Спин и четность возбужденных Ω_Q -барионов в рамках кварк-дикварковой модели

Александр Пархоменко

Ярославский государственный университет им. П.Г. Демидова, Ярославль

Сессия-конференция секции ядерной физики ОФН РАН «Физика фундаментальных взаимодействий», посвященная 70-летию со дня рождения академика РАН В.А. Рубакова Москва, 17 – 21 февраля 2025 г.

- 1. Введение
- 2. Ω_с-барионы
- **3**. Ω_b-барионы
- 4. Заключение

Ω_c -Baryons

Heavy Baryons

• *SU*(3)_{*F*}-multiplets of charmed baryons

• Similar multiplets are for bottom baryons after *c*-quark is replaced by *b*-quark

Status of Ω_c -Baryons

• Mass of the lowest Ω_c -baryon ($J^P = 1/2^+$) [PDG, 2024]

 $M_{\Omega_c} = (2695.2 \pm 1.7) \text{ MeV}$

• Mass of its fine-structure partner $(J^P = 3/2^+)$ [PDG, 2024]

 $M_{\Omega_c^*} = (2765.9 \pm 2.0) \text{ MeV}$

- Observation of 5 narrow excited Ω_c -baryons in $\Omega_c^0 \to \Xi_c^+ K^-$: $\Omega_c(3000)^0$, $\Omega_c(3050)^0$, $\Omega_c(3066)^0$, $\Omega_c(3090)^0$, $\Omega_c(3119)^0$ [R. Aaij et al. (LHCb), PRL 118, 182001 (2017)]
- Observation of 2 heavier Ω_c(3185)⁰ and Ω_c(3327)⁰-baryons in the same Ω⁰_c → Ξ⁺_cK⁻ decay
 [R. Aaij et al. (LHCb), PRL 131, 131902 (2023)]

Orbitally Excited Ω_c -Baryons

• Measured masses (in MeV) [LHCb, 2023] and plausible J^P quantum numbers, assuming the quark-diquark model for $\Omega_c(=css) = c$ [ss] [M. Karliner & J. L. Rosner, PRD 95, 114012 (2017)]

$$\begin{array}{rcl} M(\Omega_c(3000)) &=& 3000.4 \pm 0.2 \pm 0.1; & J^P = 1/2^- \\ M(\Omega_c(3050)) &=& 3050.2 \pm 0.1 \pm 0.1; & J^P = 1/2^- \\ M(\Omega_c(3066)) &=& 3065.6 \pm 0.1 \pm 0.3; & J^P = 3/2^- \\ M(\Omega_c(3090)) &=& 3090.2 \pm 0.3 \pm 0.5; & J^P = 3/2^- \\ M(\Omega_c(3119)) &=& 3119.1 \pm 0.3 \pm 0.9; & J^P = 5/2^- \end{array}$$

Belle Results on Excited Ω_c -Baryons

[J. Yelton et al. [Belle Collab.], Phys.Rev. D97 (2018) 051102]

• Decay mode $\Omega_c \rightarrow \Xi_c^+ K^-$

Ω_c^* State	3000	3050	3066	3090	3119	318
Significance	3.9σ	4.6σ	7.2σ	5.7σ	0.4σ	2.4
LHCb Mass	$3000.4 \pm 0.2 \pm 0.1$	$3050.2 \pm 0.1 \pm 0.1$	$3065.5 \pm 0.1 \pm 0.3$	$3090.2 \pm 0.3 \pm 0.5$	$3119 \pm 0.3 \pm 0.9$	$3188 \pm$
Belle Mass	$3000.7 \pm 1.0 \pm 0.2$	$3050.2 \pm 0.4 \pm 0.2$	$3064.9 \pm 0.6 \pm 0.2$	$3089.3 \pm 1.2 \pm 0.2$	-	3199 \pm
(with fixed Γ)						

Updated LHCb results on excited Ω_c -baryons

R. Aaij et al. [LHCb Collab.], PRD 104 (2021) 091102

- Exclusive decay $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ is studied
- Four Ω_c^0 states are found in decay mode $\Omega_c
 ightarrow \Xi_c^+ K^-$
- The heaviest state is not confirmed

2023 update of LHCb results on excited Ω_c -baryons

R. Aaij et al. [LHCb Collab.], PRL 131, 131902 (2023)

- Decay mode $\Omega_c \rightarrow \Xi_c^+ K^-$
- The $\Omega_c(3119)^0$ state is confirmed now
- Observed two new broad baryons, $\Omega_c(3185)^0$ and $\Omega_c(3327)^0$

Quark-Diquark Model of Hadrons

- Quarks q_i^{α} and diquarks $\mathcal{Q}_{i\alpha}$ are building blocks of baryons and exotic hadrons
- α is the $SU(3)_C$ index and *i* is the $SU(3)_F$ index
- Color repres.: $3 \otimes 3 = \overline{3} \oplus 6$; only $\overline{3}$ is attractive

 $t_{ij}^{a}t_{kl}^{a} = -\frac{2}{3} \quad \underbrace{(\delta_{ij}\delta_{kl} - \delta_{il}\delta_{kj})/2}_{(\delta_{ij}\delta_{kl} - \delta_{il}\delta_{kj})/2} \quad +\frac{1}{3} \underbrace{(\delta_{ij}\delta_{kl} + \delta_{il}\delta_{kj})/2}_{(\delta_{ij}\delta_{kl} - \delta_{il}\delta_{kj})/2}$

antisymmetric: projects $\bar{3}$

symmetric: projects 6

• Interpolating diquark operators for the two spin states

Scalar: 0^+ $Q_{i\alpha} = \epsilon_{\alpha\beta\gamma} \left(c_c^{\beta\,T} C \gamma_5 q_i^{\gamma} - q_{ic}^{\beta\,T} C \gamma_5 c^{\gamma} \right)$ Axial-Vector: 1^+ $\vec{Q}_{i\alpha} = \epsilon_{\alpha\beta\gamma} \left(c_c^{\beta\,T} C \vec{\gamma} q_i^{\gamma} + q_{ic}^{\beta\,T} C \vec{\gamma} c^{\gamma} \right)$

Colorless combination with the quark results into the baryon

Orbitally Excited Ω_c -Baryons in the Diquark Model

Measured masses (in MeV) [LHCb] and plausible J^P quantum numbers, assuming the diquark model for Ω_c(= css) = c [ss] [M. Karliner & J. L. Rosner, PRD 95, 114012 (2017)]

$M[\Omega_c(3000)]$	=	$3000.44 \pm 0.07^{+0.07}_{-0.13} \pm 0.23;$ $J^P = 1/2^-$
$M[\Omega_c(3050)]$	=	$3050.18 \pm 0.04^{+0.06}_{-0.07} \pm 0.23; J^P = 1/2^-$
$M[\Omega_c(3066)]$	=	$3065.63 \pm 0.06 \pm 0.06 \pm 0.23;$ $J^P = 3/2^-$
$M[\Omega_c(3090)]$	=	$3090.16 \pm 0.11^{+0.06}_{-0.10} \pm 0.23; J^{P} = 3/2^{-}$
$M[\Omega_{c}(3119)]$	=	$3118.98 \pm 0.12^{+0.09}_{-0.23} \pm 0.23;$ $J^P = 5/2^-$

- To get the mass spectrum, effective Hamiltonian is required
- For P states, important to take into account tensor interaction

$$H_{\text{eff}} = m_c + m_{[ss]} + 2\kappa_{ss} \left(\mathbf{S}_s \cdot \mathbf{S}_s\right) + \frac{B_Q}{2} \mathbf{L}^2 + V_{\text{SD}},$$

$$V_{\text{SD}} = 2a_1 \left(\mathbf{L} \cdot \mathbf{S}_{[ss]}\right) + 2a_2 \left(\mathbf{L} \cdot \mathbf{S}_c\right) + b \frac{\langle S_{12} \rangle}{4} + 2c \left(\mathbf{S}_{[ss]} \cdot \mathbf{S}_c\right)$$

Mass Formulae for Orbitally Excited Ω_c -Baryons

Mass formulae follow from the effective Hamiltonian

$$\begin{split} m_1^{(1/2)} &= M_0^{(\Omega_c)} - \frac{1}{2} (6a_1 + a_2 + b + c) - \frac{1}{6} \sqrt{(2a_1 + 7a_2 + 3b - 9c)^2 + 2(4a_1 - 4a_2 - 3b)^2} \\ m_2^{(1/2)} &= M_0^{(\Omega_c)} - \frac{1}{2} (6a_1 + a_2 + b + c) + \frac{1}{6} \sqrt{(2a_1 + 7a_2 + 3b - 9c)^2 + 2(4a_1 - 4a_2 - 3b)^2} \\ m_1^{(3/2)} &= M_0^{(\Omega_c)} - \frac{1}{10} (5a_2 - 4b + 5c) - \frac{1}{30} \sqrt{(40a_1 + 5a_2 - 12b - 45c)^2 + 5(20a_1 - 20a_2 + 3b)^2} \\ m_2^{(3/2)} &= M_0^{(\Omega_c)} - \frac{1}{10} (5a_2 - 4b + 5c) + \frac{1}{30} \sqrt{(40a_1 + 5a_2 - 12b - 45c)^2 + 5(20a_1 - 20a_2 + 3b)^2} \\ m_2^{(5/2)} &= M_0^{(\Omega_c)} - \frac{1}{10} (5a_2 - 4b + 5c) + \frac{1}{30} \sqrt{(40a_1 + 5a_2 - 12b - 45c)^2 + 5(20a_1 - 20a_2 + 3b)^2} \\ m_2^{(5/2)} &= M_0^{(\Omega_c)} + 2a_1 + a_2 - \frac{b}{5} + c \end{split}$$

- There are five unknowns {M₀^(Ω_c), a₁, a₂, b, c} and nine measurements
- All unknowns can be fitted by using the χ^2 -analysis

Numerical analysis of excited Ω_c states in the Quark-Diquark model

Coefficients determined from the Ω_c-baryon masses (in MeV) measured by the LHCb and Belle Collaborations
 [A. Ali & A. Parkhomenko, JHEP 10 (2019) 256]

a ₁	a ₂	b	С	$M_0^{(\Omega_c)}$
13.46 ± 0.05	12.86 ± 0.13	13.49 ± 0.22	2.03 ± 0.08	3079.88 ± 0.13

 $M_0^{(\Omega_c)} \equiv m_c + m_{[ss]} + \kappa_{ss}/2 + B_Q$

Ω_b -Baryons

Status of Ω_b -Baryons

• Mass of the lowest Ω_b -baryon ($J^P = 1/2^+$) [PDG, 2024]

 $M_{\Omega_b} = (6045.8 \pm 0.8) \text{ MeV}$

- Its fine-structure partner with $J^P = 3/2^+$ is unknown yet
- Observation of 4 narrow excited Ω_b -baryons in $\Omega_b^- \to \Xi_b^0 K^-$: $\Omega_b(6316)^-$, $\Omega_b(6330)^=$, $\Omega_b(6340)^-$, $\Omega_b(6350)^-$ [R. Aaij et al. (LHCb), PRL 124, 082002 (2020)]

LHCb Results on Excited Ω_b -baryons

[R. Aaij et al. [LHCb Collab.], PRL 124 (2020) 082002]

• They are found in the decay channel $\Omega_b^- \rightarrow \Xi_b^0 K^-$

• Masses: $M_{\Xi_b^0} = 5791.9 \pm 0.5$ MeV; $M_{K^-} = 493.7$ MeV

Excited Ω_b -baryons in Quark-Diquark Model

• Masses (in MeV) for $\Omega_b(=bss) = b[ss]$ [LHCb, PRL 124 (2020) 082002]

$M[\Omega_b(6316)]$	=	$6315.64 \pm 0.31 \pm 0.07 \pm 0.50$
$M[\Omega_b(6330)]$	=	$6330.30 \pm 0.28 \pm 0.07 \pm 0.50$
$M[\Omega_b(6340)]$	=	$6339.71 \pm 0.26 \pm 0.05 \pm 0.50$
$M[\Omega_b(6350)]$	=	$6349.88 \pm 0.35 \pm 0.05 \pm 0.50$

 For Ω_b-baryon mass determination, an effective Hamiltonian is necessary; can be adopted from Ω_c-baryons
 [A. Ali & A. Parkhomenko, JHEP 10 (2019) 256]

$$H_{\text{eff}} = m_b + m_{[ss]} + \kappa_{ss} \left(\mathbf{S}_s \cdot \mathbf{S}_s \right) + \frac{B_Q}{2} \mathbf{L}^2 + V_{\text{SD}},$$

$$V_{\text{SD}} = a_1 \left(\mathbf{L} \cdot \mathbf{S}_{[ss]} \right) + a_2 \left(\mathbf{L} \cdot \mathbf{S}_b \right) + b \frac{\langle S_{12} \rangle}{4} + c \left(\mathbf{S}_{[ss]} \cdot \mathbf{S}_b \right)$$

 Four measurements do not allow to fix five coefficients; some reasonable assumptions about coefficients are required

Spin-Parity Assingments for Excited Ω_b -Baryons

- All four Ω_b-baryons are orbitally excited states
 [M. Karliner & J. L. Rosner, PRD 102, 014027 (2020)]
 - $J^P = 1/2^-, \, 1/2^-, \, 3/2^-, \, 3/2^-$ more favoured by them

•
$$J^P = 1/2^-, \, 3/2^-, \, 3/2^-, \, 5/2^-$$

- Fifth state is wide, not extracted from background
- According to our analysis, these assignments are unrealistic; coefficients in effective Hamiltonian are complex, i.e. unphysical

Alternative Spin-Parity Assignment of Ω_b -Baryons

- All four Ω_b-baryons are orbitally excited states
- Peak $\Omega_b(6330)$ has a double hurmed structure, not yet resolved experimentally
- Assumption: both states are degenerate in mass

 $\begin{array}{rcl} M(\Omega_b(6316)) &=& 6315.64 \pm 0.31 \pm 0.07 \pm 0.50; & J^P = 1/2^- \\ M(\Omega_b(6330)) &=& 6330.30 \pm 0.28 \pm 0.07 \pm 0.50; & J^P = 1/2^- \\ M(\Omega_b(6330)) &=& 6330.30 \pm 0.28 \pm 0.07 \pm 0.50; & J^P = 3/2^- \\ M(\Omega_b(6340)) &=& 6339.71 \pm 0.26 \pm 0.05 \pm 0.50; & J^P = 3/2^- \\ M(\Omega_b(6350)) &=& 6349.88 \pm 0.35 \pm 0.05 \pm 0.50; & J^P = 5/2^- \end{array}$

- Two physical solutions are exist (in MeV):
 - SI: $M_0^{(\Omega_b)} = 6337.3$, $a_1 = 2.4$, $a_2 = 5.1$, b = 5.4, c = 3.8
 - SII: $M_0^{(\Omega_b)} = 6325.7$, $a_1 = 3.6$, $a_2 = 5.1$, b = 1.3, c = 0.5
- Compare with fitted values from Ω_c^0 -baryons: $M_0^{(\Omega_c)} = 3079.88, a_1 = 13.46, a_2 = 12.86, b = 13.49, c = 2.03$

Other Alternative Interpretation of Ω_b^* -Baryons

- The other set of spin-parities: $J^P = 3/2^-, 3/2^-, 5/2^-, 1/2^+$; three states are orbitally excited and the fourth is radially excited
- Assuming: $a_2 = a_1$ and c = 0
 - SI: $M_0^{(\Omega_b)} = 6315.9$ MeV, $a_1 = 10.0$ MeV, b = 30.2 MeV
 - SII: $M_0^{(\Omega_b)} = 6325.7$ MeV, $a_1 = 4.6$ MeV, b = -1.1 MeV
 - Masses of their light $J^P = 1/2^-$ partners: $M_1^{(SI)} = 6229 \text{ MeV}, \quad M_2^{(SI)} = 6303 \text{ MeV}$ $M_1^{(SII)} = 6304 \text{ MeV}, \quad M_2^{(SII)} = 6317 \text{ MeV}$ • Therefore $M_1^{(SII)} = 670 \text{ MeV}$
 - Threshold in $\Omega_b^- \to \Xi_b^0 K^-$ decay: $M_{\rm thr} = 6285.6 \pm 0.5$ MeV
- Lowest state with $M_1^{(SI)} = 6229$ MeV is below the threshold
- Both solutions predict a state with the mass M ~ 6304 MeV; not yet seen experimentally; probably a wide state
- Higher mass state in SII is close in mass to $\Omega_b(6316)$; this state may have a double hurmed structure

Summary

- The assignment of spin-parities $J^P = 1/2^-$, $3/2^-$, $5/2^-$ to Ω_c -baryons observed by the LHCb and Belle Collaborations allows to fix all the coefficients in the effective Hamiltonian relevant for the mass spectrum
- This approach was used for the analysis of four excited $\Omega_b\text{-}\text{baryons}$ observed by the LHCb Collaboration in 2020
- The assignment of spin-parities $J^P = 1/2^-$, $3/2^-$, $5/2^-$ to Ω_b -baryons with the assumption that the second observed peak can have a double hurmed structure allows to fix all the coefficients in the effective Hamiltonian
- Alternative interpretation that three lowest mass states have spin-parities $J^P = 3/2^-$, $3/2^-$, $5/2^-$ predict Ω_b -baryon with the mass $M \simeq 6304$ MeV which is not yet seen experimentally
- Further experimental study of excited Ω_b -baryons will allow to test a correctness of quark-diquark model in application to heavy baryons