Измерение инклюзивного сечения e^+e^- -аннигиляции в заряженные многочастичные адронные состояния в диапазоне \sqrt{s} 1.8–2.0 ГэВ детектором СНД на коллайдере ВЭПП-2000

Дмитрий Штоль

Сессия-конференция секции ядерной физики ОФН РАН к 70-летию В.А. Рубакова

18 февраля 2025 г.

Задача:

Цель работы — измерение инклюзивного сечения e^+e^- -аннигиляции в заряженные многочастичные (неколлинеарные) адронные состояния в диапазоне \sqrt{s} =1.8–2.0 ГэВ.

События с нейтральным конечным состоянием, включающим η и K_S включаются в состав изучаемых процессов в случае распада η и K_S в заряженные состояния.

Чем обусловлен такой выбор:

- Сечения двухчастичных процессов с заряженными конечными состояниями ($\pi^+\pi^-$, K^+K^- , $p\bar{p}$) уже измерены отдельно.
- Измерение инклюзивного сечения нейтральных процессов является отдельной задачей.

Коллайдер ВЭПП-2000 и эксперимент СНД

Схема СНД. 1 – вакуумная камера, 2 – дрейфовая камера, 3 – черенковский счетчик, 4 – кристаллы Nal(Tl), 5 – фототриоды, 6 – поглотитель (Fe), 7 – пропорциональные трубки, 8 – 1 см железные пластины, 9 – сцинтилляционные счетчики, 10 – магнитные линзы,

Общий принцип отбора

- Не менее двух заряженных частиц
- Они не должны быть коллинеарны
- Они не должны быть электронами или мюонами
- Обычно в адронном событии есть фотоны

Фоновые процессы:

- ullet $e^+e^-(\gamma)$ самый главный
- $e^+e^- \rightarrow \pi^+\pi^-$
- $e^+e^- \to K^+K^-$
- $e^+e^- \rightarrow p\bar{p}$
- $e^+e^- \rightarrow hadrons \ (neutral)$
- $e^+e^- \rightarrow \mu^+\mu^-$
- Пучковый фон
- Космический фон

Моделирование событий эффекта

- Моделирование выполняется в Geant4
- Используется генератор начальных событий адронных процессов, изначально разработанный для эксперимента КМД-3 и адаптированный для СНД
 - Поддерживает 42 процесса (на данный момент), среди которых как изучаемые процессы, так и фоновые. Данный генератор также используется в эксперименте СНД для моделирования фона при анализе отдельных процессов.
 - Для моделирования используются сечения процессов, измеренные в различных экспериментах (СНД, КМД-3, BaBar, BES).
 - Процесс для конкретного события выбирается случайно, пропорционально заданному сечению с учетом радиационных поправок.
 - При вычислении эффективности нейтральные события с η и K_S включаются в полное число событий только в случае заряженной моды распада, события с нейтральной модой относятся к фону.

日本・モン・モン

Отбор событий

- Отбираются центральные треки: |d0| < 0.8 см, |z0| < 15 см
- Ищется группа центральных треков, такая, что $|z0_i z0_j| < 4$ см для любых i, j.
- Требуется (иначе событие бракуется):
 - Наличие группы минимум из двух центральных треков, близких по \boldsymbol{z}
 - Отсутствие коллинеарных треков в группе ($|\Delta \phi| > 15^\circ$ для любой пары треков)
 - Подавление пучкового фона:
 - $\sum E_i^{ch} > 5 \text{ M} \Rightarrow B$
 - $(dE/dx)|_{layer=1} > 0 \mid\mid (dE/dx)|_{layer=2} > 0$
 - $E_{tot}/(2E_{beam}) > 0.1$
 - Асимметрия: пусть D_{LR} разность числа частиц, вылетевших с $\cos\theta>0$ и с $\cos\theta<0.$ Тогда:
 - $|D_{LR}| \leq 2$ для событий с 2 треками и 2 фотонами
 - $|D_{LR}| \le 4$ для событий с большим числом частиц
- Вычисляется z_{vtx} среднее z по группе центральных треков, взвешенное с учетом погрешностей.

Подавление фона bhabha по послойным энерговыделениям

Вычитание остаточного фона

- Космический фон выделяется условием 30 нс < $|t_{evt}|$ <40 нс, где t_{evt} время события относительно столкновения пучков. Для всех событий $|t_{evt}| < 40$ пs, $F(z_{vtx}) = F_{exp}(z_{vtx}) 4F_{cosm}(z_{vtx})$.
- Вычитание пучкового фона производится аппроксимацией распределения по $z_{\rm vtx}.$
- Форма эффекта описывается гистограммой по событиям $\pi^+\pi^-2\pi^0$ (эксперимент), отобранным условием кинематической реконструкции $\chi^2_{\pi^+\pi^-2\pi^0} < 100$.
- Форма фона описывается линейной функцией и полиномом 2 степени на краях.

 $z_{
m vtx}$ для событий с двумя треками

• Для $e^+e^-(\gamma)$ и адронных событий с заряженными коллинеарными конечными состояниями используется вычитание по моделированию на основании расчетного сечения $(e^+e^-(\gamma))$ и измеренных сечений процессов $e^+e^- \to \pi^+_*\pi^-_*, K^+_*K^-_*, p\bar{p}.$

Анализ структуры фона по моделированию

Нормировка процессов на экспериментальную светимость производится:

- Для изучаемых событий на основании сечения, измеренного в работе
- Для нейтральных адронных процессов измеренные ранее сечения
- Для $ee\gamma$, $\gamma\gamma$, $\mu\mu$ расчетное сечение.

Анализ поправок и систематических погрешностей, обусловленных отбором: общий подход

Пусть:

- S изучаемое условие отбора
- $N \pm \sigma N$ и ε^{mc} число событий и эффективность по моделированию с полным условием отбора $S\&\&S_0$
- $\Delta N\pm\sigma\Delta N$ число событий и \deltaarepsilon^{mc} число событий и эффективность по моделированию с условием $ar{S}\&\&S_0$

$$\delta_S = \frac{\varepsilon^{mc}}{\varepsilon^{mc} + \delta\varepsilon^{mc}} \left(1 + \frac{\Delta N}{N}\right) - 1,$$

$$\sigma \delta_S = \frac{\varepsilon^{mc}}{\varepsilon^{mc} + \delta\varepsilon^{mc}} \cdot \frac{1}{N} \sqrt{(\sigma \Delta N)^2 + \left(\frac{\Delta N}{N}\right)^2 (\sigma N)^2}$$

Сканирование	2019	2020	2021	2022
Поправка, %	4.11±0.41	4.29±0.42	$3.97{\pm}0.89$	$3.29{\pm}0.98$

Поправка на излучение фотона начальными частицами

Для учета потери энергии на излучение начального фотона используется аппроксимация числа наблюдаемых событий $N_{evt}^{exp} = \varepsilon \cdot IL \cdot \sigma_{vis} = \varepsilon \cdot IL \cdot \sigma_B \cdot (1 + \delta), R = \sigma_B / \sigma_{e^+e^- \to \mu^+\mu^-}$

$$\sigma_{vis}(\sqrt{s},\vec{\alpha}) = \sigma_B(\sqrt{s},\vec{\alpha})(1+\delta) = \int_{0}^{\frac{2E_{max}^{\gamma}}{\sqrt{s}}} F(\sqrt{s},x)\sigma_B(\sqrt{s(1-x)},\vec{\alpha})dx$$

Для описания $\sigma_B(\sqrt{s}, \vec{\alpha})$ использовался сплайн.

Полное R (предварительное)

К измеренному сечению прибавлены сечения процессов¹:

- *ηηγ* (СНД 2022)
- *η*γ (СНД 2023)
- K⁺K⁻ (СНД 2016)
- nn
 (СНД)
- *pp*̄ (СНД)

- $\pi^0 \gamma$ (СНД 2018)
- *π*⁰*π*⁰*γ* (СНД 2016)
- ηπ⁰γ (СНД 2020)
- *η*π⁰π⁰γ (СНД 2016)
- 3π⁰γ (СНД)

Оценки систематических погрешностей:

- Различия между сканированиями (максимум 2.7%, среднее – 0.8%)
- Погрешности поправок к эффективности – до 0.98%
- Итоговая оценка 1.27% (пока неполная)

Ссылки:

- Phys. Lett. B Vol. 788, (2019), pp 42-51 (КЕДР)
- Phys.Lett.B 86 (1979) 234-238 (γγ2)
- https://cmd.inp.nsk.su/ ignatov/vpl/ сумма эксклюзивных сечений
 - π⁺π⁺ (BABAR 2012)
 - *K*_S*K*_L (BABAR 2014)
 - *K_SK_Lπ⁰* (СНД 2018)
 - $K_S K_L 2\pi^0$ (BABAR 2016)
 - $\eta K_S K_L$ (СНД 2018, из $\eta K^+ K^-$)

 1 Для процессов с K_S и η сечение умножается на вероятность нейтральной моды распада

- Предложены условия отбора неколлинеарных заряженных адронных событий, подавляющие фон $e^+e^-(\gamma)$ и частично пучковый фон.
- Реализовано вычитание остаточного пучкового фона.
- Изучена структура фоновых процессов и реализовано вычитание их остаточного вклада.
- Получена предварительная зависимость полного R от \sqrt{s} .
- Полученное полное R систематически ниже результатов эксклюзивных измерений на 5-10%. От инклюзивных измерений КЕДР результат отличается на $0.7\sigma_{tot}-1.5\sigma_{tot}^2$ в зависимости от точки и не противоречит измерениям $\gamma\gamma 2$.

 $^{^2\}sigma_{tot}$ включает как статистическую, так и систематическую погрешности Ξ - \mathfrak{I} \mathfrak{I}

BACKUP

æ

- 4 回 2 - 4 □ 2 - 4 □

Подавление пучкового фона условием $\sum E_{ch} > 5$ МэВ

Events

2500

Дмитрий Штоль $e^+e^- \rightarrow hadrons$

Условие на dE/dx

Для всех заряженных частиц:

Подавление пучкового фона: асимметрия

(日)

Подавление пучкового фона: асимметрия

Космический фон

Выделен условием $30 < |t_{\rm evt}| < 40$. Для всех событий $|t_{\rm evt}| < 40$, поэтому для сравнения и вычитания распределение для космики умножается на 4.

Вычитание событий с большой энергией ISR

- Построить функцию для описания зависимости $\sigma_{\rm B}(\sqrt{s})$ для большого диапазона \sqrt{s} для учета сбросов на все резонансы сложно
- Поэтому события с энергией ISR фотона E_{γ} > 100 МэВ вычитаются как фон рассчетным путем по MC

$$N_{E_{\gamma}<100 \text{ MeV}}^{\exp} = N^{\exp} \frac{N_{E_{\gamma}<100 \text{ MeV}}^{\text{MC}}}{N_{E_{\gamma}<100 \text{ MeV}}^{\text{MC}} + N_{E_{\gamma}>100 \text{ MeV}}^{\text{MC}}}$$

- Эффективность вычисляется для событий с $E_{\gamma}{<}100~{
 m M}{
 m sB}$
- При аппроксимации сечения энергия ISR-фотона ограничена 100 МэВ.

Измерение светимости

Условия отбора bhabha:

- trin > 0.5
- o col
- nc>=2
- $|d0_{1,2}| < 0.8$ см, на другие треки ограничений нет
- $|Z0_{1,2}| < 10$ см, $|Z0_1 - Z0_2| < 2$ см
- $E_1 > 0.7 E_{beam}$, $E_{2} > 0.4 E_{beam}$
- $45^{\circ} < (180^{\circ} + \theta_1 \theta_2)/2 <$ 135°
- $\Delta \phi < 5^{\circ}$, $\Delta \theta < 20^{\circ}$.
- $(dE/dx)|_{lawer=1} >$ $0 \parallel (dE/dx)|_{lawer=2} > 0$

Видимое сечение

Максимальные расхождения: 2020 и 2021-2.7% (1.94 ГэВ)

æ

э

< 一型 >

Вычисление радиационных поправок

- Требуется подгонка сечения в области 1.7-2.0 ГэВ.
- Сечение задается как $\sigma_{\mu\mu} \cdot R = R \cdot 86.8/s$, аппроксимация R производится полиномами 3 степени с гладкой стыковкой в точке 1.795 ГэВ.
- Для вычисления вклада в ISR области $\sqrt{s} = 1.7 1.8$ ГэВ используются эксклюзивные измерения сечения (те же, которые заложены в моделирование).
- При первоначальной подгонке функция в области ниже 1.8 ГэВ умножается на корректирующий коэффициент k_{corr} — параметр подгонки (0.967±0.003).
- При окончательной подгонке сечение в этой области делится на k_{corr} , при этом фиксируется k_{corr} =1.

Список моделируемых процессов

- **1** $\pi^{+}\pi^{-}\pi^{0}$
- 2 $\pi^{+}\pi^{+}\pi^{-}\pi^{-}$
- 3 $\pi^{+}\pi^{-}\pi^{0}\pi^{0}$
- $\pi^+ \pi^+ \pi^- \pi^- \pi^0$
- $2\pi^+2\pi^-2\pi^0$
- $3\pi^+ 3\pi^-$
- $V K^+ K^-$
- \bullet $K_S K_L$
- **9** $K^+K^-\pi^0$

- $K^+ K^- \pi^+ \pi^-$
- ${}^{\odot} K^+ K^- \pi^0 \pi^0$
- $M_S K_L \pi^+ \pi^-$

- \bullet $K^+K_S\pi^-\pi^0$
- $K^- K_L \pi^+ \pi^0$
- $\odot \pi^+\pi^-$
- $\ {f 0} \ p \bar p$
- $20 n \bar{n}$
- 2) $\eta \pi^+ \pi^-$
- $K_L K^+ \pi^-$
- $\textcircled{9} \pi^+\pi^-3\pi^0$
- $3 \pi^{+}\pi^{-}4\pi^{0}$
- $O K_S K_S \pi^+ \pi^-$
- $\textcircled{0} \pi^0 \gamma$

 $\Im \eta \gamma$

- \mathfrak{O} ηK^+K^-
- $\odot K_S K_L \pi^0$
- $\textcircled{0} \eta K_S K_L$
- $\mathfrak{Q} \pi^0 \pi^0 \gamma$
- $\Im \eta \pi^0 \pi^0 \gamma$
- $\mathfrak{G} 3\pi 0\gamma$
- $\Im \eta \pi^0 \gamma$
- 50 $\eta\eta\gamma$
- $\mathfrak{O} \ \eta \pi^+ \pi^- 2 \pi^0$
- $\Im \eta 2\pi^+ 2\pi^-$
- ${}^{\textcircled{0}}$ $K^+K^-\pi^+\pi^-\pi^0$
- $K^+ K^- \pi^0 \pi^0 \pi^0$
- $\textcircled{0} \eta \pi^+ \pi^- \pi^0$

3