Measurement of R at the KEDR detector

Tatyana Kharlamova BINP, NSU

19.02.2025

Collider VEPP-4M

Beam energy	1–5 GeV
Number of bunches	2 x 2
Luminosity at 1.5 GeV	2·10 ³⁰ cm ⁻² s ⁻¹
Luminosity at 5.0 GeV	2·10 ³¹ cm ⁻² s ⁻¹

Beam energy measurement:

- Resonant depolarization method
 Instant measurement accuracy 1 keV
 Energy interpolation accuracy 10-30 keV
- Infrared light Compton backscattering Monitoring with accuracy 100 keV

KEDR detector

- 1. Vacuum chamber
- 2. Vertex detector
- 3. Drift chamber
- 4. Threshold aerogel counters
- 5. ToF counters
- 6. Liquid krypton calorimeter
- 7. Superconducting coil
- 8. Magnet yoke
- 9. Muon tubes
- 10. Csl calorimeter
- 11. Compensating s/c solenoid

Physical program of KEDR experiment

Elementary particle mass measurements: J/ψ , $\psi(2S)$, $\psi(3770)$, D^0 , D^{\pm} , τ , Y – mesons

Leptonic width measurement for ψ - and Y – mesons

R measurements at 2E = 2 - 10 GeV

Cross section measurement for process $\gamma\gamma \rightarrow$ hadrons

Branching fraction measurements $J/\psi \rightarrow \gamma \eta_c$, $\rho \eta$, $\rho \eta$, etc.

Motivation of R measurement

$$R = \frac{\sigma(e^-e^+ \to hadrons)}{\sigma(e^-e^+ \to \mu^-\mu^+)} \approx$$

$$\approx \frac{e^{-}}{e^{+}} \xrightarrow{\gamma^{*}} \overbrace{\overline{q}}^{q}$$

R(s) is used to determine:

- $\alpha_s(s)$
- $(g_{\mu}-2)/2$
- $\alpha (M_Z^2)$

• *m*_q

Predictions

Naive quark model:

$$R_0(s) = \frac{\sigma(e^-e^+ \to hadrons)}{\sigma(e^-e^+ \to \mu^-\mu^+)} = N_c \sum e_q^2$$

At energy 3.77 $\leq \sqrt{s} \leq 10.58$ GeV (u, d, s, c) : $R_0 \approx \frac{10}{3}$

pQCD in 3-loops:
$$R(s) = R_0(s) \left(1 + C_1 \frac{\alpha_s}{\pi} + C_2 \left(\frac{\alpha_s}{\pi}\right)^2 + C_3 \left(\frac{\alpha_s}{\pi}\right)^3 + C_4 \left(\frac{\alpha_s}{\pi}\right)^4\right)$$

At $n_f = 4$: $C_1 = 1, C_2 = 1.525, C_3 = -11.686, C_4 = -89.822$
P. A. Baikov et al. Nucl. And Part. *Phys. Proceed.* 261-262 (2015)

$$\begin{split} \alpha_{s} &= \frac{1}{\beta_{0}L} - \frac{b_{1}}{(\beta_{0}L)^{2}} \ln L + \frac{1}{(\beta_{0}L)^{3}} \left[b_{1}^{2} \left(\ln^{2}L - \ln L - 1 \right) + b_{2} \right] + \\ &+ \frac{1}{(\beta_{0}L)^{4}} \left[b_{1}^{3} \left(-\ln^{3}L + \frac{5}{2} \ln^{2}L + 2\ln L - \frac{1}{2} \right) - 3b_{1}b_{2}\ln L + \frac{b_{3}}{2} \right] \\ \text{At } n_{f} &= 4 : \beta_{0} = 2.083, b_{1} = -1.540 \text{ , } b_{2} = 3.048, b_{3} = 179.558; L = \ln \frac{s}{\Lambda^{2}} \\ \text{Chetyrkin, Kniehl, Steinhauser, Nucl. Phys. B 510 (1998) 61} \end{split}$$

Determination of R ratio

$$R(s) = \frac{\sigma_{obs}^{mh}(s) - \sigma^{ee \to ee}(s) - \sigma^{ee \to \mu\mu}(s) - \sigma^{ee \to \tau\tau}(s)}{\varepsilon(s)(1 + \delta(s))\sigma_{\mu\mu}^{0}}$$

 $\sigma_{obs}^{mh}(s) = \frac{N^{mh} - N^{bkg}}{L}$ - observed hadronic cross section

 N^{mh} - number of selected events

N^{bkg} - residual machine background

L – integrated luminosity

 $\sigma^{ee \rightarrow ee}(s)$ - contribution from the process $ee \rightarrow ee$ (< 0.01 %)

 $\sigma^{ee \to \mu\mu}(s)$ - contribution from the process $ee \to \mu\mu$ (~ 0.01%)

 $\sigma^{ee \to \tau\tau}(s)$ - contribution from the process $ee \to \tau\tau$ (~ 0.2%)

 $\varepsilon(s)$ - detection efficiency

 $1 + \delta(s)$ - ISR correction factor

Born cross section for process $e^+e^- \rightarrow \mu^+\mu^-$

Hadron selections

- PT and ST triggers • At least 2 tracks from IP $(\rho < 1.5 \text{ cm}, |z_0| < 10 \text{ cm}, P_t > 100 \text{ MeV})$ • At least 5 particles in detector; • Fox-Wolfram moments $H_2/H_0 < 0.9;$ $- E_{\gamma}^{max} < 0.35 E_{run}$ E[']_{vis}>0.4 E_{run} • $E_{LKr} > 0.4 E_{cal}, E_{cal} > 0.25 E_{run}$ ■ P^{_miss}<0.3 E_{run}
- "No cosmic" from muon system

~ 5k events at each point ~ 100k events in total

Run: 29275 Type=0 E=3512.6 MeV H=6.0 kGs Raw event=234199 Event=53 Nerr=12

Simulation of hadronic events at 6.96 GeV

Experimental distributions and tuned JetSet MC

Good agreement of simulation with data is obtained

Simulation of hadronic events at 6.96 GeV - 2

Experimental distributions and tuned JetSet MC

11

Good agreement of simulation with data is obtained

Luminosity measurement

The absolute luminosity was calculated using e⁺e⁻ events in the barrel LKr calorimeter

Systematic uncertainty ~ 1.2 %

Selection criteria: ≥ 2 clusters registered in LKr calorimeter $E_1+E_2 > 2$ GeV $E_{cal} - (E_1+E_2) < 0.1 E_{cal}$ $\Delta \theta \le 15^\circ, \Delta \phi \le 15^\circ$ Sphericity < 0.05

ISR correction calculation $1 + \delta(s) = \int \frac{dx}{1-x} \frac{F(s,x)}{|1-\Pi((1-x)s)|^2} \frac{R((1-x)s)\varepsilon((1-x)s)}{R(s)\varepsilon(s)}$

Eur. Phys. J. C, 66 (2010), p. 585

F(s, x) - radiative correction kernel [E. A. Kuraev, V. S. Fadin. Sov. J. Nucl. Phys. 41, 466 (1985)]

 $R(s) = -\frac{3}{\alpha} Im \Pi_{hadr}(s)$ $\Pi_{hadr}(s) - \text{hadronic part of the}$ vacuum polarization

Systematic uncertainty estimation

Source	Syst. Uncertainty, %
Luminosity	1.2
Simulation	1.4
Track reconstruction	0.7
Nuclear interaction	0.6
Rad. correction	0.3
Machine background	0.2
Trigger	0.1
Cuts variation	1.1
Total	2.4

R measurement between 3.8 and 7.0 GeV

Estimated total uncertainty is about 3 % (systematic uncertainty about 2.4%).

R measurement at Crystal Ball

- 2E = 5.0 7.4 GeV
- Integrated luminosity 4.2 pb⁻¹
- 15 energy points

 $R_{average} = 3.44 \pm 0.03 \pm 0.18$

Source	% Error
Hadron efficiency estimate:	± 3.3
Luminosity:	± 2.7
Beam-gas subtraction:	± 2.2
Radiative corrections:	± 1.3
Tau-subtraction:	± 1.2
Two-photon subtraction:	± 1.0
Systematic error quadrature sum:	± 5.2

Statistic uncertainty ~ 3-4 %

SLAC-PUB-5160, 1990. https://doi.org/10.17182/hepdata.18758

R measurement at BESIII

Conclusions

- KEDR has measured the R values at 22 center-of-mass energies between 1.84 and 3.72 GeV.
- Preliminary results in the energy range between 4.56 and 6.96 GeV were obtained. Estimated systematic uncertainty is about 2.4% and total is about 3%.
- Analysis of data is ongoing

R measurement between 1.8 and 3.8 GeV at KEDR - 2

Simulation of hadronic decays at 6.66 GeV

Experimental distributions and tuned JetSet MC

Fair agreement of simulation with data is obtained

Simulation of hadronic decays at 5.16 GeV

Experimental distributions and tuned JetSet MC

Fair agreement of simulation with data is obtained

R measurement between 1.8 and 3.8 GeV at KEDR -1

22

\sqrt{s} , GeV	N _{points}	$\int Ldt, pb^{-1}$	Unc., %	Ref.
1.84 - 3.05	13	0.66	≤ 3.9 total (≈2.4 syst.)	Phys.Lett. B 770 (2017) 174
3.08 - 3.72	9	2.7	≤ 2.6 total (≈1.9 syst.)	Phys.Lett. B 788 (2019) 42