Измерение абсолютных вероятностей инклюзивных распадов B_s -мезонов в D-мезоны в эксперименте Belle

Мурад Ясавеев

Высшая школа экономики

Сессия-конференция секции ядерной физики ОФН РАН, посвященная 70-летию В.А. Рубакова

Исследования свойств B_s^0 -мезонов важны с точки зрения:

- изучения сильного взаимодействия при низких энергиях;
- измерения параметров Стандартной модели;
- поиска проявлений Новой физики.

Источники B_s^0 -мезонов:

• адронные машины (Tevatron, LHC);

•
$$e^+e^-
ightarrow \Upsilon(5S)
ightarrow B_s^{(*)} ar{B}_s^{(*)}$$
 (KEKB).

Рождение B_s^0 -мезонов на энергии $\Upsilon(5S)$ -резонанса

 f_s – вероятность рождения пары B_s^0 -мезонов на энергии $\Upsilon(5S)$ -резонанса

 $\mathcal{B}(\Upsilon(5S) \to D_s^{\pm}X)/2 = f_s \cdot \mathcal{B}(B_s^0 \to D_s^{\pm}X) + f_{B\bar{B}X} \cdot \mathcal{B}(B \to D_s^{\pm}X)$

Вероятность инклюзивного распада $B^0_s o D^\pm_s X$

Экспериментальное значение

$$\mathcal{B}(B^0_s
ightarrow D^\pm_s X) = (93 \pm 25)\%$$

Теоретическая оценка

$$\mathcal{B}(B^0_s o D^{\pm}_s X) = (92 \pm 11)\%$$

 $\mathcal{B}(B^0_s o D^0/\bar{D}^0 X) = (8 \pm 7)\%$

Прямое измерение в эксперименте Belle: $\mathcal{B}(B^0_s \to D^{\pm}_s X) = (60.2 \pm 5.8 \pm 2.3)\%$ (Belle <u>PRD 105, 012004</u>, 2022); $\frac{\mathcal{B}(B^0_s \to D^0/\bar{D}^0 X)}{\mathcal{B}(B^0_s \to D^{\pm}_s X)} = 0.416 \pm 0.018 \pm 0.092$ (Belle <u>JHEP08(2023)131</u>)

Результат прямого измерения в эксперименте Belle

Цель: новое измерение $\mathcal{B}(B^0_s \to D^\pm_s X)$ при помощи адронного тагирования. Первое прямое измерение $\mathcal{B}(B^0_s \to D^0/\bar{D}^0 X)$ и $\mathcal{B}(B^0_s \to D^\pm X)$.

Измерение всех трёх вероятностей даёт возможность проверки результата, так как их сумма должна превышать 100%.

Мурад Ясавеев (ВШЭ)

Измерение $\mathcal{B}(B_s \rightarrow D_{(s)}X)$

Идея прямого измерения

- Восстановление и отбор кандидатов в B_s^0 -мезоны выполняется в FEI;
- Число тагирующих B_s^0 -кандидатов определяется при помощи подгонки $M(B_s)$ -распределения;
- Для каждого B_s^0 строится остаток события, в котором осуществляется поиск *D*-мезонов;

- Восстановление и отбор кандидатов в B_s^0 -мезоны выполняется в FEI;
- Число тагирующих B_s^0 -кандидатов определяется при помощи подгонки $M(B_s)$ -распределения;
- Для каждого B_s^0 строится остаток события, в котором осуществляется поиск *D*-мезонов;
- Двумерное распределение $[M(B_s)$ vs. M(D)] аппроксимируется для получения числа пар $B_s D$:

$$egin{aligned} N_{B_s-D} &= N_{B_s} \cdot \mathcal{B}(B^0_s
ightarrow D/ar{D}X) \cdot \mathcal{B}_D \cdot arepsilon_D^{ ext{ROE}} \ \mathcal{B}(B^0_s
ightarrow D/ar{D}X) &= rac{N_{B_s-D}}{N_{B_s} \cdot \mathcal{B}_D \cdot arepsilon_D^{ ext{ROE}}}. \end{aligned}$$

Массовое распределение тагирующих B_s^0 -кандидатов

Распад	Требование к $\mathcal{P}_{\mathcal{B}_s}$	Число кандидатов, <i>N_{Bs}</i>
$\overline{B^0_s o D^\pm_s X}$	> 0.0012	12500 ± 310
$B^0_s ightarrow D^0/ar{D}^0 X$	> 0.0050	9610 ± 190
$B_s^0 o D^\pm X$	> 0.0200	6485 ± 120
Мурад Ясавеев (ВШЭ)	Измерение $\mathcal{B}(B_s ightarrow D_b)$	_{s)} X) Конференция ОФН РАН

8/20

Двумерное распределение

Пара $B_s - D$ может быть четырёх типов:

- сигнальный B_s сигнальный D;
- сигнальный B_s фоновый D;
- фоновый B_s сигнальный D;
- фоновый B_s фоновый D.

Подгонка двумерного распределения $[M(B_s)$ vs. $M(D_s)]$ в данных

 $D_s^+ \rightarrow \phi \pi^+$:

$$\mathcal{B}(B_s^0 \to D_s^{\pm}X) = (73.0 \pm 10.6 \pm 5.2)\%$$

Подгонка двумерного распределения $[M(B_s)$ vs. $M(D_s)]$ в данных

$$D_s^+ o ar{K}^{*0} K^+$$
:

$$\mathcal{B}(B^0_s \to D^{\pm}_s X) = (54.1 \pm 11.7 \pm 3.7)\%$$

Подгонка двумерного распределения $[M(B_s)$ vs. $M(D_s)]$ в данных

$$D_s^+ \rightarrow K_S^0 K^+$$
:

Результат измерения $\mathcal{B}(B^0_s o D^\pm_s X)$

$$\begin{split} \phi \pi^+ : & \mathcal{B}(B^0_s \to D^\pm_s X) = (73.0 \pm 10.6 \pm 5.2)\%; \\ \bar{K}^{*0} K^+ : & \mathcal{B}(B^0_s \to D^\pm_s X) = (54.1 \pm 11.7 \pm 3.7)\%; \\ & \mathcal{K}^0_S K^+ : & \mathcal{B}(B^0_s \to D^\pm_s X) = (88.2 \pm 16.2 \pm 7.0)\%. \end{split}$$

Эти значения усредняются при помощи метода HFLAV, учитывающего корелляцию систематических ошибок:

$$\mathcal{B}(B_s^0 \to D_s^{\pm} X) = (68.6 \pm 7.2 \pm 4.0)\%.$$

P-value подгонки равен 28%. Результат измерения согласуется с предыдущим результатом эксперимента Belle ($60.2 \pm 5.8 \pm 2.3$)%. Усреднение результатов двух измерений:

$$\mathcal{B}(B_s^0 \to D_s^{\pm} X) = (63.4 \pm 4.5 \pm 2.2)\%.$$

Вероятности распадов $\Upsilon(5S)$ -резонанса

Используя новое значение $\mathcal{B}(B^0_s \to D^{\pm}_s X)$, пересчитывается значение f_s при помощи метода, описанного в Ref.(JHEP08(2023)131):

$$f_s = (21.8 \pm 0.2 \pm 2.0)\%. \tag{1}$$

Для улучшения точности используется условие

$$f_s + f_{BBX} + f_{\mathcal{B}} = 1.$$

В результате подгонки трёх вероятностей находим:

$$f_{s} = (21.4^{+1.5}_{-1.7})\%;$$

$$f_{BBX} = (73.8^{+1.5}_{-2.9})\%;$$

$$f_{\mathcal{B}'} = (4.8^{+3.6}_{-0.5})\%.$$

Эти результаты уточняют предыдущие значения $f_s = (22.0^{+2.0}_{-2.1})\%$ (Belle JHEP08(2023)131), $f_{BBX} = (75.1 \pm 4.0)\%, f_{B'} = (4.9 \pm 0.6)\%$ (Belle JHEP06(2021)137)

Мурад Ясавеев (ВШЭ)

Измерение $\mathcal{B}(B_s o D_{(s)}X)$

Сечение процесса $e^+e^- o B^0_s ar{B}^0_s X$

Данная зависимость может использоваться в объединенном феноменологическом анализе различных измеренных сечений в подходе связанных каналов с целью изучения структуры $\Upsilon(5S)$ - и $\Upsilon(6S)$ -резонансов.

Подгонка двумерного распределения $[M(B_s)$ vs. $M(D^0)]$ в данных

 $D^0 \rightarrow K^- \pi^+$:

$$N_{B_s-D^0} = 56 \pm 16$$

 $\mathcal{B}(B^0_s o D^0/ar{D}^0 X) = (21.5 \pm 6.1 \pm 1.8)\%$

Результат измерения ${\cal B}(B^0_s o D^0/ar D^0 X)$

Используя новое значение $\mathcal{B}(B_s^0 \to D_s^{\pm}X)$ и отношение $\frac{\mathcal{B}(B_s^0 \to D^0/\bar{D}^0X)}{\mathcal{B}(B_s^0 \to D_s^{\pm}X)} = 0.416 \pm 0.018 \pm 0.092$, получим:

$$\mathcal{B}(B_s^0 \to D^0/\bar{D}^0 X) = (26.5 \pm 2.3 \pm 5.9)\%.$$

Это значение усредняется с результатом нашего измерения ${\cal B}(B^0_s o D^0/ar D^0 X) = (21.5 \pm 6.1 \pm 1.8)\%$:

$$\mathcal{B}(B^0_s o D^0/\bar{D}^0 X) = (23.9 \pm 4.1 \pm 1.8)\%.$$

Подгонка двумерного распределения $[M(B_s)$ vs. $M(D^+)]$ в данных

Обновлённые значения $\mathcal{B}(B^0_s \to D^{\pm}_s X)$ и $\mathcal{B}(B^0_s \to D^0/\bar{D}^0 X)$, а также новое значение $\mathcal{B}(B^0_s \to D^{\pm} X)$:

$$egin{aligned} &\mathcal{B}(B^0_s o D^\pm_s X) = (63.4 \pm 4.5 \pm 2.2)\%, \ &\mathcal{B}(B^0_s o D^0/ar{D}^0 X) = (23.9 \pm 4.1 \pm 1.8)\%, \ &\mathcal{B}(B_s o D^\pm X) = (12.6 \pm 4.6 \pm 1.3)\%. \end{aligned}$$

Сумма трёх вероятностей равна (99.9 \pm 7.6 \pm 3.8)%. Аналогичная сумма для B^+ - и B^0 -мезонов равна (107.9 \pm 3.4)%, что согласуется с суммой вероятностей расадов B_s^0 -мезона.

Заключение

Разработан метод адронного тагирования одного B_s -мезона в событиях $e^+e \to B_s^*\bar{B}_s^*.$

Метод позволил измерить абсолютные вероятности инклюзивных распадов:

$$egin{aligned} &\mathcal{B}(B^0_s o D^\pm_s X) = (68.6 \pm 7.2 \pm 4.0)\%, \ &\mathcal{B}(B^0_s o D^0/ar{D}^0 X) = (21.5 \pm 6.1 \pm 1.8)\%, \ &\mathcal{B}(B_s o D^\pm X) = (12.6 \pm 4.6 \pm 1.3)\%. \end{aligned}$$

Новые значения $\mathcal{B}(B_s^0 \to D_s^{\pm}X)$ и $\mathcal{B}(B_s^0 \to D^0/\bar{D}^0X)$ согласуются с результатами предыдущих изменений, вероятность $\mathcal{B}(B_s \to D^{\pm}X) = (12.6 \pm 4.6 \pm 1.3)\%$ измерена впервые. Уточнены вероятности распадов $\Upsilon(5S)$ -резонанса:

$$f_{s} = (21.3^{+1.6}_{-1.7})\%;$$

$$f_{BBX} = (73.9^{+1.6}_{-3.0})\%;$$

$$f_{\mathcal{B}'} = (4.8^{+3.7}_{-0.5})\%.$$

Back-up

Discussion of the result

The main contribution to $B_s^0 \rightarrow D_s^{\pm} X$ have the following diagrams:

The fragmentation fraction of the $c\bar{s}$ pair into D_s^+ mesons of $(85 \pm 10)\%$, assumed in theoretical estimate, is probably an overestimate. Thus, measurements of the inclusive branching fractions of the B_s^0 meson provide information about dynamics of its decays.

FEI variables

• B_s

- SigProb of each daughter;
- R_2 and $\cos \theta_{thrust}$, where θ_{thrust} is the angle between the thrust of the *B* candidate and the rest of the event (ROE);
- Masses of the $\rho(\rightarrow \pi\pi)$ and $a_1(\rightarrow 3\pi)$ candidates (if they are available).

• D_s^*

- SigProb of each daughter;
- *M*.

• *D*_s

- SigProb of each daughter;
- *M*;
- χ^2 of mass-vertex fit;
- for 3-body decays: masses of all pairs of daughters (ϕ , K^* , ρ).

• **J**/ψ

- SigProb of each daughter;
- *M*.

FEI variables

• K_S

- nisKsFinder output;
- *M*.
- π⁰
 - *M*;
 - p;
 - decay angle.

• γ

- number of hits in cluster;
- *E*₉/*E*₂₅ ratio;
- *E*;
- *p*_t.

•
$$\pi^{\pm}, \, K^{\pm}, \, \mu^{\pm}, \, e^{\pm}$$

- identification variables;
- p;
- *p*_t.

FEI reconstruction channels

$B^0_s ightarrow$	$B^+ ightarrow$	$B^0 ightarrow$
$ \frac{D_{s}^{-}\pi^{+}}{D_{s}^{-}\pi^{+}\pi^{0}} \\ D_{s}^{-}\pi^{+}\pi^{+}\pi^{-} \\ D_{s}^{s-}\pi^{+} \\ D_{s}^{s-}\pi^{0}\pi^{+} \\ D_{s}^{s-}\pi^{+}\pi^{+}\pi^{-} $		$ \begin{array}{c} D^{-}\pi^{+} \\ D^{-}\pi^{+}\pi^{0} \\ D^{-}\pi^{+}\pi^{+}\pi^{-} \\ D^{*-}\pi^{+} \\ D^{*-}\pi^{+}\pi^{0} \\ D^{*-}\pi^{+}\pi^{+}\pi^{-} \end{array} $
$ \frac{D_{s}^{-}D_{s}^{+}}{D_{s}^{*-}D_{s}^{+}} \\ D_{s}^{-}D_{s}^{*+}} \\ D_{s}^{*-}D_{s}^{*+} $	$D_{s}^{+}\bar{D}^{0}$ $D_{s}^{+}\bar{D}^{0}$ $D_{s}^{+}\bar{D}^{*0}$ $D_{s}^{+}\bar{D}^{*0}$	$D_{s}^{+}D^{-}$ $D_{s}^{*+}D^{-}$ $D_{s}^{+}D^{*-}$ $D_{s}^{*+}D^{*-}$
$J/\psi K^+ K^- J/\psi K^+ K^- \pi^0$	$J/\psi K^+ \ J/\psi K^0_{\rm S} \pi^+ \ J/\psi K^+_{\rm S} \pi^+ \pi^-$	$J/\psi K^0_S \ J/\psi K^+ \pi^-$
$ar{ar{D}^0 K^- \pi^+} \ ar{D}^{*0} K^- \pi^+ \ D_s^- K^+$	$D^{-}\pi^{+}\pi^{+}$ $D^{*-}\pi^{+}\pi^{+}$	$D^{*-}K^+K^-\pi^+$

Simultaneous fit

Конференция ОФН РАН 28 / 20

Event selection

$$\begin{split} \mathcal{B}(B_s^0 \to D_s^\pm X): & \bullet B_s: \\ & \bullet |p_{cm} - 0.42| < 0.09 \text{ GeV}/c; \\ & \bullet \mathcal{P}_{B_s} > 0.0012. \\ \bullet D_s: \\ & \bullet |dr| < 0.5 \text{ cm}, |dz| < 2.0 \text{ cm}; \\ & \bullet \mathcal{L}_{K/\pi} > 0.1, \mathcal{L}_{\pi/K} > 0.1; \\ & \bullet \phi \pi^+: |M_{KK} - 1.019| < 0.040 \text{ GeV}/c^2, |\cos \theta_{hel}| > 0.3; \\ & \bullet \kappa^* K^+: |M_{K\pi} - 0.892| < 0.100 \text{ GeV}/c^2, |\cos \theta_{hel}| > 0.3; \\ & \bullet \kappa^0_S K^+: |M_{K_s} - 0.498| < 0.015 \text{ GeV}/c^2 + \text{ standard criteria.} \\ \\ \mathcal{B}(B_s^0 \to D^0/\bar{D}^0 X): & \mathcal{B}(B_s^0 \to D^\pm X) \\ & \bullet B_s: & \bullet B_s: \\ & \bullet |p_{cm} - 0.42| < 0.09 \text{ GeV}/c; \\ & \bullet \mathcal{P}_{B_s} > 0.005. \\ & \bullet D^0 \to K^- \pi^+: \\ & \bullet |dr| < 0.5 \text{ cm}, |dz| < 2.0 \text{ cm}; \\ & \bullet \mathcal{L}_{K/\pi} > 0.6, \mathcal{L}_{\pi/K} > 0.1. \\ \end{split}$$

Systematic uncertainty

Source	$\phi \pi^+$	Channel $ar{K}^{*0}K^+$	$K_S^0 K^+$	Combined
Signal shape	2.3	1.8	1.6	2.0
Broken signal	0.9	0.9	0.9	0.9
Smooth background	1.6	1.0	1.1	1.4
Tracking	1.1	1.1	1.1	1.1
K/π identification	2.1	1.9	0.7	1.7
$K_{\rm S}^0$ reconstruction	_	_	2.3	0.6
D_s momentum	0.8	0.6	0.2	0.6
Dalitz plot	0.8	0.8	_	0.6
FEI efficiency	3.6	3.6	3.6	3.6
MC statistics	4.4	4.5	5.7	2.7
$\overline{\mathcal{B}(D_s o KK\pi)}$	1.9	1.9	_	1.4
$\mathcal{B}(D_s \to K_S K)$	_	-	2.4	0.6
$\mathcal{B}(K_S^0 o \pi^+\pi^-)$	-	_	< 0.1	-
Total	7.2	6.9	7.9	5.9

Systematic uncertainty

Source	$B^0_s ightarrow D^0/ar{D}^0 X$	$B^0_s ightarrow D^{\pm} X$
Signal shape	2.0	0.6
Broken signal	1.1	2.9
Smooth background	0.3	0.9
Tracking	0.7	1.1
K/π identification	1.2	3.0
D momentum	0.2	<0.1
FEI efficiency	2.1	2.1
MC statistics	7.5	9.0
$\mathcal{B}(D o K\pi(\pi))$	0.8	1.7
Total	8.3	10.4

Source	Semileptonic tag	This work	Combined
Uncorrelated	3.0	5.3	2.6
Tracking	1.1	1.1	1.1
K/π identification	1.3	1.7	1.5
$\mathcal{B}(D_s o KK\pi)$	1.5	1.4	1.4
$\mathcal{B}(D_s \to K_S K)$	0.4	0.6	0.5
Total			3.5

	${\cal B}(B^0 o D^0 X)$, %	${\cal B}(B^0 o D^+ X)$, %	$\mathcal{B}(B^0 o D_s X)$, %
Result	$54.54 \pm 0.81 \pm 0.59$	$37.68 \pm 0.56 \pm 0.32$	$12.35 \pm 0.39 \pm 0.29$
PDG	55.5 ± 3.2	39.2 ± 3.5	$11.8^{+2.2}_{-2.0}$
	$\mathcal{B}(B^+ \to D^0 X)$. %	$\mathcal{B}(B^+ \rightarrow D^+X)$, %	$\mathcal{B}(B^+ \to D_s X)$. %
 Result	$81.39 \pm 0.81 \pm 0.63$	$11.35 \pm 0.37 \pm 0.17$	$12.52 \pm 0.33 \pm 0.24$
PDG	87.6 ± 4.1	12.4 ± 1.3	9.0 ± 1.4

Мурад Ясавеев (ВШЭ)

Измерение $\mathcal{B}(B_s o D_{(s)}X)$

Конференция ОФН РАН 33 / 20

Using the ratio of production rates f^{+-}/f^{00} at the $\Upsilon(4S)$, we find

$${\cal B}(B o D^0/ar D^0 X) = (67.81\pm 0.56\pm 1.00)\%,$$

$$\mathcal{B}(B \to D_s^+/D_s^-X) = (12.35 \pm 0.25 \pm 0.27)\%.$$

These branching fractions are in agreement with the last Belle results:

$$\mathcal{B}(B o D^0/ar{D}^0 X) = (66.65 \pm 0.04 \pm 1.77)\%,$$

$$\mathcal{B}(B \to D_s^+/D_s^-X) = (11.28 \pm 0.03 \pm 0.55)\%.$$

We take the accuracy with which this test is carried out as a systematic error of our method.