

Поиск событий конверсионных распадов

 ω - и ho-мезонов в ηe^+e^- на детекторе КМД-3

В. Казанин от имени коллаборации КМД-3

ИЯФ СО РАН, Новосибирск

19 февраля 2025 г.

План доклада

- Мотивация к изучению;
- Эксперимент: коллайдер и детектор;
- Предварительный отбор событий и идентификация треков;
- Слепой анализ;
- Подавление фона;
- Результаты;
- Заключение

Мотивация к изучению распадов

- Знание относительных вероятностей конверсионных распадов необходимо для изучения процессов в КГП;
- Проверка условий применимости модели векторной доминантности (МВД) при описании относительный вероятностей распада;
- Открытие новых, ранее не наблюдавшихся распадов.

ВЭПП-2000

- Длина орбиты 24,388 м;
- Энергия пучков в С.Ц.М. 320 2007 МэВ;
- Концепция круглых пучков;
- Светимость @ 2 ГэВ: 9 · 10³¹ см⁻²с⁻¹

```
В. Казанин • Распад \eta e^+e^- • 19 февраля 2025 г.
```

Детектор КМД-3

1 — место встречи; 2 — дрейфовая камера; 3 — торцевой калориметр;

- 4 Z-камера; 5 сверхпроводящий магнит; 6 LXe калориметр;
- 7 CsI калориметр; 8 железное ярмо; 9 фокусирующие

соленоиды

```
В. Казанин • Распад \eta e^+e^- • 19 февраля 2025 г.
```

Поиск распада ηe^+e^-

- Теоретические предсказания $Br(\omega \rightarrow \eta e^+ e^-) = (2-5) \cdot 10^{-6}$ разнятся для различных моделей (МВД, ЛФКМ), поздние оценки $(3-3,5) \cdot 10^{-6}$;
- Распад не подавлен у ρ -мезона относительно ω , ожидаемый $Br(\rho \to \eta e^+ e^-) \sim 2 \cdot 10^{-6};$
- Распад ранее изучался только на КМД-2 (верхний предел);
- На КМД-3 набрана большая статистика в области *р* и *ω* мезонов ~ 33 1/пб (660 – 840) МэВ;
- Анализ ведётся в канале распада $\eta \to \pi^+ \pi^- \pi^0$;
- В конечном состоянии 4 трека (2*π*, 2*e*) и 2 фотона;
- Основной фон от событий распада в канале $\omega \to 3\pi$, $\pi^0 \to \gamma e^+ e^-$ + фоновый фотон;
- Используем методику слепого анализа, скрываем область, в которой ожидаются сигнальные события

В. Казанин • Распад ηe^+e^- • 19 февраля 2025 г.

Поиск распада ηe^+e^-

Анализ событий ηe^+e^-

Предварительный отбор событий

- 4 трека, удовлетворяющих условиям: 10+ хитов; полярные углы треков 0,9 < θ_{tr} < π - 0,9; поперечный импульс P_{\perp} > 40 МэВ/с; ρ < 1 см; P < 470 МэВ/с; $\Sigma q_i = 0$
- 2+ фотонов, удовлетворяющих условиям: 0,5 < θ_γ < π 0,5;
 *E*_γ > 30 МэВ.

Идентификация треков

 Для треков с p < 100 МэВ/с e/π-разделение основано на ионизационных потерях треков в ДК;

 Лептонной парой считается пара треков с Σq = 0 и минимальным пространственным углом

Слепой анализ

- Выбраны переменные: суммарный импульс лептонных треков и *M_{inv}*(π⁺π⁻2γ);
- Размер скрываемой области определён по ширине таких же распределений в более вероятных процессах в эксперименте.

Подавление фона 1

Масса отдачи
$$\pi^+\pi^-e^+e^-$$
 треков:
110 $< M_{miss}(\pi^+\pi^-e^+e^-) <$ 170 МэВ/с²;

Подавление фона 2

Моделирование

Эксперимент

Аппроксимация

- Использовали двумерную функцию, которая факторизуется при повороте СК;
- 1D функции: функция лог. Гаусса и распределение Фойгта;
- Форма функции определялась из МС и фиксировалась для экспериментальных распределений;
- Два типа функций и аппроксимация по двум областях

В. Казанин • **Распад** ηe^+e^- • 19 февраля 2025 г.

Статистика 2013 года

Оценка фона в закрытой области $N_{bg}=0.6\pm0.4$, теор. оценка сигнала: около 1 события

Статистика 2018 года

Оценка фона в закрытой области $N_{bg} = 1.8 \pm 0.6$, теор. оценка сигнала – 2-3 события

Дополнительное подавление фона

- Использовалась информация о событии (p, dE/dx, E_{cal} , $\Delta \psi_{ee}$, P_{ee} , $m^2_{rec,ee}$, $m^2_{rec,ee}$, $m^2_{rec,\pi\pi}$, $m^2_{rec,ee\pi\pi}$, $m_{\gamma\gamma}$, $E_{\gamma0,1}$);
- Разделялись события сигнальные от фоновых и сигнальных с правильными и перепутанными треками.

Степень подавления фона при 95% сигнала ~ 1,4 · 10⁻⁴;
 Сейчас пробуем применить это доп.

подавление

Разделение sig/bg с правильными треками

В. Казанин • **Распад** $\eta e^+ e^-$ • 19 февраля 2025 г.

Заключение

- Применить кинематическую реконструкцию для лучшего подавления фона и уменьшения скрытой области;
- Применить дополнительное подавление;
- После открытия области разделение событий конверсий радиационного распада на веществе перед детектором: используем отработанную и проверенную на π⁰e⁺e⁻ методику J.Phys.Conf.Ser. 2438 (2023) 1, 012070

Работа выполнена при поддержке Российского научного фонда (проект № 23-42-10025)

```
В. Казанин • Распад \eta e^+ e^- • 19 февраля 2025 г.
```

Спасибо за внимание!

Дополнительные слайды

Распределение событий

 Размер скрываемой области определён по ширине таких же распределений в более вероятных процессах в эксперименте

Рис.: Инвариантная масса $M(2\pi 2\gamma)$

Рис.: Импульс *e*⁺*e*⁻-пары

- Моделирование реализовано в ПО Geant4;
- Используется генератор конверсионных распадов $V \rightarrow Pl^+l^-$;
- Излучение радиационных фотонов с начальных фермионных линий;
- Применение актуальных калибровочных данных для описания шумов электроники для большинства детектирующих систем;
- Фоновые срабатывания в калориметре по экспериментальным событиям случайного триггера

Дополнительные слайды

Фон в закрытой области

Таблица: table

	2013 год		2018 год	
	Обл. 1	Обл. 2	Обл. 1	Обл. 2
ЛГ+Фойгт	$0,5\pm0,3$	$0,9\pm0,4$	$1{,}7\pm0{,}5$	$1{,}9\pm0{,}6$
2ЛГ	$0{,}4\pm0{,}3$	$0,7\pm0,3$	$1{,}7\pm0{,}5$	$1{,}9\pm0{,}6$
Среднее	0,6 ± 0,4		$1,8\pm0,6$	

Ионизационные потери треков

В. Казанин • Распад ηe^+e^- • 19 февраля 2025 г.