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In this talk

1. Solution of di�raction grating problem. The Casimir
energy in the system of two gratings. Scattering approach.

2. Lateral Casimir force experiment in the system of two
di�raction gratings.

3. Torque in the system of two rotated in�nite gratings.
Breaking of translational symmetry. Geometric transition.

4. Giant torque in the system of two rotated �nite gratings.



The ground state energy of the bosonic system:

E =
∑
i

ωi

2
, (1)

the sum is over all eigenfrequencies of the system.
To evaluate (1) the argument principle can be used:

1

2πi

∮
ϕ(ω)

d

dω
ln f (ω)dω =

∑
ϕ(ω0)−

∑
ϕ(ω∞), (2)

where
ϕ(ω) = ω/2

and
f (ω) = det(I − R2up(ω)R1down(ω)). (3)



Scattering approach: curved boundaries
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Di�raction grating
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O.M. Rayleigh, On the dynamical theory of gratings, Proc. Roy. Soc.
A 79, 399�415 (1907).



Rayleigh decomposition for 1D gratings.

Rayleigh expansion for an incident electromagnetic wave on a single
grating

Ey (x , z) = I
(e)
p exp(iαpx − iβ

(1)
p z) +

+∞∑
n=−∞

R
(e)
np exp(iαnx + iβ

(1)
n z),

Hy (x , z) = I
(h)
p exp(iαpx − iβ

(1)
p z) +

+∞∑
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R
(h)
np exp(iαnx + iβ

(1)
n z).

Here αp = kx + 2πp/d and β
(1)2
p = ω2 − k2y − α2

p.
The re�ection matrix is constructed as follows:
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(
R
(e)
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(I
(e)
p = δpl1 , I

(h)
p = 0) R

(e)
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(I
(e)
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(h)
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R
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n3l3

(I
(e)
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(h)
p = 0) R

(h)
n4l4

(I
(e)
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(h)
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)
.

Rayleigh expansion is exact outside gratings. The unknown coe�cients
can be determined from the exact solution of Maxwell equations.



Two di�raction gratings
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Casimir energy of two gratings

E =
1

(2π)3

∫ +∞

0
dω

∫ +∞

−∞
dky

∫ π
d

−π
d

dkx lndet
(
I − R2upR1down

)
R2up(iω, kx , ky) = Q∗K (iω)R2down(iω, kx ,−ky)K (iω)Q, (4)

K (iω) =

(
G1 0
0 G1

)
, (5)

with matrix elements e
−L

√
ω2+k2

y+(kx+
2πp
d

)2
, p = −N . . .N on the

main diagonal of a matrix G1,

Q =

(
G2 0
0 G2

)
, (6)

with matrix elements e2πims/d , p = −N . . .N on the main diagonal
of a matrix G2. [A.Lambrecht and V.N.Marachevsky, Phys.Rev.Lett.
101, 160403 (2008); Int. J. Mod. Phys. A 24, 1789�1795 (2009). ].



Re�ection R2down.
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Change of coordinates z = −z1 + L, y = −y1 in the solution.

x1d
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Lateral change of coordinates x = x1 − s in the solution. Re�ection

from the upper grating constituting R2up.
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Lateral Casimir force experiment

H.-C.Chiu, G.L.Klimchitskaya, V.N.Marachevsky, V.M.Mostepanenko
and U.Mohideen, Phys.Rev.B 80, 121402(R) (2009); Phys.Rev.B 81,
115417 (2010).



Lateral Casimir force experiment

Consider gold sinusoidal corrugations with amplitudes A1= 85.4 nm,
A2=13.7 nm, diameter of the sphere 2R=194.8 micrometers.



Lateral Casimir force experiment



Lateral Casimir force experiment

Maximum values of the measured lateral Casimir force are shown as
crosses. Solid and dashed lines are predictions of the exact theory
and the Proximity Force Approximation based on Lifshitz theory for
two dielectric half-spaces.



Torque in the Casimir e�ect
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Torque in the Casimir e�ect
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Torque in the Casimir e�ect
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Rotated gratings

Consider the system of two Au rectangular gratings with parameters
d = 400 nm, f = 0.5, h = 200 nm, a = 100 nm; the angle of
rotation is θ.



Rotated gratings. Reciprocal lattice space.

θ

x

u

The vectors which are coupled by di�raction can be written as knm =
k+ 2π

d (nex +meu) , where the vector k belongs to the �rst Brillouin
zone.



Re�ections from the lower grating constituting R1down.

Reciprocal lattice vectors with m = −1 are highlighted green.
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Re�ections from the lower grating constituting R1down

Reciprocal lattice vectors with m = 0 are highlighted green.
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Re�ections from the lower grating constituting R1down

Reciprocal lattice vectors with m = 1 are highlighted green.
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Re�ections from the upper grating constituting R2up

Reciprocal lattice vectors with n = −1 are highlighted green.
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Re�ections from the upper grating constituting R2up

Reciprocal lattice vectors with n = 0 are highlighted green.
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Re�ections from the upper grating constituting R2up

Reciprocal lattice vectors with n = 1 are highlighted green.
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Casimir energy of two gratings depends on R2upR1down
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Casimir energy and torque for two in�nite rotated gratings

The Casimir energy of two in�nite rotated gratings is de�ned by
Rayleigh re�ection coe�cients contained in matrices R1down, R2up of
the order 2(2N + 1)2:

E (z , θ) =
1

(2π)3

∫ +∞

0
dω

∫
BZ

dkxdky

lndet
(
I − R2up(iω, kx , ky )R1down(iω, kx , ky )

)
. (7)

The Casimir torque:

τ = −∂E (z , θ)

∂θ
. (8)



Torque for in�nite rotated gratings. 1D-2D geometric transition.

M.Antezza, H.B.Chan, B.Guizal, V.N.Marachevsky, R.Messina and
M.Wang, Giant Casimir torque between rotated gratings and the
θ = 0 anomaly, Phys.Rev.Lett. 124, 013903 (2020).



Energy discontinuity at rotation angle θ = 0

Consider wave vectors coupled by di�raction in reciprocal lattice
space in 1D system (strictly for θ = 0):

kn = k+
2πn

d
ex , (9)

the �rst Brillouin zone is −π/d < kx < π/d , while ky takes all real
values.
Consider wave vectors coupled by di�raction in reciprocal lattice
space in 2D system (for any �nite θ):

knm = k+
2π

d
(nex +meu) (10)

While for two aligned gratings the y component of the total wave
vector is strictly conserved in any scattering process, this conservation
law is lost even for a small non-vanishing value of the rotation angle
θ, since (see Eq.(10)) changing the value of the di�raction order m
modi�es the values of both x and y components of the wave vector.



Energy discontinuity at rotation angle θ = 0

The reason for appearance of energy discontinuity at rotation angle
θ = 0 is breaking of conservation of the ky component of the wave
vector in reciprocal lattice space due to rotation of the system and,
as a result, the fundamental change of structure of reciprocal lattice
space.



Casimir energy for �nite rotated gratings



Casimir torque for �nite rotated gratings



Conclusions

1. 1D-2D geometric transition (energy discontinuity at ro-
tation angle θ = 0) is found in the system of two
in�nite gratings with coinciding periods.

2. There is a conservation of ky momentum in 1D system
at rotation angle θ = 0, breaking of ky momentum
conservation takes place in 2D system at any �nite
rotation angle θ.
The reason for appearance of energy discontinuity at
rotation angle θ = 0 is breaking of conservation of
ky component of the wave vector in reciprocal lattice
space due to rotation of the system and, as a result, the
fundamental change of structure of reciprocal lattice
space.

3. Giant torque is found in the system of two �nite rotated
gratings. Torque is growing without bounds when the
size of gratings increases.



Conclusions

4. The e�ect should be of strong interest due to a novel
mechanism of symmetry breaking which may be used
to �nd analogous e�ects in various physical systems
with spatial periodicity.


