Об асимптотически безопасных четырехмерных калибровочных теориях с дополнительными операторами размерности-4 (по мотивам 2502.xxxx)

Альфия Мухаева

Объединенный институт ядерных исследований, Лаборатория теоретической физики им. Н.Н. Боголюбова

Сессия-конференция секции ядерной физики ОФН РАН, посвященная 70-летию В. А. Рубакова

Москва, 18.02.2025

4 AR 1 4 E 1 4 E 1

Калибровочно-юкавские теории

$$L = -\frac{1}{2}F^{2} + i\bar{Q}\gamma_{\mu}D^{\mu}Q + y(\bar{Q}_{L}HQ_{R} + h.c.)$$
 Yukawa
+Tr[DH[†]DH] - λ_{u} Tr[(H[†]H)²] - λ_{v} Tr[H[†]H]²
Gauge Scalar self-interactions

- * 4D: Стандартная модель, темная материя, ...
- * 3D: Конденсированные среды, фазовые переходы, ...
- * 2D: Графен, ...
- * 4plusD: Теория струн, ...

э.

Асимптотическая свобода vs Асимптотическая безопасность

- Асимптотическая свобода [Gross, Wilczek, Politzer'71]
 - * Невзаимодействующая в УФ
 - * Логарифмический

- Асимптотическая безопасность [Weinberg'80]
 - * Взаимодействующая в УФ
 - * Степенной

Ренормгрупповое уравнение

■ Бег констант связи λ_i в КТП - описывается уравнением ренормгруппы (РГ)

$$\frac{\partial \lambda_i}{\partial \log \mu} = \beta_i(\{\lambda\})$$

β-функции вычисляются в теории возмущений как разложение по константам связи

$$\beta_{\lambda} = c_1 \lambda^2 + c_2 \lambda^3 + \dots$$

β_i-функции определяются в конкретной теории исходя из имеющихся симметрий и полей

Существуют различные методы вычисления β_i -функций

Фиксированные точки

Фиксированные точки λ_i^* – точки в пространстве констант связи, удовлетворяющие

$$\beta_i(\{\lambda\}) = 0$$

- Инфракрасные точки удовлетворяют $\lim_{\mu \to 0^+} \lambda(\mu) = \lambda^*$
- lacksquare Ультрафиолетоваые точки удовлетворяют $\lim_{\mu o\infty}\lambda(\mu)=\lambda^*$
- УФ точки позволяют определить КТП вплоть до больших энергий

イロト イポト イヨト イヨト

Ультрафиолетовые фиксированные точки в теории возмущений

Возможные сценарии для фиксированных точек:

- \star Гауссовы фиксированные точки $\lambda^*=0$ асимптотическая свобода
- $\star\,$ Взаимодействующие ультрафиолетовые точки $\lambda^* \neq 0$ асимптотическая безопасность
- По теории возмущений
 - \star Для асимптотической безопасности 0 < $|\lambda^*| \ll 1$
- Какие существуют необходимые условия для реализации асимптотической безопасности?
 - Юкавские константы связи обеспечивают появление взаимодействующей УФ точки в калибровочных теориях
 - * Скалярные константы связи обеспечивают независимые условия согласованности таких теорий

$$\lambda^* = \text{real}, \quad V_{eff}(\phi) = \text{stable}$$

A D N A 40 N A 2 N A 2 N

Описание модели

- *SU*(*N_c*) калибровочная группа
- $SU_L(N_f) \times SU_R(N_f)$ глобальная симметрия
- Лагранжиан (*d* = 4)

Field	$SU(N_c)$	$U_L(N_f)$	$U_R(N_f)$
ψ_L	N _c	N _f	1
ψ_{R}	N _c	1	N _f
Н	1	N _f	N _f

$$\mathcal{L} = -\frac{1}{4}F^{a\mu\nu}F^{a}_{\mu\nu} + \mathcal{L}_{gf} + \mathcal{L}_{gh} \quad [F_{\mu\nu} \equiv \partial_{\mu}G^{a}_{\nu} - \partial_{\mu}G^{a}_{\mu} + gf^{abc}G^{b}_{\mu}G^{c}_{\nu}]$$

$$+ \operatorname{Tr}(\bar{\psi}i\hat{D}\psi) + \operatorname{Tr}(\partial^{\mu}H^{\dagger}\partial_{\mu}H) - m^{2}\operatorname{Tr}(H^{\dagger}H)$$

$$- y_{1}(\operatorname{Tr}[\bar{\psi}_{L}H\psi_{R}] + \text{h.c.}) - y_{2}(\operatorname{Tr}[\bar{\psi}_{L}H^{\dagger}\psi_{R}] + \text{h.c.})$$

$$- y_{3}(\operatorname{Tr}[\bar{\psi}_{L}\psi_{R}]\operatorname{Tr}[H] + \text{h.c.}) - y_{4}(\operatorname{Tr}[\bar{\psi}_{L}\psi_{R}]\operatorname{Tr}[H^{\dagger}] + \text{h.c.})$$

$$- u\operatorname{Tr}[H^{\dagger}HH^{\dagger}H] - v\operatorname{Tr}[H^{\dagger}H]\operatorname{Tr}[H^{\dagger}H] + \delta\mathcal{L}_{4}$$

э

イロト イボト イヨト イヨト

Также рассмотрим операторы размерности-4, нарушающие $SU_L(N_f) \times SU_R(N_f) \to SU(N_f)$ симметрию

 $\delta \mathcal{L}_{4} = -s_{1} \left[\mathsf{Tr}(HHHH) + \text{h.c.} \right] - s_{2} \left[\mathsf{Tr}(HHH^{\dagger}H^{\dagger}) \right] - s_{3} \left[\mathsf{Tr}(HHHH^{\dagger}) + \text{h.c.} \right] = -\vec{\kappa}_{single}^{(4)}$

$$\begin{split} \delta \mathcal{L}_4 &= -d_1 \left[\mathsf{Tr}(HH) \, \mathsf{Tr}(H^{\dagger} H^{\dagger}) \right] - d_2 \left[\mathsf{Tr}(HH) \, \mathsf{Tr}(HH) + \mathrm{h.c.} \right] \\ &- d_3 \left[\mathsf{Tr}(HH) \, \mathsf{Tr}(HH^{\dagger}) + \mathrm{h.c.} \right] - d_4 \left[\mathsf{Tr}(HHH) \, \mathsf{Tr}(H) + \mathrm{h.c.} \right] \\ &- d_5 \left[\mathsf{Tr}(HHH) \, \mathsf{Tr}(H^{\dagger}) + \mathrm{h.c.} \right] - d_6 \left[\mathsf{Tr}(HH^{\dagger} H) \, \mathsf{Tr}(H) + \mathrm{h.c.} \right] \\ &- d_7 \left[\mathsf{Tr}(HH^{\dagger} H) \, \mathsf{Tr}(H^{\dagger}) + \mathrm{h.c.} \right] = -\vec{\kappa}_{double}^{(4)} \cdot \vec{O}^{(4)}. \end{split}$$

$$\begin{split} \delta \mathcal{L}_4 &= t_1[\operatorname{Tr}(HH)\operatorname{Tr}(H)\operatorname{Tr}(H) + \mathrm{h.c.}] + t_2[\operatorname{Tr}(HH)\operatorname{Tr}(H)\operatorname{Tr}(H^{\dagger}) + \mathrm{h.c.}] \\ &+ t_3[\operatorname{Tr}(HH)\operatorname{Tr}(H^{\dagger})\operatorname{Tr}(H^{\dagger}) + \mathrm{h.c.}] + t_4[\operatorname{Tr}(H^{\dagger}H)\operatorname{Tr}(H)\operatorname{Tr}(H) + \mathrm{h.c.}] \\ &+ t_5[\operatorname{Tr}(H^{\dagger}H)\operatorname{Tr}(H)\operatorname{Tr}(H^{\dagger}) + \mathrm{h.c.}] = -\vec{\kappa}_{triple}^{(4)} \cdot \vec{O}^{(4)}. \end{split}$$

 $\delta \mathcal{L}_4 = q_1[\operatorname{Tr}(H)\operatorname{Tr}(H)\operatorname{Tr}(H)\operatorname{Tr}(H) + \text{h.c.}] + q_2[\operatorname{Tr}(H)\operatorname{Tr}(H)\operatorname{Tr}(H)\operatorname{Tr}(H)\operatorname{Tr}(H^{\dagger}) + \text{h.c.}]$ $+ q_3[\operatorname{Tr}(H)\operatorname{Tr}(H)\operatorname{Tr}(H^{\dagger})\operatorname{Tr}(H^{\dagger}) + \text{h.c.}] = -\vec{\kappa}_{quadruple}^{(4)} \cdot \vec{O}^{(4)}.$

Операторы размерности-3

$$\begin{split} \delta \mathcal{L}_{3} &= -m_{\psi} \operatorname{Tr}(\bar{\psi}\psi) - \frac{h_{2}}{2} \left[\operatorname{Tr}(HH^{\dagger}H) + \text{h.c.} \right] - \frac{h_{3}}{2} \left[\operatorname{Tr}(HH^{\dagger}) \operatorname{Tr}(H) + \text{h.c.} \right] \\ &- \frac{h_{4}}{2} \left[\operatorname{Tr}(HHH) + \text{h.c.} \right] - \frac{h_{5}}{2} \left[\operatorname{Tr}(HH) \operatorname{Tr}(H) + \text{h.c.} \right] \\ &- \frac{h_{6}}{2} \left[\operatorname{Tr}(HH) \operatorname{Tr}(H^{\dagger}) + \text{h.c.} \right] - \frac{h_{7}}{2} \left[\operatorname{Tr}(H) \operatorname{Tr}(H) \operatorname{Tr}(H) + \text{h.c.} \right] \\ &- \frac{h_{8}}{2} \left[\operatorname{Tr}(H) \operatorname{Tr}(H) \operatorname{Tr}(H^{\dagger}) + \text{h.c.} \right] = -\vec{\kappa}^{(3)} \cdot \vec{O}^{(3)} \end{split}$$

・ロト ・四ト ・ヨト ・ヨト

Правила Фейнмана

Способы вычисления β -функций в GY модели в теории возмущений:

■ Переписать лагранжиан в терминах действительных скаляров, используя (a = 1,..., 2N_f²)

$$H = \phi^a T^a, \qquad H^\dagger = \phi^a \overline{T}^a, \qquad \overline{T}^a \equiv T^{a\dagger}, \qquad \operatorname{Tr}(T^a \overline{T}^b) + \operatorname{Tr}(T^b \overline{T}^a) = \delta^{ab}$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

A B < A B </p>

< □ > < A >

æ

э

э.

E 990

Предел Венециано

 \blacksquare Предел Венециано: $N_{f,c} o \infty$, $N_f/N_c = {
m const}$

■ 't Hooft-like константы связи:

$$\alpha_{g} = \frac{g^2 N_c}{16\pi^2}, \quad \alpha_{y_{1,2}} = \frac{y_{1,2}^2 N_c}{16\pi^2}, \quad \alpha_{u} = \frac{u N_f}{16\pi^2}, \quad \alpha_{v} = \frac{v N_f^2}{16\pi^2}.$$

$$\boldsymbol{\alpha}_{\boldsymbol{s}_i} = \frac{\boldsymbol{s}_i N_f}{(4\pi^2)}, \quad \boldsymbol{\alpha}_{\boldsymbol{d}_i} = \frac{d_i N_f^2}{(4\pi^2)}, \quad \boldsymbol{\alpha}_{\boldsymbol{t}_i} = \frac{t_i N_f^3}{(4\pi^2)}, \quad \boldsymbol{\alpha}_{\boldsymbol{q}_i} = \frac{q_i N_f^4}{(4\pi^2)}$$

$$\begin{split} m'_{\psi} &= m_{\psi} \sqrt{N_c}, \qquad \alpha_{h_2} = h_2 N_f, \qquad \alpha_{h_3} = h_3 N_f^2, \qquad \alpha_{h_4} = h_4 N_f, \\ \alpha_{h_5} &= h_5 N_f^2, \qquad \alpha_{h_6} = h_6 N_f^2, \qquad \alpha_{h_7} = h_7 N_f^3, \qquad \alpha_{h_8} = h_8 N_f^3 \end{split}$$

Малый параметр разложения - $\frac{11}{2} < \epsilon < \infty$ и | ϵ | « 1
 1-петлевая калибровочная бета-функция $\partial_t \alpha_g = \alpha_g^2 [\frac{4}{3} \epsilon + ...]$

Предел Венециано

Пля $\beta_i(N_c \to \infty)$ вычислить фиксированные точки как разложение по ϵ :

$$\alpha_x^* = \sum_{i=1}^{\infty} c_x^{(i)} \epsilon^i$$
, perturbative control!

Для нахождения c_x⁽ⁿ⁾ необходимо рассмотреть

 $\begin{array}{ll} (n+1) & \mathrm{loop} & \beta_g & \mathrm{gauge} \\ n & \mathrm{loop} & \beta_y & \mathrm{Yukawa} \\ n & \mathrm{loop} & \beta_{u,v,s_i,d_i,t_i,q_i} & \mathrm{scalar} \end{array}$

Современные результаты: в 433 - порядке

 $\alpha_x^* = c_x^{(1)} f_x^{(1)} \epsilon + c_x^{(2)} f_x^{(2)} \epsilon^2 + c_x^{(3)} f_x^{(3)} \epsilon^3,$ 211 322 433
Litim Litim et al'17 Litim et al'23
Sannino'14 Litim et al'21 Bednyakov, AM'24

УФ фиксированные точки & Критические экспоненты

В пределе Венециано, можно вычислить фиксированные точки, например, в 211 порядке

$$\begin{split} \alpha_{g}^{*} &= \frac{26}{57} \epsilon, \\ \alpha_{y_{1,2}}^{*} &= \frac{4}{19} \epsilon, \\ \alpha_{u}^{*} &= \frac{1}{19} \left(\sqrt{23} - 1 \right) \epsilon, \\ -\alpha_{v}^{*} &= \frac{1}{19} \left(\sqrt{20 + 6\sqrt{23}} - 2\sqrt{23} \right) \epsilon, \\ \alpha_{s_{i},d_{i},t_{i},q_{i}}^{*} &= 0 \end{split}$$

П Для $\alpha^* = \alpha^*(\epsilon)$, получим

$$\theta_{g}(\alpha^{*}) < 0 < \theta_{i,i\neq g}(\alpha^{*})$$

одно IR-relevant направление

$$\begin{split} \theta_{1} &= -\frac{104\epsilon^{2}}{171} + \frac{2296\epsilon^{3}}{3249}, \\ \theta_{2} &= \frac{52\epsilon}{19}, \quad \theta_{3} = \frac{8\epsilon}{19}, \\ \theta_{4} &= \frac{8}{19}\sqrt{2\left(10 + 3\sqrt{23}\right)}\epsilon, \quad \theta_{5} = \frac{16\sqrt{23}\epsilon}{19}, \\ \theta_{6} &= \frac{16\epsilon}{19}, \\ \theta_{7} &= \frac{8}{19}\left(1 + \sqrt{23}\right)\epsilon, \\ \theta_{8} &= \frac{4}{19}\left(2 + \sqrt{2\left(10 + 3\sqrt{23}\right)}\right)\epsilon. \end{split}$$

イロト イボト イヨト イヨト

Аномальные размерности dim=3 операторов

$$\frac{d}{d\ln\mu}\vec{\kappa}\equiv\dot{\vec{\kappa}}=\vec{\beta}_{\kappa}=\gamma_{\kappa}(\alpha)\cdot\vec{\kappa}$$

$$\begin{split} \gamma_1 &= \frac{4}{19}\epsilon + \frac{14567}{6859} - \frac{2376\sqrt{23}}{6859}\epsilon^2, \\ \gamma_2 &= \frac{4}{19}\left(1 + 2\sqrt{23}\right)\epsilon + \frac{606162}{6859\sqrt{23}} - \frac{99745}{6859}\epsilon^2, \\ \gamma_3 &= \frac{4}{19}\left(1 + \sqrt{20 + 6\sqrt{23}}\right)\epsilon \\ &\quad + \left(\frac{14567}{6859} - \frac{2376\sqrt{23}}{6859} + \frac{\sqrt{2(1475668498887\sqrt{23} - 7061359720318)}}{6859\sqrt{2461}}\right)\epsilon^2, \\ \gamma_4 &= \frac{12}{19}\epsilon + \frac{\left(\frac{5543672944446837727632 - 904219600192605645696\sqrt{23}}{870095712362665842288}\right)\epsilon^2. \end{split}$$

▲ロト ▲圖ト ▲画ト ▲画ト 二直 …の文(で)

Результаты

Конформное окно

- lacksquare ограничения на константу связи 0 $<|lpha^*|\lesssim 1$
- условие стабильности вакуума $\alpha_u^* > 0$ и $\alpha_u^* + \alpha_v^* > 0$
- слияние фиксированных точек (столкновение UV и IR фиксированных точек $\Leftrightarrow \theta = 0$)

Пары (N_c, N_f) , соответствующие асимптотически безопасным КТП: $(N_c, N_f) = (5, 28), (7, 39), (8, 45), (9, 50), (10, 56), (11, 61), (11, 62), (12, 67)...$

Результаты и Планы

- Вычислены все β_x до 433-порядка
- \blacksquare Вычислены α^* и $heta_i$ до $O(\epsilon^3)$
- Вычислены аномальные размерности для полей и операторов размерности-3
- 🔳 Найдены области конформного окна
 - * Непертурбативные вычисления
 - * Поправки к эффективному потенциалу [Steudtner'24]
 - ★ Что насчет 544?

Спасибо за внимание!

N 4 E N 4 E N