2209.15534 [hep-lat]

Bulk-averaged critical temperature in rotating QCD:

- V. Braguta, A. Kotov, A. Roenko, and D. Sychev, PoS LATTICE2022, 190 (2023), arXiv:2212.03224 [hep-lat]
- J.-C. Yang and X.-G. Huang, (2023), arXiv:2307.05755 [hep-lat]

Thermodynamical properties and moment of inertia of rotating gluon plasma:

- V. V. Braguta, M. N. Chernodub, A. A. Roenko, and D. A. Sychev, Phys. Lett. B 852, 138604 (2024), arXiv:2303.03147 [hep-lat]
- V. V. Braguta et al., JETP Lett. 117, 639–644 (2023)
- V. V. Braguta et al., Phys. Rev. D 110, 014511 (2024), arXiv:2310.16036 [hep-ph]

Mixed inhomogeneous phase in rotating gluon plasma:

- V. V. Braguta, M. N. Chernodub, and A. A. Roenko, Phys. Lett. B 855, 138783 (2024), arXiv:2312.13994 [hep-lat]
- V. V. Braguta, M. N. Chernodub, Y. A. Gershtein, and A. A. Roenko, (2024), arXiv:2411.15085 [hep-lat]

ELE DQC

Rotating QCD in Minkowksi space

It is convenient to describe the system in the co-rotating reference frame, $x^{\mu} = (t, x, y, z)$,

$$\varphi = [\varphi_{\text{lab}} - \Omega t]_{2\pi}, \quad t = t_{\text{lab}}, \quad z = z_{\text{lab}}, \quad r = r_{\text{lab}}, \tag{1}$$

with the metric

$$g_{\mu\nu} = \begin{pmatrix} 1 - r^2 \Omega^2 & y\Omega & -x\Omega & 0 \\ y\Omega & -1 & 0 & 0 \\ -x\Omega & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$
 (2)

The Dirac Lagrangian in curved space is given by

$$\mathcal{L}_{\psi} = \bar{\psi} \left(i \gamma^{\mu} (D_{\mu} + \Gamma_{\mu}) - m \right) \psi = \mathcal{L}_{\psi}^{(0)} + \mathcal{L}_{\psi}^{(1)} , \qquad (3)$$

and the Lagrangian of Yang-Mills theory in the Minkowski curved spacetime is

$$\mathcal{L}_{G} = -\frac{1}{4g_{YM}^{2}}g^{\mu\nu}g^{\alpha\beta}F^{a}_{\mu\alpha}F^{a}_{\nu\beta} = \mathcal{L}_{G}^{(0)} + \mathcal{L}_{G}^{(1)} + \mathcal{L}_{G}^{(2)}, \qquad (4)$$

where $\mathcal{L}^{(n)} \propto \Omega^n$, and $\Omega = \partial_t \varphi_{\text{lab}}$.

ELE SQO

イロト イヨト イヨト イヨ

Rotating QCD in Minkowksi space

It is convenient to describe the system in the co-rotating reference frame, $x^{\mu} = (t, x, y, z)$,

$$\varphi = [\varphi_{\text{lab}} - \Omega t]_{2\pi}, \quad t = t_{\text{lab}}, \quad z = z_{\text{lab}}, \quad r = r_{\text{lab}}, \tag{1}$$

with the metric

$$g_{\mu\nu} = \begin{pmatrix} 1 - r^2 \Omega^2 & y\Omega & -x\Omega & 0 \\ y\Omega & -1 & 0 & 0 \\ -x\Omega & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$
 (2)

The Dirac Lagrangian in curved space is given by

$$\mathcal{L}_{\psi} = \bar{\psi} \left(i \gamma^{\mu} (D_{\mu} + \Gamma_{\mu}) - m \right) \psi = \mathcal{L}_{\psi}^{(0)} + \mathcal{L}_{\psi}^{(1)} , \qquad (3)$$

and the Lagrangian of Yang-Mills theory in the Minkowski curved spacetime is

$$\mathcal{L}_{G} = -\frac{1}{4g_{YM}^{2}}g^{\mu\nu}g^{\alpha\beta}F^{a}_{\mu\alpha}F^{a}_{\nu\beta} = \mathcal{L}_{G}^{(0)} + \mathcal{L}_{G}^{(1)} + \mathcal{L}_{G}^{(2)}, \qquad (4)$$

where $\mathcal{L}^{(n)} \propto \Omega^n$, and $\Omega = \partial_t \varphi_{\text{lab}}$.

The causality restriction: $\Omega r < 1$.

Rotating QCD in Euclidean space

The rotating system at thermal equilibrium is studied on the lattice. The partition function is

$$\mathcal{Z} = \operatorname{Tr}\left[e^{-\hat{H}/T_0}\right] = \int \mathcal{D}[U] \mathcal{D}[\psi, \bar{\psi}] \ e^{-S_G[U,\Omega] - S_F[U,\psi,\bar{\psi},\Omega]},\tag{5}$$

where the Euclidean action, $S_G + S_F$, is formulated in curved space $(t \rightarrow -i\tau)$, $x^{\mu} = (x, y, z, \tau)$,

$$g_{\mu\nu}^{E} = \begin{pmatrix} 1 & 0 & 0 & -y\Omega_{I} \\ 0 & 1 & 0 & x\Omega_{I} \\ 0 & 0 & 1 & 0 \\ -y\Omega_{I} & x\Omega_{I} & 0 & 1 + r^{2}\Omega_{I}^{2} \end{pmatrix},$$
(6)

and the angular velocity is imaginary, $\Omega_I = \partial_\tau \varphi_{\text{lab}} = -i\partial_t \varphi_{\text{lab}} = -i\Omega$, to avoid the sign problem.

There is no causality restriction in Euclidean space.

イロト (母) (ヨ) (ヨ) (ヨ) ショー ショー

Rotating QCD in Euclidean space

The rotating system at thermal equilibrium is studied on the lattice. The partition function is

$$\mathcal{Z} = \operatorname{Tr}\left[e^{-\hat{H}/T_0}\right] = \int \mathcal{D}[U] \mathcal{D}[\psi, \bar{\psi}] \ e^{-S_G[U,\Omega] - S_F[U,\psi,\bar{\psi},\Omega]},\tag{5}$$

where the Euclidean action, $S_G + S_F$, is formulated in curved space $(t \rightarrow -i\tau)$, $x^{\mu} = (x, y, z, \tau)$,

$$g_{\mu\nu}^{E} = \begin{pmatrix} 1 & 0 & 0 & -y\Omega_{I} \\ 0 & 1 & 0 & x\Omega_{I} \\ 0 & 0 & 1 & 0 \\ -y\Omega_{I} & x\Omega_{I} & 0 & 1 + r^{2}\Omega_{I}^{2} \end{pmatrix},$$
(6)

and the angular velocity is imaginary, $\Omega_I = \partial_\tau \varphi_{\text{lab}} = -i\partial_t \varphi_{\text{lab}} = -i\Omega$, to avoid the sign problem.

There is no causality restriction in Euclidean space.

- The inverse temperature $1/T_0$ sets the system length in τ -direction.
- Ehrenfest–Tolman (TE) law: the local temperature depends on the coordinates

$$T(r)\sqrt{g_{00}} = T(r)\sqrt{1-r^2\Omega^2} = T(r)\sqrt{1+r^2\Omega_I^2} = T_0.$$

• We denote by $T \equiv T_0$ the temperature at the rotation axis (r = 0).

Rotating QCD in Euclidean space

The quark action is a linear function in angular velocity:

$$S_{F} = \int d^{4}x \sqrt{g_{E}} \bar{\psi} \left(\gamma^{\mu} (\partial_{\mu} + \Gamma_{\mu}) + m\right) \psi =$$

$$= \int d^{4}x \,\bar{\psi} \left(\left(\gamma^{1} + y\Omega_{I}\gamma^{4}\right) D_{x} + \left(\gamma^{2} - x\Omega_{I}\gamma^{4}\right) D_{y} + \gamma^{3}D_{z} + \gamma^{4} \left(D_{\tau} + i\Omega_{I}\frac{\sigma^{12}}{2}\right) + m \right) \psi, \quad (7)$$

The gluon action is a quadratic function in angular velocity:

$$S_{G} = \frac{1}{4g_{YM}^{2}} \int d^{4}x \sqrt{g_{E}} g_{E}^{\mu\nu} g_{E}^{\alpha\beta} F_{\mu\alpha}^{a} F_{\nu\beta}^{a} \equiv S_{0} + S_{1}\Omega_{I} + S_{2}\frac{\Omega_{I}^{2}}{2} = = \frac{1}{g_{YM}^{2}} \int d^{4}x \left(\frac{1}{4} F_{\mu\nu}^{a} F_{\mu\nu}^{a} + \Omega_{I} \left[-yF_{xy}^{a}F_{y\tau}^{a} - yF_{xz}^{a}F_{z\tau}^{a} + xF_{yx}^{a}F_{x\tau}^{a} + xF_{yz}^{a}F_{z\tau}^{a} \right] + + \Omega_{I}^{2} \left[r^{2} (F_{xy}^{a})^{2} + y^{2} (F_{xz}^{a})^{2} + x^{2} (F_{yz}^{a})^{2} + 2xyF_{xz}^{a}F_{zy}^{a} \right] \right)$$
(8)

So, for quarks $\mathcal{L}_{\psi}^{(1)} = \bar{\psi}(\mathbf{\Omega} \cdot \hat{J})\psi$ (note $\hat{J} = \hat{L} + \hat{S}$), whereas for gluons $\mathcal{L}_{G}^{(1)} = \mathbf{\Omega} \cdot J_{G}$ and $\mathcal{L}_{G}^{(2)} \propto B^{2}$.

 \triangleright sign problem

 \triangleright inhomogeneous action

 \triangleright asymmetry between E^2 and B^2

Causality restriction

- \bullet Analytic continuation is allowed only for bounded system with $\Omega r < 1$
- Boundary conditions are important! (they influence the result in all approaches)

[A. Yamamoto and Y. Hirono, Phys. Rev. Lett. 111, 081601 (2013), arXiv:1303.6292 [hep-lat]]

• Euclidean action $S_G + S_F$ is discretized

- Lattice size: $N_t \times N_z \times N_s^2$ $(N_x = N_y = N_s)$
- "Radius" of the square cylinder: $R = a(N_s 1)/2$
- Boundary velocity: $v_I^2 = (\Omega_I R)^2 < 1/2$
- periodic b.c. in directions τ , z.
- Infinite volume limit: $N_z \to \infty$
- different types of b.c. in directions x,y: <u>open</u> / <u>periodic</u> / Dirichlet / ...

Observables:

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}U \mathcal{D}[\bar{\psi}, \psi] \mathcal{O}(U, \psi, \bar{\psi}) e^{-S_G[U] - S_F[U, \psi, \bar{\psi}]}$$
(9)

We start from rotating gluons.

Observables

The Polyakov loop is an order parameter, in gluodynamics (\mathbb{Z}_3 symmetry).

$$L(x,y) = \frac{1}{N_z} \sum_z \operatorname{Tr} \left[\prod_{\tau=0}^{N_t-1} U_4(\vec{r},\tau) \right], \qquad L = \frac{1}{N_s^2} \sum_{x,y} L(x,y).$$
(10)

In confinement $\langle L \rangle = 0$; in deconfinement $\langle L \rangle \neq 0$. $\langle L \rangle = e^{-F_Q/T}$ The local critical temperature is associated with the peak of the local Polyakov loop susceptibility

$$\chi_L(r) = \langle |L(r)|^2 \rangle - \langle |L(r)| \rangle^2.$$
(11)

We use tree-level improved (Symanzik) lattice action for S_0 and chair/plaquette discretization for S_1 , S_2 .¹ The temperature is $T = 1/N_t a$. It coincides with the temperature on the rotation axis T_0 .

 ¹A. Yamamoto and Y. Hirono, Phys. Rev. Lett. 111, 081601 (2013), arXiv:1303.6292 [hep-lat] → (Ξ) → (Ξ) → (Ξ)

 A. Roenko (JINR, BLTP)

 Mixed phase in rotating QCD
 19 February 2025
 8/20

Inhomogeneous phases for imaginary rotation

Figure: The distribution of the local Polyakov loop in x, y-plane for the lattice of size $5 \times 30 \times 181^2$ at the fixed imaginary velocity at the boundary $v_I^2 \equiv (\Omega_I R)^2 = 0.16$ and different on-axis temperatures, $T = 1/N_t a$.

- As the (on-axis) temperature increases, the radius of the inner confining region shrinks.
- Boundary is screened; Rotating symmetry is restored.
- Local thermalization takes place; Phase transition occurs as a vortex evolution,

A. Roenko (JINR, BLTP)

Inhomogeneous phases for imaginary rotation

Figure: The distribution of the local Polyakov loop in x, y-plane for the lattice of size $5 \times 30 \times 181^2$ at the fixed temperature $T = 0.95 T_{c0}$ and different Ω_I ; System size R = 13.5 fm.

- Mixed inhomogeneous phase may be observed for $T \leq T_{c0}$. For imaginary rotation, deconfinement appears at the periphery; confinement is in the central regions.
- The confinement region shrinks with the increase in Ω_I ;

A. Roenko (JINR, BLTP)

EI= nar

A D F A D F A D F A D F

Local critical temperature

The local critical temperature $T_c(r)$ is the temperature at the rotation axis when the phase transition occurs at radius r.

• Technical details: We split the system into thin cylinders of width δr and measure $T_c(r)$.

- Results for different $\delta r \cdot T = 1, \dots, 5$ are in agreement.
- δb is a width of ignored boundary layer
- $\bullet\,$ Minor difference on b.c. appears at $r/R\sim 1$

ELE SQO

Local critical temperature

The local critical temperature $T_c(r)$ is the temperature at the rotation axis when the phase transition occurs at radius r.

▶ Lattice parameters: $4 \times 24 \times 145^2$, $5 \times 30 \times 181^2$, $6 \times 36 \times 216^2$, with $v_I^2 = 0.04, \ldots, 0.48$.

▶ Results: The local critical temperature decreases with imaginary angular velocity.

$$\frac{T_c(r,\Omega_I)}{T_{c0}} = 1 - \kappa_2 (\Omega_I r)^2 - \kappa_4 \left(\frac{r}{R}\right)^2 (\Omega_I r)^2$$
(12)

• The continuum limit result of the vortical curvature in the bulk (from quadratic fit) is

$$\kappa_2 = 0.902(33) \,, \tag{13}$$

(next terms are affected by b.c.)

• How analyticaly continue the inhomogeneous phase?

A. Roenko (JINR, BLTP)

Decomposition of rotating action for gluons

The action of rotating gluons is a quadratic function in Ω_I ,

$$S_G = S_0 + \lambda_1 S_1 \Omega_I + \lambda_2 S_2 \Omega_I^2, \qquad (14)$$

where we introduce switching factors λ_1, λ_2 .

- The first operator S_1 is an angular momentum of gluons (in laboratory frame).
- The second operator S_2 is related to the chromomagnetic fields F_{ij}^2 .

ELE NOR

イロト イヨト イヨト イヨ

Decomposition of rotating action for gluons

The action of rotating gluons is a quadratic function in Ω_I ,

$$S_G = S_0 + \lambda_1 S_1 \Omega_I + \lambda_2 S_2 \Omega_I^2, \qquad (14)$$

where we introduce switching factors λ_1, λ_2 .

- The first operator S_1 is an angular momentum of gluons (in laboratory frame).
- The second operator S_2 is related to the chromomagnetic fields F_{ij}^2 .

• $\lambda_1 = 0, \ \lambda_2 \neq 0$: no sign problem Re2: $T = T_{c0} + \Delta T$ vs Im2: $T = T_{c0} - \Delta T$ $\frac{T_c(r, \Omega)}{T_{c0}} = 1 + \kappa (\Omega r)^2$ vs $\frac{T_c(r, \Omega_I)}{T_{c0}} = 1 - \kappa (\Omega_I r)^2$

Decomposition of rotating action for gluons

The action of rotating gluons is a quadratic function in Ω_I ,

$$S_G = S_0 + \lambda_1 S_1 \Omega_I + \lambda_2 S_2 \Omega_I^2, \tag{14}$$

where we introduce switching factors λ_1, λ_2 .

- The first operator S_1 is an angular momentum of gluons (in laboratory frame).
- The second operator S_2 is related to the chromomagnetic fields F_{ij}^2 .

- $\lambda_1 = 0, \ \lambda_2 \neq 0$: no sign problem Re2: $T = T_{c0} + \Delta T$ vs Im2: $T = T_{c0} - \Delta T$ $\frac{T_c(r, \Omega)}{T_{c0}} = 1 + \kappa (\Omega r)^2$ vs $\frac{T_c(r, \Omega_I)}{T_{c0}} = 1 - \kappa (\Omega_I r)^2$
- S_1 and S_2 have opposite influence on T_c .
- Effect of asymmetry (S_2) dominates.
- The results resemble the decomposition of *I* (see below)

A. Roenko (JINR, BLTP)

E SQA

물 제 물 제

Local approximation for inhomogeneous action

The homogeneous local action (in the vicinity of the point $x = r_0, y = 0$) is

$$S_{G} = \frac{1}{2g_{0}^{2}} \int d^{4}x \left[F_{x\tau}^{a} F_{x\tau}^{a} + F_{y\tau}^{a} F_{y\tau}^{a} + F_{z\tau}^{a} F_{z\tau}^{a} + F_{xz}^{a} F_{xz}^{a} + \left(1 + u_{I}^{2} \right) F_{yz}^{a} F_{yz}^{a} + \left(1 + u_{I}^{2} \right) F_{xy}^{a} F_{xy}^{a} - 2u_{I} \left(F_{yx}^{a} F_{x\tau}^{a} + F_{yz}^{a} F_{z\tau}^{a} \right) \right], \quad (15)$$

where $u_I = \Omega_I r_0$ is a local velocity.

• Data are fitted by two different functions:

The local critical temperature increases with real velocity $u = \Omega r$.

$$\frac{T_c(u_I)}{T_{c0}} = 1 + k_2 u^2 + k_4 u^4, \qquad (16)$$

$$\frac{T_c(u)}{T_{c0}} = \frac{1 + c_2 u^2}{1 - b_2 u^2} \,. \tag{17}$$

- In continuum limit the coefficients are
 - $k_2 = 0.869(31), \qquad k_4 = 0.388(53).$ (18)
 - $c_2 = 0.206(66), \qquad b_2 = 0.694(101). \qquad (19)$

A mechanical response of a thermodynamic ensemble to rigid rotation $\Omega = \Omega e$ is described in terms of the total angular momentum J. The energy in co-rotating reference frame is

$$E = E^{(lab)} - \boldsymbol{J} \cdot \boldsymbol{\Omega}, \qquad F = E - TS, \qquad dF = -SdT - \boldsymbol{J} \cdot d\boldsymbol{\Omega} + \dots,$$

The moment of inertia is a scalar quantity, $\boldsymbol{J} = I(T, \Omega)\boldsymbol{\Omega}$,

$$I(T,\Omega) = \frac{J(T,\Omega)}{\Omega} = -\frac{1}{\Omega} \left(\frac{\partial F}{\partial \Omega}\right)_T$$

For a classical system with characteristic radius R the moment of inertia is given by

$$I(T,\Omega) = \int_V d^3x \, x_{\perp}^2 \rho(T,x_{\perp},\Omega) \simeq \alpha \, \rho_0(T) V R^2 \,,$$

The free energy may be represented as a series in angular velocity (or linear velocity $v_R = \Omega R$)

$$F(T,V,\Omega) = F_0(T,V) - \frac{F_2(T,V)}{2}\Omega^2 + \mathcal{O}(\Omega^4) \equiv F_0(T,V) - \frac{i_2(T)}{2}Vv_R^2 + \mathcal{O}(v_R^4),$$

where $F_2(T, V) = I(T, V, \Omega = 0) \equiv i_2(T)VR^2$, and $i_2(T)$ is a *specific* moment of inertia.

イロト 不良 トイヨト イヨト しょうくつ

Taking the derivative at Ω = 0, we obtain:

$$I = F_2 = T \frac{\partial^2 \log Z}{\partial \Omega^2} \bigg|_{\Omega=0} = T \left(\langle \! \langle S_1^2 \rangle \! \rangle_T + \langle \! \langle S_2 \rangle \! \rangle_T \right),$$

where $\langle\!\langle \mathcal{O} \rangle\!\rangle_T = \langle \mathcal{O} \rangle_T - \langle \mathcal{O} \rangle_{T=0}$. Using the exact forms of S_1, S_2 , we get

 $I = I_{mech} + I_{magn}$

where $(\langle J \rangle = 0$ for any T) and

$$\begin{split} I_{\text{mech}} &= \frac{1}{T} \Big(\langle\!\langle J^2 \rangle\!\rangle_T - \langle\!\langle J \rangle\!\rangle_T^2 \Big) \ge 0, \\ I_{\text{magn}} &= \frac{1}{3} \int_V d^3 x \, x_\perp^2 \langle\!\langle (F_{ij}^a)^2 \rangle\!\rangle_T = \frac{\alpha}{3} V R^2 \langle\!\langle (G_{\text{magn}})^2 \rangle\!\rangle_T \,. \end{split}$$

 ${\cal J}$ is the total angular momentum of gluon field.

- I < 0 for $T < T_s \simeq 1.5T_c$ and I > 0 for $T > T_s$.
- Mass density $\rho_0(T) \leftrightarrow \langle \langle (G_{\text{magn}})^2 \rangle \rangle_T/3.$

[V. V. Braguta et al., Phys. Rev. D 110, 014511 (2024), arXiv:2310.16036 [hep-ph]]

EL SQA

Taking the derivative at Ω = 0, we obtain:

$$I = F_2 = T \frac{\partial^2 \log Z}{\partial \Omega^2} \bigg|_{\Omega=0} = T \big(\langle\!\langle S_1^2 \rangle\!\rangle_T + \langle\!\langle S_2 \rangle\!\rangle_T \big) \,,$$

where $\langle\!\langle \mathcal{O} \rangle\!\rangle_T = \langle \mathcal{O} \rangle_T - \langle \mathcal{O} \rangle_{T=0}$. Using the exact forms of S_1, S_2 , we get

 $I = I_{mech} + I_{magn}$

where $(\langle J \rangle = 0$ for any T) and

$$\begin{split} I_{\text{mech}} &= \frac{1}{T} \Big(\langle\!\langle J^2 \rangle\!\rangle_T - \langle\!\langle J \rangle\!\rangle_T^2 \Big) \ge 0, \\ I_{\text{magn}} &= \frac{1}{3} \int_V d^3 x \, x_\perp^2 \langle\!\langle (F_{ij}^a)^2 \rangle\!\rangle_T = \frac{\alpha}{3} V R^2 \langle\!\langle (G_{\text{magn}})^2 \rangle\!\rangle_T \,. \end{split}$$

 ${\cal J}$ is the total angular momentum of gluon field.

- I < 0 for $T < T_s \simeq 1.5T_c$ and I > 0 for $T > T_s$.
- Mass density $\rho_0(T) \leftrightarrow \langle \langle (G_{\text{magn}})^2 \rangle \rangle_T / 3.$

[V. V. Braguta et al., Phys. Rev. D 110, 014511 (2024), arXiv:2310.16036 [hep-ph]]

EL SQA

Taking the derivative at Ω = 0, we obtain:

$$I = F_2 = T \frac{\partial^2 \log Z}{\partial \Omega^2} \bigg|_{\Omega=0} = T \left(\langle \langle S_1^2 \rangle \rangle_T + \langle \langle S_2 \rangle \rangle_T \right),$$

where $\langle\!\langle \mathcal{O} \rangle\!\rangle_T = \langle \mathcal{O} \rangle_T - \langle \mathcal{O} \rangle_{T=0}$. Using the exact forms of S_1, S_2 , we get

 $I = I_{mech} + I_{magn}$

where $(\langle J \rangle = 0$ for any T) and

$$\begin{split} I_{\text{mech}} &= \frac{1}{T} \Big(\langle\!\langle J^2 \rangle\!\rangle_T - \langle\!\langle J \rangle\!\rangle_T^2 \Big) \ge 0, \\ I_{\text{magn}} &= \frac{1}{3} \int_V d^3 x \, x_\perp^2 \langle\!\langle (F_{ij}^a)^2 \rangle\!\rangle_T = \frac{\alpha}{3} V R^2 \langle\!\langle (G_{\text{magn}})^2 \rangle\!\rangle_T \,. \end{split}$$

 ${\cal J}$ is the total angular momentum of gluon field.

- I < 0 for $T < T_s \simeq 1.5T_c$ and I > 0 for $T > T_s$.
- Mass density $\rho_0(T) \leftrightarrow \langle \langle (G_{\text{magn}})^2 \rangle \rangle_T / 3.$

[V. V. Braguta et al., Phys. Rev. D 110, 014511 (2024), arXiv:2310.16036 [hep-ph]]

Image: A matrix

•
$$\langle\!\langle \mathcal{B}^2 \rangle\!\rangle$$
 reverse its sign at ~ $2T_c$.

Taking the derivative at Ω = 0, we obtain:

$$I = F_2 = T \frac{\partial^2 \log Z}{\partial \Omega^2} \bigg|_{\Omega=0} = T \left(\langle \langle S_1^2 \rangle \rangle_T + \langle \langle S_2 \rangle \rangle_T \right),$$

where $\langle\!\langle \mathcal{O} \rangle\!\rangle_T = \langle \mathcal{O} \rangle_T - \langle \mathcal{O} \rangle_{T=0}$. Using the exact forms of S_1, S_2 , we get

 $I = I_{mech} + I_{magn}$

where $(\langle J \rangle = 0$ for any T) and

$$\begin{split} I_{\text{mech}} &= \frac{1}{T} \Big(\langle\!\langle J^2 \rangle\!\rangle_T - \langle\!\langle J \rangle\!\rangle_T^2 \Big) \ge 0, \\ I_{\text{magn}} &= \frac{1}{3} \int_V d^3 x \, x_\perp^2 \langle\!\langle (F_{ij}^a)^2 \rangle\!\rangle_T = \frac{\alpha}{3} V R^2 \langle\!\langle (G_{\text{magn}})^2 \rangle\!\rangle_T \,. \end{split}$$

 ${\cal J}$ is the total angular momentum of gluon field.

- I < 0 for $T < T_s \simeq 1.5T_c$ and I > 0 for $T > T_s$.
- Mass density $\rho_0(T) \leftrightarrow \langle \langle (G_{\text{magn}})^2 \rangle \rangle_T/3$.

- [V. V. Braguta et al., Phys. Rev. D 110, 014511 (2024), arXiv:2310.16036 [hep-ph]]
- $\langle\!\langle \mathcal{B}^2 \rangle\!\rangle$ reverse its sign at ~ $2T_c$.
- In QCD fermionis (J_{ψ}) contribute only to I_{mech} .

Total angular momentum $J = I\Omega$ is a sum of the orbital and spin parts:

$$\boldsymbol{J} = \boldsymbol{L} + \boldsymbol{S} \,, \tag{20}$$

and I < 0. The possible physical picture: instability, or *negative* Barnett effect for gluon.

In the temperature range $T_c \lesssim T < T_s \simeq 1.5T_c$:

(i) a sizable fraction of the total angular momentum J = L + S is accumulated in the spin of gluons S;

(ii) therefore, $S \uparrow \downarrow J$ and $S \uparrow \downarrow L$.

Let's introduce $\boldsymbol{L} = I_L \boldsymbol{\Omega}, \ \boldsymbol{S} = I_S \boldsymbol{\Omega}$, therefore

$$I_L > 0$$
, $I_S < 0$, $I = I_L + I_S < 0$.

イロト イボト イヨト イヨト

Rotating QCD: various rotation regimes

Figure: The (bulk-averaged) pseudo-critical temperature as a function of imaginary linear velocity on the boundary for various rotation regimes (full, only gluons, only fermions). [V. Braguta, A. Kotov, A. Roenko, and D. Sychev, PoS LATTICE2022, 190 (2023), arXiv:2212.03224 [hep-lat]]

QCD action: $S = S_G(\Omega_G) + S_F(\Omega_F)$

Rotation in fermionic and gluonic sectors have different influence on (bulk-averaged) T_{pc} . Gluons dominate.

Inhomogeneous phase in QCD (preliminary)

Figure: The distribution of the local Polyakov loop in x, y-plane for the lattice of size $4 \times 20 \times 49^2$ at the fixed temperature $T = 0.93 T_{c0}$ and different v_I ; QCD with Wilson fermions (Iwasaki action), $m_{\pi}/m_{\rho} = 0.80$.

• Mixed inhomogeneous phase takes place also in QCD! (work in progress ...)

ELE SQO

Image: A matrix

Conclusions

- Using lattice simulation with *imaginary* angular velocity, we found the mixed phase in rotating gluodynamics at thermal equilibrium. For *imaginary* rotation, it takes place for $T < T_{c0}$ with deconfinement (confinement) phase at the periphery (center).
- For *real* rotation, the inhomogeneous phase may arise for $T > T_{c0}$ with confinement at the periphery and deconfinement in the center.
- We demonstrate the validity of analytic continuation using Im 2/Re2-regimes.
- The local critical temperature in rotating gluodynamics depends on the local velocity $u = \Omega r$:

$$\frac{T_c(u)}{T_{c0}} = 1 + k_2 u^2 + k_4 u^4, \quad \text{or} \qquad \frac{T_c(u)}{T_{c0}} = \frac{1 + c_2 u^2}{1 - b_2 u^4}, \qquad \text{[local action]}, \qquad (22)$$

The approximation of local thermalization gives consistent results. Note that $T_c(0) \approx T_{c0}$.

- The magnetovortical coupling generates asymmetry in the action for chromomagnetic fields. Linear coupling play subleading role near T_c . This mechanism can not be accounted for by TE.
- Gluon plasma has I < 0 below the supervortical temperature $T_s = 1.50(10)T_c$ (and I > 0 for $T > T_s$). Possible physical explanation: NBE. Results for a.c. from Ω_I and $\partial_{\Omega}|_{\Omega=0}$ are in agreement.
- We expect similar picture for QCD (work in progress).

A. Roenko (JINR, BLTP)

Thank you for your attention!

21= 990

イロト イヨト イヨト イヨ

Ehrenfest-Tolman effect in rotating (Q)GP

Ehrenfest-Tolman effect: In gravitational field the temperature isn't a constant in space at thermal equilibrium, $T(r)\sqrt{g_{00}} = T_0 = \text{const.}$ In the co-rotating reference frame:

$$T(r) = \frac{T_0}{\sqrt{1 - \Omega^2 r^2}} = \frac{T_0}{\sqrt{1 + \Omega_I^2 r^2}}.$$
(23)

TE law suggests that the rotation effectively heats the periphery. Let's derive $T_c^{TE}(u)$ from an assumption $T(r) = T_{c0}$, then the local critical temperature decreases:

$$\frac{T_c^{TE}(u)}{T_{c0}} = \sqrt{1 - u^2} \approx 1 - 0.5u^2 + \dots, \qquad (24)$$

In the result, TE predicts confinement in the center and deconfinement at the periphery (for *real* rotation):

- 2+1 cQED: M. N. Chernodub, Phys. Rev. D 103, 054027 (2021), arXiv:2012.04924 [hep-ph]
- Holography: N. R. F. Braga and O. C. Junqueira, Phys. Lett. B 848, 138330 (2024), arXiv:2306.08653 [hep-th]

Lattice simulation gives opposite arrangement of the phases. Qualitatively consistent results:

- S. Chen, K. Fukushima, and Y. Shimada, Phys. Lett. B 859, 139107 (2024), arXiv:2404.00965 [hep-ph]
- Y. Jiang, Phys. Rev. D 110, 054047 (2024), arXiv:2406.03311 [nucl-th]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のQ@

- The results for *local* action and for full system are in a good agreement with each other in all regimes.
- The data are well described by the polynomial:

$$\frac{T_c(u_I)}{T_{c0}} = 1 + k_2 u^2 + k_4 u^4, \qquad (25)$$

• Or, by the rational function:

$$\frac{T_c(u)}{T_{c0}} = \frac{1 + c_2 u^2}{1 - b_2 u^2} \,. \tag{26}$$

• The function (26) better describe all data from regimes Im2/Re2.

Imaginary vs real rotation for different regimes

Figure: The distribution of the local Polyakov loop in x, y-plane for lattice size $5 \times 30 \times 181^2$, open boundary conditions (OBC) at fixed velocity $|v_I^2| = 0.16$ and different regimes. Temperature was chosen to see mixed phase.

- In the regimes Im1 and Re2, the rotation produces confinement phase in the outer region at $T > T_{c0}$. Regime Re2 realizes real rotation for S_2 system.
- Phase arrangement is the same in Im2- and Im12-regimes. The radius of the inner region in regime Im2 is slightly smaller, than in regime Im12.

A. Roenko (JINR, BLTP)

• The results in the whole region are well described by the quartic formula

$$\frac{T_c(r)}{T_{c0}} = C_0 - C_2 \left(\frac{r}{R}\right)^2 + C_4 \left(\frac{r}{R}\right)^4.$$
 (27)

In the bulk, r/R ≤ 0.5, quadratic fit is sufficient (C₄ = 0).

• The results in the whole region are well described by the quartic formula

$$\frac{T_c(r)}{T_{c0}} = C_0 - C_2 \left(\frac{r}{R}\right)^2 + C_4 \left(\frac{r}{R}\right)^4.$$
 (27)

- In the bulk, $r/R \leq 0.5$, quadratic fit is sufficient $(C_4 = 0)$.
- We found numerically that

$$C_i(v_I^2) = a_i + \kappa_i v_I^2.$$
(28)

• $T_c(0) \approx T_{c0}$ with few percent accuracy:

Image: 0

- Effects of finite radius R.
- Effects of averaging in layers of width δr .

• Results: The local critical temperature decreases with imaginary angular velocity.

$$\frac{T_c(r,\Omega_I)}{T_{c0}} = 1 - \left(\Omega_I r\right)^2 \left(\kappa_2 - \kappa_4 \left(\frac{r}{R}\right)^2\right). \quad (29)$$

• The vortical curvature in continuum limit from quadratic fit $(r/R \leq 0.5)$ is universal

• And from quartic fit (for OBC) there is

 $\kappa_2 = 1.051(29), \qquad \kappa_4 = 0.300(34), \quad (31)$

where κ_4 term is a finite volume correction;

• We can not distinguish ~ Ω^4 term.

Finite radius effects

Results of lattice simulation with non-zero imaginary angular velocity

Symanzik gauge action; we calculate f = F/V using standard relations

$$\frac{f(T)}{T^4} = -N_t^4 \int_{\beta_0}^{\beta} d\beta' \Delta s(\beta'),$$

where $\Delta s(\beta) = \langle s(\beta) \rangle_{T=0} - \langle s(\beta) \rangle_T \equiv - \langle \langle s \rangle \rangle$.

- $N_t \times 40 \times 41^2$ lattices with $N_t = 5, 6, 7, 8;$
- $N_t^{(T=0)} = 40$ for T = 0 subtraction;
- $v_I^2 \ll 1$, where $v_I = \Omega_I R$, $R = a(N_s 1)/2$.
- $v_I = \text{const} \iff \Omega_I/T = v_I/RT = \text{const.}$
- $T_c \searrow$ with the imaginary angular velocity.
- Fit by the quadratic function $(f_0 = -p < 0)$:

$$f(T, v_I) = f_0(T) \left(1 - \frac{1}{2} K_2(T) v_I^2 \right).$$

[V. V. Braguta, M. N. Chernodub, A. A. Roenko, and D. A. Sychev, Phys. Lett. B 852, 138604 (2024), arXiv:2303.03147 [hep-lat]]

イロト イポト イヨト イヨト

Results of lattice simulation with non-zero imaginary angular velocity

• The moment of inertia of gluon plasma

$$I(T)|_{\Omega=0} = -K_2 F_0 R^2$$
,

becomes zero at "supervortical" temperature

 $T_s = 1.50(10)T_c$.

and it is negative for $T < T_s$.

• The result for the system with OBC is

 $T_s = 1.53(15)T_c$

[V. V. Braguta, M. N. Chernodub, A. A. Roenko, and D. A. Sychev, Phys. Lett. B 852, 138604 (2024), arXiv:2303.03147 [hep-lat]]

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Taking the derivative at $\Omega = 0$, we obtain:

$$I = F_2 = T \frac{\partial^2 \log Z}{\partial \Omega^2} \bigg|_{\Omega=0} = T \left(\langle \! \langle S_1^2 \rangle \! \rangle_T + \langle \! \langle S_2 \rangle \! \rangle_T \right),$$

where $\langle\!\langle \mathcal{O} \rangle\!\rangle_T = \langle \mathcal{O} \rangle_T - \langle \mathcal{O} \rangle_{T=0}$ corresponds to the thermal contribution to $\langle \mathcal{O} \rangle$.

$$f_2/(T^4 L_s^2) \equiv i_2/T^4$$
,

[V. V. Braguta et al., JETP Lett. 117, 639–644 (2023)]

Taking the derivative at $\Omega = 0$, we obtain:

$$I = F_2 = T \frac{\partial^2 \log Z}{\partial \Omega^2} \bigg|_{\Omega=0} = T \left(\langle \! \langle S_1^2 \rangle \! \rangle_T + \langle \! \langle S_2 \rangle \! \rangle_T \right),$$

where $\langle\!\langle \mathcal{O} \rangle\!\rangle_T = \langle \mathcal{O} \rangle_T - \langle \mathcal{O} \rangle_{T=0}$ corresponds to the thermal contribution to $\langle \mathcal{O} \rangle$.

$$f_2/(T^4 L_s^2) \equiv i_2/T^4$$
,

[V. V. Braguta et al., JETP Lett. 117, 639–644 (2023)]

Image: 1 million of the second sec

Taking the derivative at $\Omega = 0$, we obtain:

$$I = F_2 = T \frac{\partial^2 \log Z}{\partial \Omega^2} \bigg|_{\Omega=0} = T \left(\langle \langle S_1^2 \rangle \rangle_T + \langle \langle S_2 \rangle \rangle_T \right),$$

where $\langle\!\langle \mathcal{O} \rangle\!\rangle_T = \langle \mathcal{O} \rangle_T - \langle \mathcal{O} \rangle_{T=0}$ corresponds to the thermal contribution to $\langle \mathcal{O} \rangle$.

$$f_2/(T^4L_s^2) \equiv i_2/T^4$$
, $K_2 = i_2/(-f_0)$

Results of two methods (a.c. from Ω_I and $\partial_{\Omega}|_{\Omega=0}$) are in agreement.

[V. V. Braguta et al., PoS LATTICE2023, 181 (2024), arXiv:2311.03947 [hep-lat]]

Local Polyakov loop at high temperatures

- $T > T_s \simeq 1.5 T_{c0}$: I > 0
- $T \gtrsim 2T_{c0}$: $\langle\!\langle \mathcal{B}^2 \rangle\!\rangle > 0$
- Local Polyakov loop decreases with r at high temperatures $T \gtrsim 2T_{c0}$

Image: A matrix

(local temperature from TE decreases with r for imaginary Ω_I)

ELE DQQ