Изучение процесса $e^+e^- o \eta \pi^+\pi^-$ с детектором КМД-3

Грибанов Сергей Сергеевич

ИЯФ СО РАН

Сессия-конференция секции ядерной физики ОФН РАН, посвященная 70-летию В.А. Рубакова

Коллайдер ВЭПП-2000. Детектор КМД-3.

- Область сканирования 0.3 ГэВ $< \sqrt{s} < 2.0$ ГэВ.
- Энергия измеряется методом обратного комптоновского рассеяния с точностью 50 КэВ.
- Впервые использована методика круглых пучков.
- Достигнута светимость $6\times 10^{31}~{\rm cm}^{-2}{\rm c}^{-1}~({\rm проектная}\sim 10^{32}~{\rm cm}^{-2}{\rm c}^{-1}).$
- Два детектора КМД-3 и СНД.

Грибанов Сергей Сергеевич

Мотивация. Данные.

Мотивация

- Изучение динамики.
- Вычисление $\mathcal{B}(\tau^- o \eta \pi^- \pi^0 \nu_{\tau})$, тест СVС-гипотезы.
- Получение форм-фактора $\eta \to \gamma^{\star} \gamma^{\star}.$
- Вклад в $(g-2)_{\mu}$.

Данные

В анализе использовались данные с детектора КМД-3, соответствующие диапазону энергий 1.2 ГэВ/ $c^2 \lesssim \sqrt{s} \lesssim 2.0$ ГэВ/ c^2 . Интегральная светимость использованных в анализе данных ≈ 684.5 пб⁻¹. В предыдущей работе¹ по изучению процесса $e^+e^- \rightarrow \eta \pi^+\pi^-$ с КМД-3 использовалась почти в 10 раз меньшая статистика (78.3 пб⁻¹).

¹S.S. Gribanov и другие (коллаборация КМД-3). "Measurement of the $e^+e^- \rightarrow \eta \pi^+\pi^-$ cross section with the CMD-3 detector at the VEPP-2000 collider". В: *JHEP* 01 (2020), с. 112. DOI: 10.1007/JHEP01(2020)112. arXiv: 1907.08002 [hep-ex].

Грибанов Сергей Сергеевич

- Наличие двух центральных треков
- Наличие двух или более фотонов с энергиями больше 50 МэВ.
- Суммарное энерговыделение кандидатов на π^+ и π^- в калориметре меньше $0.4 + 0.25 \times (\sqrt{s} 1.2)$ ГэВ для подавления событий e^+e^- рассеяния.
- Кинематическая реконструкция² в гипотезе $e^+e^- \rightarrow \pi^+\pi^-\gamma\gamma$: фит должен сойтись и $\chi^2 < 40.$
- Кинематическая реконструкция в гипотезе $e^+e^- \to \pi^+\pi^-\gamma\gamma\gamma\gamma_{lost}$. Одна пара фотонов складывается в π^0 (для которой χ^2 меньше). Требуется, чтобы либо фит не сошелся, либо фит сошелся и $\chi^2 > 20$. Данный критерий отбора накладывается, чтобы дополнительно подавить события процесса $e^+e^- \to \pi^+\pi^-\pi^0\pi^0$.
- Кинематическая реконструкция в гипотезе $e^+e^- \to \eta \pi^+\pi^-$, $\eta \to \gamma \gamma$. Требуется, чтобы фит сошелся, но никаких ограничений на χ^2 не накладывается. Нужна для того, чтобы в амплитудном фите четырех-импульс двух фотонов соответствовал четырех-импульсу η -мезона.

²S.S. Gribanov и A.S. Popov. "Kinematic and vertex fitting package for the CMD-3 experiment". В: Journal of Instrumentation 18.05 (май 2023), R05030 = (=) () ()

Грибанов Сергей Сергеевич

 $e^+e^- \rightarrow \eta \pi^+\pi^-$

Спектр масс двух фотонов

- На рисунке приведен спектр масс двух фотонов, кандидатов на фотоны из распада $\eta o \gamma \gamma.$
- Число событий определяемое из фита m_{үү} используется для получения сечения.
- При амплитудном анализе накладывается дополнительное условие $0.51~{
 m M}$ эВ/ $c^2 < m_{\gamma\gamma} < 0.59~{
 m M}$ эВ/ c^2 .
- При амплитудном анализе точки с близкими энергиями в системе центра масс объединяются с целью увеличения статистики (шаг ΔE_{ц.м.} ~ 10-20 МэВ).

Грибанов Сергей Сергеевич

Амплитудный анализ процесса $e^+e^- o \eta \pi^+\pi^-$

Промежуточные состояния

Достоверно наблюдаются:

- ρ(770)η Р-волна.
- а₂(1320)π − D-волна.

Изучались, но дают малый вклад:

- ωπ (ρ-ω смешивание) Р-волна.
- *ρ*(1450)π − Р-волна.
- ρ(1700)π Р-волна.
- *а*₂(1700)*π* D-волна.

Плотность вероятности

$$egin{aligned} f(\Phi; m{\mathcal{C}}_{\mathsf{sig}}, m{\mathcal{C}}_{\mathsf{bkg}}) &= rac{1}{\mathcal{N}_{\mathsf{tot}}(m{\mathcal{C}}_{\mathsf{sig}}, m{\mathcal{C}}_{\mathsf{bkg}})} imes \ & \left[arepsilon_{\mathsf{phsp sig}}(\Phi) |_{\mathsf{sig}}(\Phi; m{\mathcal{C}}_{\mathsf{sig}}) + |_{\mathsf{bkg}}(\Phi; m{\mathcal{C}}_{\mathsf{bkg}})
ight], \end{aligned}$$

где C_{sig} — параметры модели сигнального процесса, C_{bkg} — параметры модели фонового процесса; $\varepsilon_{phsp\ sig}$ — эффективность событий сигнала, разыгранных по фазовому объему; I_{bkg} — функция, описывающая распреде-

ление (зарегистрированных) событий фонового процесса в переменных сигнального процесса; І_{sig} — усредненный по поляризациям начальных частиц квадрат модуля суммарной амплитуды сигнального процесса; N_{tot} — нормировка: $N_{\text{tot}} = N_{\text{sig}}$ + $N_{\rm bkg}$, $N_{\rm sig} = \int \varepsilon_{\rm sig}(\Phi) I_{\rm sig}(\Phi; \boldsymbol{C}_{\rm sig}) \,\mathrm{d}\Phi$, $N_{\rm bkg} =$ $\int \mathsf{I}_{\mathsf{bkg}}(\Phi; \mathcal{C}_{\mathsf{bkg}}) \,\mathrm{d}\Phi.$ Функцию I_{sig} можно записать в виде^{*a*}: $I_{sig} =$ $m{\mathcal{C}}_{\mathsf{sig}}^\dagger \hat{
ho}_{\mathsf{sig}}(\Phi)m{\mathcal{C}}_{\mathsf{sig}},$ где $\hat{
ho}_{\mathsf{sig}}^\dagger$ = $\hat{
ho}_{\mathsf{sig}},$ $m{\mathcal{C}}_{\mathsf{sig}}$ \in $\mathbb{C}^{n_{sig}}$. Тогда N_{sig} = $m{C}^{\dagger}_{sig}\hat{l}_{sig}m{C}_{sig}$, где \hat{l}_{sig} = $\frac{1}{N^{MC}} \sum_{j \in \text{phsp sig}} \hat{\rho}_{sig}(\Phi_j).$ Функцию І_{bkg} можно записать в виде: І_{bkg} = $m{C}^{\dagger}_{\mathbf{b}\mathbf{k}\mathbf{g}}\hat{
ho}_{\mathbf{b}\mathbf{k}\mathbf{g}}m{C}_{\mathbf{b}\mathbf{k}\mathbf{g}}$, где $\hat{
ho}^{\dagger}_{\mathbf{b}\mathbf{k}\mathbf{g}}$ = $\hat{
ho}_{\mathbf{b}\mathbf{k}\mathbf{g}}$, $\hat{
ho}_{\mathbf{b}\mathbf{k}\mathbf{g}}$ диагональная матрица, $\boldsymbol{C}_{\mathsf{bkg}} \in \mathbb{R}^{n_{\mathsf{bkg}}}$. Тогда $\mathit{N}_{\mathrm{bkg}}$ = $\mathit{C}^{\dagger}_{\mathrm{bkg}}\hat{\mathit{l}}_{\mathrm{bkg}}\mathit{C}_{\mathrm{bkg}}$, где $\hat{\mathit{l}}_{\mathrm{bkg}}$ = $\frac{1}{N_{\text{hbs}}^{\text{MC}}} \sum_{j \in \text{phsp sig}} \frac{\hat{\rho}_{\text{bkg}}(\Phi_j)}{\varepsilon_{\text{phsp sig}}(\Phi_j)}.$ phsp sig

^аМассы и ширины резонансов полагаются фиксированными. 🛶 হা = ୧୨୯୯

Extended Maximum Likelihood (EML)³

$$\mathcal{L}_{ext} = \frac{N_{tot}^{N_{exp}}}{N_{exp}!} e^{-N_{tot}} \prod_{\ell \in exp} f(\Phi_{\ell}; \boldsymbol{C}_{sig}, \boldsymbol{C}_{bkg}) = \frac{1}{N_{exp}!} e^{-N_{tot}} \prod_{\ell \in exp} N_{tot} f(\Phi_{\ell}; \boldsymbol{C}_{sig}, \boldsymbol{C}_{bkg})$$

$$\boxed{\ln \mathcal{L}_{ext} = \sum_{\ell \in exp} \ln \left(\boldsymbol{C}^{\dagger}_{sig} \hat{\rho}_{sig}(\Phi_{\ell}) \boldsymbol{C}_{sig} + \boldsymbol{C}^{\dagger}_{bkg} \frac{\hat{\rho}_{bkg}(\Phi_{\ell})}{\varepsilon_{phsp sig}(\Phi_{\ell})} \boldsymbol{C}_{bkg} \right) - \boldsymbol{C}^{\dagger}_{sig} \hat{l}_{sig} \boldsymbol{C}_{sig} - \boldsymbol{C}^{\dagger}_{bkg} \hat{l}_{bkg} \boldsymbol{C}_{bkg}}$$

- Позволяет найти полное число событий ($N_{tot} = N_{sig} + N_{bkg}$) при фите, число событий сигнала ($N_{sig} = C^{\dagger}_{sig}\hat{l}_{sig}C_{sig}$) и фона ($N_{bkg} = C^{\dagger}_{bkg}\hat{l}_{bkg}C_{bkg}$). Эти числа событий согласуются с аналогичными числами, полученными при фите спектра масс двух фотонов.
- Матрицы $\hat{\rho}_{sig}(\Phi_{\ell}), \frac{\hat{\rho}_{bkg}(\Phi_{\ell})}{\varepsilon_{sig}(\Phi_{\ell})}, \hat{l}_{sig}$ и \hat{l}_{bkg} рассчитываются перед фитом.
- В данном анализе $\hat{\rho}_{\rm bkg}(\Phi_\ell)$ матрица 1 × 1, т.к. рассматривается фон только от $e^+e^- \to \pi^+\pi^-\pi^0\pi^0$ (доминирующий фоновый процесс). События фона пока что моделируются по фазовому объему. Про работу над уточнением модели фона см. последние слайды.

³Roger Barlow. "Extended maximum likelihood". B: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 297.3 (1990), c. 496–506.

Грибанов Сергей Сергеевич

 $e^+e^- \rightarrow \eta \pi^+\pi^-$

февраль, 2025 7 / 17

Эффективность сигнала $\varepsilon_{phsp\ sig}(\Phi)$ и плотность вероятности фона $\hat{\rho}_{bkg}(\Phi)$ в переменных трех-частичного процесса находились с помощью Kernel Density Estimation (KDE) с некоторыми модификациями⁴. Для трех-частичных процессов можно указать 5 независимых кинематических переменных. Были выбраны следующие переменные:

- m²_{π⁺π⁻},
- $m_{n\pi^{-}}^2$,
- $\cos \theta_{\eta}$,
- φ_η,
- угол между плоскостями $(ec{p}_{\pi^+}, ec{p}_{\pi^-})$ и $(ec{p}_{\eta}, ec{e}_z).$

Так как пучки неполяризованные, то от угла ϕ_η ничего не зависит (в пренебрежении неработающими каналами и т.п.).

⁴A. Poluektov. "Kernel density estimation of a multidimensional efficiency profile". B: Journal of Instrumentation 10.02 (февр. 2015), P02011. < D > (D >

Грибанов Сергей Сергеевич

 $e^+e^- \rightarrow \eta \pi^+\pi^-$

Эффективность моделирования сигнала по фазовому объему в срезе по некоторым переменным (не интеграл, а значения PDF). В данной группе точек (вблизи $\sqrt{s} \approx 1.9$ GeV) оценка $\varepsilon_{\rm sig}$ проведена с использованием $\approx 7.9 \times 10^6$ событий моделирования сигнала по фазовому объему (после наложения всех критериев отбора).

= nar

Распределение фона, $\hat{ ho}_{\mathsf{bkg}}$

Плотность вероятности фона ($e^+e^- \to \pi^+\pi^-\pi^0\pi^0$ по фазовому объему) в срезе по некоторым переменным. В данной группе точек (вблизи $\sqrt{s} \approx 1.9$ GeV) оценка плотности фона была проведена по 15017 событиям (после наложения всех критериев отбора).

февраль, 2025 10 / 17

Сравнение спектров, $\sqrt{s} pprox 1.9$ ГэВ

Всего 5129 событий эксперимента (4169 событий сигнала, 960 событий фона).

I DOC

11 / 17

Image: A matrix and a matrix

Сравнение спектров, $\sqrt{s} \approx 1.4$ ГэВ

Всего 3558 событий эксперимента (3099 событий сигнала, 459 событий фона).

I DOC

Image: A matrix and a matrix

Сечение

Результаты очень предварительные. Ошибки парциальных сечений завышены.

$$\sigma_{\mathsf{B}}(s) = \frac{N_{\mathsf{sig}}(s)}{\varepsilon_{\mathsf{sig}}(s)L_{\mathsf{int}}(s)(1+\delta_{\mathsf{rad}}(s))},$$

Эффективность регистрации событий сигнала $\varepsilon_{\rm sig}$ определялась по моделированию ($ho(770)\eta + a_2(1320)\pi$).

Парциальные сечения:

$$\begin{aligned} \sigma_k(s; \mathbf{C}_{\mathsf{bkg}}) &= \sigma_{\mathsf{B}}(s) \times \mathsf{ratio}_k(s; \mathbf{C}_{\mathsf{bkg}}), \\ \mathsf{ratio}_k(s; \mathbf{C}_{\mathsf{bkg}}) &= \frac{\int \mathsf{I}_{\mathsf{sig}}^{(k)}(\Phi; \mathbf{C}_{\mathsf{sig}}) \, \mathrm{d}\Phi}{\int \mathsf{I}_{\mathsf{sig}}(\Phi; \mathbf{C}_{\mathsf{sig}}) \, \mathrm{d}\Phi} \\ &= \sum_{k \in \mathcal{I}} \sum_{k \in$$

февраль, 2025

13 / 17

Грибанов Сергей Сергеевич

 $e^+e^- \rightarrow \eta \pi^+\pi^-$

Уточнение модели фона $(e^+e^- o \pi^+\pi^-\pi^0\pi^0)$

- Для уточнения модели фона был проведен амплитудный анализ процесса $e^+e^- o 4\pi.$
- Получен предварительный результат, достаточный для уточнения модели фонового процесса $e^+e^- \to \pi^+\pi^-\pi^0\pi^0$.
- Проводились амплитудные фит для различных конечных состояний:

- совместный фит для $\pi^+\pi^-\pi^0\pi^0$ и $\pi^+\pi^-\pi^+\pi^-$.
- Промежуточные состояния (список приблизительный, использовались менее и более богатые модели):

•
$$e^+e^- o \omega$$
(782) π^0 (Р-волна), $\omega o
ho$ (770) π (Р-волна);

•
$$e^+e^-
ightarrow a_1\pi$$
 (S- и D-волны), $a_1
ightarrow
ho(770)\pi$ (S- и D-волны);

•
$$e^+e^-
ightarrow a_1\pi$$
 (S- и D-волны), $a_1
ightarrow \sigma\pi$ (P-волна);

- $e^+e^-
 ightarrow
 ho(770)
 ho(770)$ (Р- и *F*-волны); только в $e^+e^-
 ightarrow \pi^+\pi^-\pi^0\pi^0;$
- $e^+e^-
 ightarrow
 ho$ (770) σ (S- и D-волны);
- $e^+e^- \to
 ho$ (770) $f_0(980)$ (S- и D-волны);
- $e^+e^-
 ightarrow h_1(1170)\pi^0$ (S- и D-волны), $h_1
 ightarrow
 ho\pi$ (S- и D-волны);
- $e^+e^-
 ightarrow a_2(1320)\pi$ (D-волна), $a_2(1320)
 ightarrow
 ho(770)\pi$ (D-волна);
- $e^+e^- \rightarrow \rho(770) f_2(1270)$ (S-, D-, G-волны).

Характерные примеры спектров $(e^+e^- o \pi^+\pi^-\pi^0\pi^0)$

- Разработан фреймворк для амплитудного анализа.
- Получены предварительные результаты по изучению динамики процесса $e^+e^- o \eta \pi^+\pi^-.$
- Получен предварительный результат измерения сечения $e^+e^- o \eta \pi^+\pi^-$ по новой статистике.
- Проведена работа по уточнению фонового вклада от процесса $e^+e^- \to \pi^+\pi^-\pi^0\pi^0$. С этой целью был выполнен совместный амплитудный фит конечных состояний $\pi^+\pi^-\pi^0\pi^0$ и $\pi^+\pi^-\pi^+\pi^-$.

Спасибо за внимание!

EL OQO

Image: Image:

Запасной слайд: характерные примеры спектров ($e^+e^- ightarrow \pi^+\pi^-\pi^+\pi^-$)

Грибанов Сергей Сергеевич

 $e^+e^- \rightarrow \eta \pi^+\pi^-$

1 / 1