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In this talk

. Solution of diffraction grating problem. The Casimir
energy in the system of two gratings. Scattering approach.

. Lateral Casimir force experiment in the system of two
diffraction gratings.

. Torque in the system of two rotated infinite gratings.
Breaking of translational symmetry. Geometric transition.

. Giant torque in the system of two rotated finite gratings.



The ground state energy of the bosonic system:
wj
E= — 1
ZZ > (1)

the sum is over all eigenfrequencies of the system.
To evaluate (1) the argument principle can be used:
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where
Pp(w) =w/2

and
f(w) = det(/ — Raup(w)Ridown(w)). (3)



Scattering approach: curved boundaries
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Diffraction grating
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Rayleigh decomposition for 1D gratings.

Rayleigh expansion for an incident electromagnetic wave on a single
grating
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Here ap = ky« + 27p/d and B,(,l)z =w? - k)% — a3
The reflection matrix is constructed as follows:
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Rayleigh expansion is exact outside gratings. The unknown coefficients
can be determined from the exact solution of Maxwell equations.



Two diffraction gratings
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Casimir energy of two gratings
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with matrix elements e ,p=—N...N on the main diagonal
of a matrix Gp. [A.Lambrecht and V.N.Marachevsky, Phys.Rev.Lett.
101, 160403 (2008); Int. J. Mod. Phys. A 24, 1789-1795 (2009). .
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Change of coordinates z = —zy + L, y = —y1 in the solution.
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Lateral change of coordinates x = x1 — s in the solution. Reflection

from the upper grating constituting Royp.




R2Up RldOwn

Q>



Lateral Casimir force experiment
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Lateral Casimir force experiment

Consider gold sinusoidal corrugations with amplitudes A1= 85.4 nm,
A2=13.7 nm, diameter of the sphere 2R=194.8 micrometers.
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Lateral Casimir force experiment
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Lateral Casimir force experiment
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Maximum values of the measured lateral Casimir force are shown as
crosses. Solid and dashed lines are predictions of the exact theory
and the Proximity Force Approximation based on Lifshitz theory for
two dielectric half-spaces.



Torque in the Casimir effect
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Torque in the Casimir effect
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Torque in the Casimir effect
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Rotated gratings

Consider the system of two Au rectangular gratings with parameters
d = 400 nm, f = 0.5, h = 200 nm, a = 100 nm; the angle of
rotation is 6.
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Rotated gratings. Reciprocal lattice space.

The vectors which are coupled by diffraction can be written as k,,,, =
k+ 2F’T(nex+ me,) , where the vector k belongs to the first Brillouin
zone.



Reflections from the lower grating constituting Rygown-

Reciprocal lattice vectors with m = —1 are highlighted green.




Reflections from the lower grating constituting Ry gown

Reciprocal lattice vectors with m = 0 are highlighted green.




Reflections from the lower grating constituting Ry gown

Reciprocal lattice vectors with m = 1 are highlighted green.




Reflections from the upper grating constituting Roup

Reciprocal lattice vectors with n = —1 are highlighted green.




Reflections from the upper grating constituting Roup

Reciprocal lattice vectors with n = 0 are highlighted green.




Reflections from the upper grating constituting Roup

Reciprocal lattice vectors with n = 1 are highlighted green.




Casimir energy of two gratings depends on Ry ypRidown
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Casimir energy and torque for two infinite rotated gratings

The Casimir energy of two infinite rotated gratings is defined by
Rayleigh reflection coefficients contained in matrices Ridown, Roup of
the order 2(2N + 1)%:

1 too
E(z.0) = —— d dk,dk
(2:6) (277)3/0 “/Bz v

In det(l — Roup(iw, kx, ky) Ridown(itw; kx, ky)). (7)

The Casimir torque:
_ 0E(z,0)
[ TR (8)



Torque for infinite rotated gratings. 1D-2D geometric transition.
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M.Antezza, H.B.Chan, B.Guizal, V.N.Marachevsky, R.Messina and
M.Wang, Giant Casimir torque between rotated gratings and the
6 = 0 anomaly, Phys.Rev.Lett. 124, 013903 (2020).



Energy discontinuity at rotation angle 6 =0

Consider wave vectors coupled by diffraction in reciprocal lattice
space in 1D system (strictly for § = 0):
21n
k, =k + —e,, (9)
d
the first Brillouin zone is —7/d < k, < mw/d, while k, takes all real
values.
Consider wave vectors coupled by diffraction in reciprocal lattice
space in 2D system (for any finite 6):

2
knm =k + g(nex + me,) (10)

While for two aligned gratings the y component of the total wave
vector is strictly conserved in any scattering process, this conservation
law is lost even for a small non-vanishing value of the rotation angle
0, since (see Eq.(10)) changing the value of the diffraction order m
modifies the values of both x and y components of the wave vector.



Energy discontinuity at rotation angle 6 =0

The reason for appearance of energy discontinuity at rotation angle
6 = 0 is breaking of conservation of the k, component of the wave
vector in reciprocal lattice space due to rotation of the system and,
as a result, the fundamental change of structure of reciprocal lattice
space.



Energy/surface (nJ/ m?)

Casimir energy for finite rotated gratings
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Torque/surface (nN/m)

Casimir torque for finite rotated gratings
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Conclusions

1. 1D-2D geometric transition (energy discontinuity at ro-
tation angle & = 0) is found in the system of two
infinite gratings with coinciding periods.

2. There is a conservation of k, momentum in 1D system

at rotation angle 6 = 0, breaking of k, momentum
conservation takes place in 2D system at any finite
rotation angle 6.
The reason for appearance of energy discontinuity at
rotation angle # = 0 is breaking of conservation of
k, component of the wave vector in reciprocal lattice
space due to rotation of the system and, as a result, the
fundamental change of structure of reciprocal lattice
space.

3. Giant torque is found in the system of two finite rotated
gratings. Torque is growing without bounds when the
size of gratings increases.



Conclusions

4. The effect should be of strong interest due to a novel
mechanism of symmetry breaking which may be used
to find analogous effects in various physical systems
with spatial periodicity.



