Исследование процесса распада $J/\psi\to\rho\eta$ и $J/\psi\to\phi\eta$ на эксперименте с детектором КЕДР

Кыштымов Дмитрий и коллаборация КЕДР

Сессия-конференция секции ядерной физики ОФН РАН 17 — 21 февраля 2025

> ИЯФ СО РАН, г. Новосибирск D.A.Kyshtymov@inp,nsk.su

- Детектор КЕДР
- 2 Процесс $J/\psi \to \rho \eta$
 - Идея анализа
 - Условия отбора
 - Результаты
 - Оценка неопределённостей
- \bigcirc Процесс $J/\psi \rightarrow \phi \eta$
 - Условия отбора
 - Результаты
 - Оценка неопределённостей
- Заключение

Детектор состоит из:

- Вершинный детектор
- Дрейфовая камера
- Аэрогелевые счетчики
- Сцинтилляционные счетчики
- LKr калориметр
- Csl калориметр
- Мюонная система

Процесс $J/\psi\to\rho\eta$

Процесс $J/\psi \to \rho \eta$

- Процесс $J/\psi \to \rho \eta$ является доминирующей модой распада в $J/\psi \to \pi^+\pi^-\eta$, измерение бранчинга распада в $\rho \eta$ осуществлялось в 1988 и 1990 годах на детекторах MARK-III и DM2
- $J/\psi
 ightarrow \pi^+\pi^-\eta$ измерялся BaBar при помощи ISR и BES-III

BES-III:
$$(3.78 \pm 0.68) \times 10^{-4}$$
PDG: $(3.8 \pm 0.7) \times 10^{-4}$ BaBar: $(4.2 \pm 0.8) \times 10^{-4}$ $J/\psi \to \pi^+\pi^-\eta$

 $\begin{array}{l} \text{MARK-III:} \ (1.93\pm0.13\pm0.29)\times10^{-4} \\ \text{DM2:} \ (1.94\pm0.17\pm0.29)\times10^{-4} \end{array}$

PDG: $(1.93 \pm 0.23) \times 10^{-4}$ $J/\psi \rightarrow \rho \eta$

 $\begin{array}{l} Br(\rho \rightarrow \pi^+\pi^-) \simeq 100\% \\ Br(\eta \rightarrow \gamma\gamma) = (39.36 \pm 0.18)\% \end{array}$

Был обнаружен резонанс $J/\psi
ightarrow
ho(1450)\eta$

Ожидается значительная интер. с процессом $J/\psi \to \omega \eta$, несмотря на малую вероятность распада $Br(\omega \to \pi^+\pi^-) = (1.53^{+0.11}_{-0.13})\%$ В силу большого $Br(J/\psi \to \omega \eta) = (1.74 \pm 0.20) \times 10^{-3}_{-5}/21$

Идея анализа

$$\frac{d\sigma}{d\Gamma} = |a + be^{i\phi}|^2 = |a|^2 + |b|^2 + ab^* e^{-i\phi} + a^* be^{i\phi}$$

$$a = (p_{\pi^+} imes p_{\pi^-}) sin heta_n rac{m_
ho^2}{q^2 - m_
ho^2 + iq\Gamma_
ho(q^2)}$$
 - Амплитуда распада $\Gamma(q^2) = \Gamma\left(rac{p_{\pi(q^2)}}{p_{\pi(m_
ho)}^2}
ight)^3 \left(rac{m_
ho^2}{q^2}
ight)$ - Ширина

$$\begin{split} ab^{*}e^{-i\phi} + a^{*}be^{i\phi} &= \frac{2(p_{\pi} + \times p_{\pi} -)^{2}sin^{2}\theta_{n}m_{\rho}^{2}m_{\omega}^{2}(q^{4} + m_{\rho}^{2}m_{\omega}^{2} + q^{2}\Gamma_{\rho}\Gamma_{\omega}}{((q^{2} - m_{\rho}^{2})^{2} + q^{2}\Gamma_{\rho}^{2})(((q^{2} - m_{\omega}^{2})^{2} + q^{2}\Gamma_{\omega}^{2})} \cos\phi \\ &- \frac{2(p_{\pi} + \times p_{\pi} -)^{2}sin^{2}\theta_{n}m_{\rho}^{2}m_{\omega}^{2}q^{2}(m_{\rho}^{2} + m_{\omega}^{2})}{((q^{2} - m_{\rho}^{2})^{2} + q^{2}\Gamma_{\rho}^{2})(((q^{2} - m_{\omega}^{2})^{2} + q^{2}\Gamma_{\omega}^{2})} \cos\phi \\ &+ \frac{2(p_{\pi} + \times p_{\pi} -)^{2}sin^{2}\theta_{n}m_{\rho}^{2}m_{\omega}^{2}(q^{3}\Gamma_{\omega} + q\Gamma_{\rho}m_{\omega}^{2})}{((q^{2} - m_{\rho}^{2})^{2} + q^{2}\Gamma_{\rho}^{2})(((q^{2} - m_{\omega}^{2})^{2} + q^{2}\Gamma_{\omega}^{2})} sin\phi \\ &- \frac{2(p_{\pi} + \times p_{\pi} -)^{2}sin^{2}\theta_{n}m_{\rho}^{2}m_{\omega}^{2}(q^{3}\Gamma_{\rho} + q\Gamma_{\omega}m_{\rho}^{2})}{((q^{2} - m_{\rho}^{2})^{2} + q^{2}\Gamma_{\rho}^{2})(((q^{2} - m_{\omega}^{2})^{2} + q^{2}\Gamma_{\omega}^{2})} sin\phi \end{split}$$

$$\begin{split} N_{sim} &= N_{\rho} \varepsilon_{\rho} H_{\rho} + N_{\omega} \varepsilon_{\omega} H_{\omega} + \\ &+ \sqrt{N_{\rho} N_{\omega}} (\varepsilon_{\cos^{+}} H_{\cos^{+}} - \varepsilon_{\cos^{-}} H_{\cos^{-}}) cos(\phi) \\ &+ \sqrt{N_{\rho} N_{\omega}} (\varepsilon_{\sin^{+}} H_{\sin^{+}} - \varepsilon_{\sin^{-}} H_{\sin^{-}}) sin(\phi) + \dots \end{split} \qquad \varepsilon \approx 17\% \end{split}$$

$$6/21$$

Подгонка осуществлялась при помощи максимизации функции

$$L: L = -2\sum(N_{th} - N_{exp} + N_{exp}ln(N_{exp}/N_{th}))$$

$$oldsymbol{0}\ \chi^2 < 70$$

 $oldsymbol{0}\ \chi^2 < \chi^2_{K^+K^-\eta}$, для разделения π/K событий

 ${old 0}$ $0.4 < Cos(heta_{\gamma\gamma})$, подавляет фон от $ho\pi$

- $500 < M_{\gamma\gamma} < 600$, $M_{\gamma\gamma}$ инвариантная масса двух свободных фотонов
- $N_{cl} < 3$, подавляет фон от $\pi^+\pi^-\pi_0\eta$

Результаты

Подгонка инвариатной массы двух пионов с учетом интерференции (L/Ndf=53/42), 25 МэВ в бине

8/21

Подгонка χ^2 кинематической реконструкции с учетом интерференции (L/Ndf=29/23)

Подгонка $M(\eta\pi)$, чёрной гистограммой показан вклад от $a_2\pi$. Все параметры за исключением $a_2\pi$ и ΔM фиксированы (L/Ndf = 43/19) Для данного процесса $J/\psi \longrightarrow (a_2^+\pi^- + a_2^-\pi^+) \longrightarrow \pi^+\pi^-\eta < 1.41 \times 10^{-3}$ с вероятностью 90%

Результат при фиксированном
$$Br(J/\psi \to \omega \eta)$$
:
9 $Br(J/\psi \to \rho \eta) = (2.28 \pm 0.69 \pm 0.28) \times 10^{-4} (N_{\rho} = 74)$
9 $Br(J/\psi \to \omega \eta) = 2.352 \times 10^{-3} (N_{\omega} = 12 \text{ fixed})$
9 $Br(J/\psi \to \rho (1450)\eta \to \pi^{+}\pi^{-}\eta) =$
1.65 $\pm 0.77 \pm 0.70 \times 10^{-4} (N_{\rho(1450)} = 34)$
9 $Br(J/\psi \to \pi^{+}\pi^{-}\eta) = 4.58 \pm 1.49 \pm 0.97 \times 10^{-4} (N_{total} = 137)$
9 $\phi_{\rho-\omega} = (85.1 \pm 7.5 \pm 6.8)^{o}$
9 $\phi_{\rho-\rho(1450)} = (182.2 \pm 43.4 \pm 33.8)^{o}$

2 $\Delta M = (3.65 \pm 5.78 \pm 3.60) \text{ M} \cdot \text{B}$

Оценка неопределённостей в $Br(J/\psi \to \rho \eta)$, условия отбора

Критерий	Отбор	Вариация	$\Delta N/N$, %	Неопр., %
χ^2	$\chi^2 < 70$	$\chi^{2} < 90$	6.7	4.4
$\chi^2_{K^+K^-\eta}$	$\chi^2 < \chi^2_{K^+K^-\eta}$	$\chi^2 < 0.9 \chi^2_{K^+ K^- \eta}$	0.4	< 0.1
$Cos(\theta_{\gamma\gamma})$	$0.4 < Cos(\theta_{\gamma\gamma})$	$0.2 < Cos(\theta_{\gamma\gamma})$	9.5	6.4
$M_{\gamma\gamma}$	$500 < M_{\gamma\gamma} < 600$	$450 < M_{\gamma\gamma} < 650$	2.3	2.0
N_{cl}	$N_{cl} < 3$	$N_{cl} < 4$	19.5	2.0
Сумма	_	_	_	8.3

Вариация условий отбора для процесса $\rho\eta.$ Неопр. — неопределённость, вносимая в процесс $\rho\eta$

Оценка неопределённостей в $Br(J/\psi \to \rho \eta)$

Процесс $J/\psi \to \phi \eta$

Процесс $J/\psi \to \phi \eta$

• $J/\psi \rightarrow \phi \eta$ измерялся Belle и BaBar при помощи ISR в 2023, BES-II в 2005, DM2 в 1990 и MARK-III в 1988

 $Br(n \rightarrow \gamma \gamma) = (39.36 \pm 0.18)\%$

• Belle:
$$(7.1 \pm 1.0 \pm 0.5) \times 10^{-4}$$

 $(N_{\phi\eta} \approx 99, 2023)$

• BaBar:
$$(7.2 \pm 2.9 \pm 0.9) \times 10^{-4}$$

($N_{\phi\eta} \approx 149$, 2023)

- BES-II: $(8.99 \pm 0.18 \pm 0.89) \times 10^{-4}$ $(N_{\phi\eta} \approx 500 - 1000, 2005)$
- DM2: $(6.4 \pm 0.4 \pm 1.1) \times 10^{-4}$ ($N_{\phi\eta} \approx 346$, 1990)

• MARK-III:

$$\begin{array}{l} (6.61\pm 0.45\pm 0.78)\times 10^{-4} \\ (N_{\phi\eta}\approx 200-300, \ 1988) \\ Br(\phi\to K^+K^-) = \end{array}$$

PDG: $(7.4 \pm 0.6) \times 10^{-4}$ $J/\psi \rightarrow \phi \eta$

 $(49.1 \pm 0.5)\%$

15/21

16/21

Результаты

Подгонка инвариатной массы двух каонов с учетом интерференции (L/Ndf = 15/28), 2 МэВа в бине

Подгонка χ^2 (L/Ndf = 25/21)

Оценка неопределённостей в $Br(J/\psi \to \phi \eta)$, условия отбора

Критерий	Отбор	Вариация	$\Delta N/N$, %	Неопр., %
χ^2	$\chi^2 < 70$	$\chi^2 < 90$	8.5	1.2
$\chi^2_{\pi^+\pi^-\eta}$	$\chi^2 < \chi^2_{\pi^+\pi^-\eta}$	$\chi^2 < 0.9 \chi^2_{\pi^+\pi^-\eta}$	0.4	0.3
$M_{\gamma\gamma}$	$500 < M_{\gamma\gamma} < 600$	$450 < M_{\gamma\gamma} < 650$	3.5	2.4
N_{cl}	$N_{cl} < 3$	$N_{cl} < 6$	34.4	2.4
Сумма	_	_	_	3.6

Вариация условий отбора для процесса $\phi\eta.$ Неопр. — неопределённость, вносимая в процесс $\phi\eta$

Оценка неопределённостей в $Br(J/\psi \rightarrow \phi \eta)$

•
$$Br(J/\psi \to \phi \eta) =$$

(8.22 ± 1.08 ± 0.56) × 10⁻⁴
($N_{\phi} = 62$)

Источник	Неопр., %	
Отклик детектора	0.7	
Ядерное взаим.	3.0	
Моделирование	0.6	
X(t) калибровка	3.0	
π/K разделение	0.2	
$Br(\phi \to K^+K^-)$	1.0	
Число J/ψ	1.1	
$Br(\eta o \gamma \gamma)$	0.5	
Стат. от эффект.	0.6	
Физический фон	3.3	
Условия отбора	3.6	
Итог. ошибка	6.8	

Заключение

- Точность измерений бранчингов для $J/\psi\to\pi^+\pi^-\eta,$ $J/\psi\to\rho\eta$ и $J/\psi\to\phi\eta$ сопоставимы с предыдущими измерениями
- Впервые был измерен бранчинг распада $J/\psi \longrightarrow \rho(1450)\eta \longrightarrow \pi^+\pi^-\eta$
- Был посчитан 90% CL для бранчинга распада $J/\psi \longrightarrow (a_2^+\pi^- + a_2^-\pi^+) \longrightarrow \pi^+\pi^-\eta < 1.41 \times 10^{-3}$

Результаты измерений:

- $Br(J/\psi \to \rho \eta) = (2.28 \pm 0.69 \pm 0.28) \times 10^{-4} (N_{\rho} = 74)$
- $Br(J/\psi \longrightarrow \pi^+\pi^-\eta) = 4.58 \pm 1.49 \pm 0.97 \times 10^{-4}$ ($N_{total} = 136$)
- $Br(J/\psi \longrightarrow \rho(1450)\eta \longrightarrow \pi^+\pi^-\eta) =$ 1.65 ± 0.77 ± 0.70 × 10⁻⁴ ($N_{\rho(1450)} = 34$)
- $Br(J/\psi \longrightarrow \phi \eta) = 8.22 \pm 1.08 \pm 0.56 \times 10^{-4} \ (N_{\phi} = 62)$

Благодарю за внимание!

Дополнительные материалы

Параметры детектора КЕДР

Csl калориметр:

- Полярный угол: (6 38) градусов мм
- Толщина калориметра: 30 см (15 X₀)
- Энергетическое разрешение для 0.1 ГэВ: 3%
- Энергетическое разрешение для 1 ГэВ: 2.5%
- Угловое разрешение для 0.1 ГэВ: 18 мрад
- Угловое разрешение для 1 ГэВ: 9 мрад

LKr калориметр:

- Полярный угол: (38 142) градусов мм
- Внутренний радиус: 75 см
- Толщина калориметра: 68 см (14.8 X₀)
- Энергетическое разрешение для 0.1 ГэВ: 6%
- Энергетическое разрешение для 1 ГэВ: 2.5%
- Угловое разрешение для 0.1 ГэВ: 4 мрад
- Угловое разрешение для 1 ГэВ: 4 мрад 21 / 21

Дрейфовая камера:

- Внутренний радиус: 125 мм
- Наружный радиус: 535 мм
- Длина: 1100 мм
- Количество аксиальных суперслоев: 4
- Количество стерео суперслоев: 3
- Число измерений: 42
- Число ячеек: 252
- Пространственное разрешение: 150 мкм
- dE/dx: 8.2%

$$Br(\pi^{+}\pi^{-}\eta) = (3.8 \pm 0.8) \times 10^{-4}$$

$$Br(\rho\eta) = (1.93 \pm 0.23) \times 10^{-4}$$

$$Br(\omega\eta) = (1.74 \pm 0.2) \times 10^{-3}$$

$$Br(\rho\pi) = (1.69 \pm 0.15) \times 10^{-2}$$

$$Br(\phi\eta) = (7.4 \pm 0.8) \times 10^{-4}$$

$$Br(\rho(1450)\pi \to 3\pi) = (2.3 \pm 0.7) \times 10^{-3}$$

$$Br(\pi^{+}\pi^{-}\pi_{0}\eta) = (1.17 \pm 0.2) \times 10^{-2}$$

$$Br(\omega\pi_{0}) = (4.5 \pm 0.5) \times 10^{-3}$$

$$Br(\omega\pi_{0}\pi_{0}) = (3.4 \pm 0.8) \times 10^{-3}$$

$$Br(\omega\eta\pi_{0}) = (3.4 \pm 1.7) \times 10^{-4}$$

$$Br(\rho(1450)\eta' \to 2\pi\eta') = (3.3 \pm 0.7) \times 10^{-1}$$

 $Br(\rho \to \pi^+\pi^-) \approx 100\%$ $Br(\omega \to \pi^+\pi^-) =$ $(1.53 \pm 0.13) \times 10^{-2}$ $Br(\eta \to \gamma \gamma) =$ $(39.36 \pm 0.18) \times 10^{-2}$ $Br(\pi_0 \to \gamma \gamma) =$ $(98.823 \pm 0.034) \times 10^{-2}$ $Br(\phi \to K^+K^-) =$ $(49.1 \pm 0.5) \times 10^{-2}$ $Br(\eta' \to \gamma \gamma) =$ $(2.307 \pm 0.033) \times 10^{-2}$

700

20

10

200

550

600

 $M(\gamma\gamma)$, MeV

Инвариантная масса двух свободных фотонов

Точность реконструкции энергии первого фотона

Точность реконструкции энергии второго фотона

21/21

173

832.7

341.9

Entries

RMS 351.3

173 Mean 826.3

Точность рек. попереч. импульса K^+

Точность рек. попереч. импульса K^-

