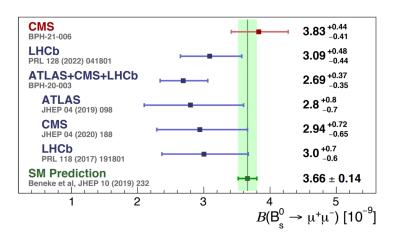
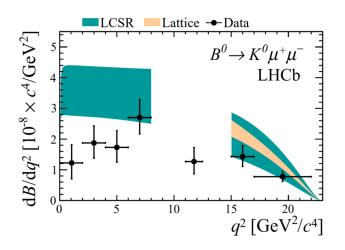
Учет кулоновского взаимодействия в редких лептонных и полулептонных распадах В-мезонов


Манухов Степан Ильич^{1,2} Никитин Николай Викторович^{1,2,3}

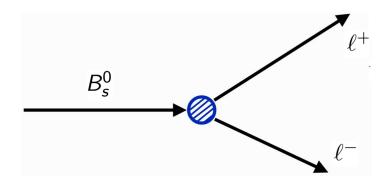
 1 Физический факультет МГУ им. М.В.Ломоносова 2 НИИ ядерной физики имени Д. В. Скобельцына МГУ имени М. В. Ломоносова

 3 Московский физико-технический институт


17 февраля 2025 г.

Постановка проблемы

Парциальная ширина распада $B_s^0 o \mu^+\mu^-$


Постановка проблемы

Дифференциальная ширина распада $B^0 \to K^0 \mu^+ \mu^-$ - arXiv:1403.8044 [hep-ex]

Часть 1. Формулировка и обоснование метода.

Основная идея - изменение процедуры вторичного квантования

Лептоны не могут считаться свободными, так как они взаимодействуют друг с другом в конечном состоянии.

Основная идея - изменение процедуры вторичного квантования

Стандартная процедура вторичного квантования:

$$\ell(x) = \sum_{s=1,2} \int \frac{d^3p}{(2\pi)^3} (a_p u(p,s) e^{-ipx} + b_p^{\dagger} \bar{v}(p,s) e^{+ipx})$$
 (1)

Модифицированная процедура вторичного квантования (картина Фарри):

$$\ell(x) = \sum_{s=1,2} \int \frac{d^3p}{(2\pi)^3} (a_p \Psi_{\mathcal{E}\vec{p}}^{(+)}(x) e^{-i\mathcal{E}^{(+)}t} + b_p^{\dagger} \Psi_{-\mathcal{E}-\vec{p}}^{(-)}(x) e^{+i\mathcal{E}^{(-)}t})$$
(2)

Обоснование метода на примере скалярного распада $B \to S^+S^-$

Нерелятивистский метод Гамова-Зоммерфельда-Сахарова:

$$\mathcal{K}^{(GSS)} = \frac{2\pi\alpha/\nu}{1 - e^{-2\pi\alpha/\nu}},\tag{3}$$

 Точный релятивистский метод Кратера [arXiv:hep-ph/9912386] и Сазджана [PRD 33, 3401, (1986)]:

$$\mathcal{K}^{(CS)} = \left| \frac{\Gamma(\sqrt{\frac{1}{4} - \alpha^2 + \frac{1}{2} + i\frac{\alpha}{\nu}})}{\Gamma(\sqrt{1 - 4\alpha^2} + 1)} \right|^2 \cdot e^{\pi\alpha/\nu}, \tag{4}$$

Приближенный метод Фарри [PR, 81, 115-124 (1951)]:

$$\mathcal{K}^{(Furry)} = e^{\pi \alpha/\nu}.$$
 (5)

Обоснование метода на примере скалярного распада $B o S^+ S^-$

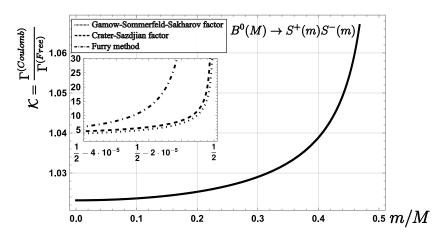


Рис.: Сравнение трех методов.

Часть 2. Кулоновское взаимодействие в $\mathcal{B}^0_{s,d} \to \ell^+\ell^-.$

Кулоновское взаимодействие в распадах $B^0_{s,d} o \ell^+\ell^-$

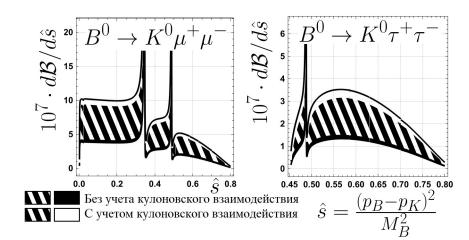
Парциальная ширина распада $B^0_{s,d} o \ell^+\ell^-$:

$$\Gamma_{B_{s,d}^0 \to l^+ l^-} = \mathcal{K}^{(Furry)} \cdot |D|^2 \frac{\sqrt{M^2 - 4m^2}}{8\pi},$$
где (6)

$$D = \frac{IG_F}{\sqrt{2}} \frac{\alpha_{em}}{2\pi} \cdot V_{tb} V_{ts}^* f_{B_{s,d}^0} 2mC_{10A}$$

$$\mathcal{K}^{(Furry)} = \frac{\Gamma^{(Coulomb)}}{\Gamma^{(free)}} = e^{\pi \alpha \mathcal{E}/p}$$

здесь $\mathcal E$ и p - энергия и импульс лептонная в системе покоя $\ell^+\ell^-$ -пары .

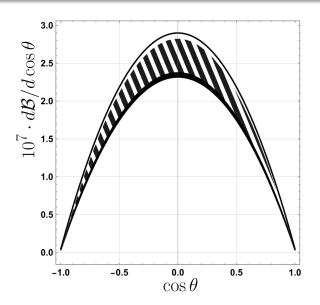

Кулоновское взаимодействие в распаде $B^0_{s,d} \to \ell^+\ell^-$

	$\mathcal{B}^{(exp)}$	$\mathcal{B}^{(\mathit{free})}$	$\mathcal{B}^{(Coulomb)}$
$B_s^0 o \mu^+ \mu^- [10^{-9}]$	$3.83^{+0.44}_{-0.41}$	$\textbf{3.66} \pm \textbf{0.14}$	$\textbf{3.75} \pm \textbf{0.14}$
$B^0 \to \mu^+ \mu^- [10^{-11}]$	< 19	1.03 ± 0.05	1.05 ± 0.05
$B_s^0 o e^+ e^- [10^{-11}]$	< 940	1.77 ± 0.08	1.81 ± 0.09
$B^0 o e^+ e^- [10^{-13}]$	< 25000	4.99 ± 0.25	5.10 ± 0.26
$B_s^0 o au^+ au^- [10^{-8}]$	$<6.8\cdot10^5$	4.61 ± 0.22	4.75 ± 0.23
$B^0 ightarrow au^+ au^-[10^{-9}]$	$< 2.1 \cdot 10^6$	1.28 ± 0.07	1.32 ± 0.07

Таблица: Парциальная ширина $\mathcal{B} = \frac{\Gamma_{\mathcal{B}_q^0 \to \ell^+ \ell^-}}{\Gamma_{\mathcal{B}_q^0}^{(total)}}$

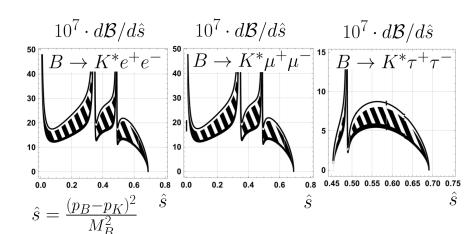
Часть 3. Кулоновское взаимодействие в $B^0_{s,d} o h^0 \ell^+ \ell^-.$

Кулоновское взаимодействие в распадах $B^0_{s,d} o h^0 \ell^+ \ell^-$



Кулоновское взаимодействие в $B^0_s o h^0 \ell^+ \ell^-$

$\mathcal{B}^{(exp)}$	$\mathcal{B}^{(th,free)}$	$\mathcal{B}^{(an,coulomb)}$	Попр.
$2.5^{+1.1}_{-0.9}$	3.64 ± 0.77	3.73 ± 0.78	2.32%
3.39	3.63 ± 0.77	3.72 ± 0.78	2.34%
±0.35 -	5.0 ± 2.1	5.3 ± 2.2	5.75%
< 8.4	1.32 ± 3.0	1.35 ± 3.0	2.32%
< 6.9	1.31 ± 3.0	1.34 ± 3.0	2.34%
_	3.29 ± 0.73	3.45 ± 0.76	4.93%
	2.5 ^{+1.1} _{-0.9} 3.39 ±0.35 - < 8.4		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$


Распад	$\mathcal{B}^{(exp)}$	$\mathcal{B}^{(an, extit{free})}$	$\mathcal{B}^{(au h, ext{coulomb})}$	Попр.
$B_s^0 o \eta e^+ e^- [10^{-7}]$	_	4.24 ± 0.79	4.33 ± 0.80	2.32%
$B_s^0 o \eta \mu^+ \mu^- [10^{-7}]$	_	4.22 ± 0.79	4.32 ± 0.80	2.34%
$B_s^0 o \eta au^+ au^- [10^{-8}]$	_	6.7 ± 1.2	7.1 ± 1.3	5.64%
$B_s^0 o \eta' e^+ e^- [10^{-7}]$	_	3.13 ± 0.58	3.20 ± 0.59	2.31%
$B_s^0 \to \eta' \mu^+ \mu^- [10^{-7}]$	_	3.11 ± 0.58	3.18 ± 0.59	2.34%
$B_s^0 o \eta' au^+ au^- [10^{-8}]$	_	2.01 ± 0.36	2.15 ± 0.38	7.0%
$B_s^0 o K^0 e^+ e^- [10^{-8}]$	_	1.42 ± 0.34	1.45 ± 0.35	2.32%
$B_s^0 o K^0 \mu^+ \mu^- [10^{-8}]$	_	1.41 ± 0.34	1.44 ± 0.35	2.34%
$B_s^0 o K^0 au^+ au^- [10^{-9}]$	_	2.49 ± 0.59	2.64 ± 0.62	6.02%

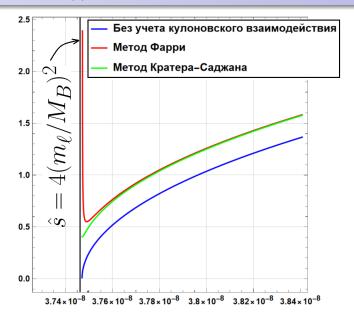
Угловое распределение $B^0 o K^0 \mu^+ \mu^-$

Часть 4. Кулоновское взаимодействие в $B^0_{s.d} \to V^0 \ell^+ \ell^-.$

Кулоновское взаимодействие в распадах $B o K^* \ell^+ \ell^-$

Кулоновское взаимодействие в $B^0_{s,d} o V^0 \ell^+ \ell^-$

Распад	$\mathcal{B}^{(exp)}$	$\mathcal{B}^{(th,free)}$	$\mathcal{B}^{(th,coulomb)}$	Попр.
$B \to K^* e^+ e^- [10^{-6}]$	1.19 ±0.20	1.65 ± 0.16	1.69 ± 0.16	2.36%
$B o K^* \mu^+ \mu^- [10^{-6}]$	1.06 ±0.09	1.27 ± 0.13	1.30 ± 0.13	2.39%
$B o K^* au^+ au^- [10^{-7}]$	_	1.19 ± 0.12	1.27 ± 0.13	6.4%
$B ightarrow ho e^+e^-[10^{-6}]$	_	1.07 ± 0.18	1.10 ± 0.19	2.36%
$B \to \rho \mu^+ \mu^- [10^{-7}]$	_	8.9 ± 1.6	9.1 ± 1.7	2.38%
$B \to \rho \tau^+ \tau^- [10^{-7}]$	_	1.31 ± 0.23	1.38 ± 0.25	5.81%


Кулоновское взаимодействие в $B^0_{s,d} o V^0 \ell^+ \ell^-$

Распад	$\mathcal{B}^{(exp)}$	$\mathcal{B}^{(th,free)}$	$\mathcal{B}^{(th,coulomb)}$	Попр.
$B_s^0 \to \phi e^+ e^- [10^{-6}]$	_	1.52 ± 0.17	1.56 ± 0.17	2.37%
$B_s^0 \to \phi \mu^+ \mu^- [10^{-6}]$	0.84 ±0.4	1.15 ± 0.14	1.18 ± 0.15	2.39%
$B_s^0 \to \phi \tau^+ \tau^- [10^{-7}]$	_	1.05 ± 0.13	1.12 ± 0.14	6.60%
$B_s^0 o K^* e^+ e^- [10^{-8}]$	_	5.56 ± 0.65	5.69 ± 0.67	2.36%
$B_s^0 o K^* \mu^+ \mu^- [10^{-8}]$	2.9 ±1.1	4.42 ± 0.56	4.53 ± 0.57	2.38%
$B_s^0 o K^* au^+ au^- [10^{-9}]$	_	5.33 ± 0.62	5.65 ± 0.65	6.1%

Итоги

- Предложен метод учета кулоновского взаимодействия между заряженными лептонами в конечном состоянии в лептонных и полулептонных распадах нейтральных псевдоскалярных мезонов.
- Рассчитаны поправки к распадам $B_{s,d}^0 \to \ell^+\ell^-,$ $B^0 \to \{K^0, \pi^0\}\ell^+\ell^-, B_s^0 \to \{\eta, \eta', K^0\}\ell^+\ell^-,$ $B^0 \to \{K^*, \rho\}\ell^+\ell^-$ и $B_s^0 \to \{K^*, \phi\}\ell^+\ell^-.$
- Для распада $B_s^0 \to \mu^+\mu^-$ учет кулоновского взаимодействия уменьшает расхождение между предсказаниями Стандартной модели и экспериментом более чем вдвое.
- Кулоновские поправки в отдельных случаях могут превосходить неопределенности величин адронных формфакторов

Спасибо за внимание!

Общий рецепт, позволяющий учитывать кулоновское взаимодействие в распадах, в конечном состоянии которых находится I^+I^- -пара (и больше заряженных частиц нет):

$$\langle I^+I^-H_2|O|H_1\rangle \rightarrow \langle I^+I^-H_2|O|H_1\rangle \cdot \left|\frac{\Gamma(\sqrt{\frac{1}{4}-\alpha^2}+\frac{1}{2}+i\frac{\alpha\mathcal{E}_I}{p_I})}{\Gamma(\sqrt{1-4\alpha^2}+1)}\right|$$

$$\cdot \exp(\frac{\pi \alpha \mathcal{E}_I}{2p_I})$$

O - оператор, представляющий из себя произвольную комбинацию γ -матриц, импульсов, а также кварковых и лептонных полей, \mathcal{E}_{I} , p_{I} - энергия и импульс заряженного лептона в системе покоя $I^{+}I^{-}$ -пары, $\Gamma(x)$ - гамма-функция Эйлера, H_{1} , H_{2} - нейтральные адроны в начальном и конечном состоянии, $\alpha=\alpha_{em}\approx 1/137$

Парциальная ширина для распада $B_{s,d}^0 \to h^0 \ell^+ \ell^-$:

$$\begin{split} \frac{d\Gamma}{d\hat{t}d\hat{s}} &= \frac{G_F^2 \alpha_{em}^2 |V_{tb} V_{ts}^*| M^5}{256\pi^5} (-\hat{\Pi}\beta_p + 2\hat{m}|C_{10A}|^2 \delta_p) \cdot \mathcal{K}^{(Coulomb)}, \ (7) \end{split}$$
 где
$$\beta_p &= \left| C_{9V} f_+(q^2) + 2M C_{7\gamma} s(q^2) \right|^2 + \left| C_{10A} f_+(q^2) \right|^2 \\ \hat{\Pi} &= (\hat{t} - 1)(\hat{t} - \hat{r}) + \hat{s}\hat{t} + \hat{m}(1 + \hat{r} + \hat{m} - \hat{s} - 2\hat{t}) \end{split}$$

$$\delta_p &= \left(1 + \hat{r} - \frac{\hat{s}}{2} \right) |f_+(q^2)|^2 + (1 - \hat{r}) Re[f_+(q^2) f_-^*(q^2)] + \frac{\hat{s}}{2} |f_-(q^2)|^2 \\ \mathcal{K}^{(Coulomb)} &= exp\left(\frac{\pi \alpha}{\sqrt{1 - 4\hat{m}/\hat{s}}} \right) \end{split}$$

$$\mathcal{K}^{(Coulomb)} = exp\Big(\frac{\pi \alpha}{\sqrt{1 - 4\hat{m}/\hat{s}}}\Big)$$

Парциальная ширина для распада $B^0_{s,d} o V^0 \ell^+ \ell^-$:

$$\frac{d\Gamma}{d\hat{t}d\hat{s}} = \frac{G_F^2 \alpha_{em}^2 |V_{tb} V_{ts}^*| M^5}{512\pi^5} (\beta_V^{(1)} + \beta_V^{(2)} + 4\hat{m}\delta_V) \cdot \mathcal{K}^{(Coulomb)}, (8)$$

$$\beta_V^{(1)} = \left[(\hat{s} + 2\hat{m})\phi + 2\hat{s}\hat{\Pi} \right] |G(q^2)|^2 + \left[\hat{s} + 2\hat{m} - \frac{\hat{\Pi}}{2\hat{r}} \right] |F(q^2)|^2 - \frac{\phi}{2\hat{r}} \hat{\Pi} |H_+(q^2)|^2 + \frac{\hat{s} - 1 + \hat{r}}{\hat{r}} \hat{\Pi} R(q^2)$$

$$\beta_V^{(2)} = 2\hat{s} \left[2\hat{t} + \hat{s} - \hat{r} - 1 - 2\hat{m} \right] R_1(q^2)$$

$$\begin{split} \delta_V &= \frac{|C_{10A}|^2}{2} \phi \Big\{ - 2|g(q^2)M_B|^2 - \frac{3}{\phi} \bigg| \frac{f(q^2)}{M_B} \bigg|^2 + \\ &\frac{2(1+\hat{r}) - \hat{s}}{4\hat{r}} |a_+(q^2)M_B|^2 + \frac{\hat{s}}{4\hat{r}} |a_-(q^2)M_B|^2 + \\ &+ \frac{1}{2\hat{r}} Re[f(q^2)a_+^*(q^2) + f(q^2)a_-(q^2)] + \frac{1-\hat{r}}{2\hat{r}} Re[M_B^2 a_+(q^2)a_-^*(q^2)] \Big\} \\ &\mathcal{K}^{(Coulomb)} = exp\Big(\frac{\pi\alpha}{\sqrt{1-4\hat{m}/\hat{s}}}\Big) \end{split}$$