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Our results on describing the infinite (continuous) particle
on curve space-time will be presented.

In 4D space-time infinite spin representations are massless (P™Py, = 0)
unitary irreps of the Poincaré group which obey [E.Wigner, 1939;
V.Bargmann, E.Wigner, 1948]:
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Each of these representations contains infinite tower of states with all
(integer or half-integer) helicities.

The same spectrum of states is used in higher spin theory
that considers infinite tower of the helicity states (W™Wpy = 0, Wy, = APp).

There are some similarities higher spin theory and infinite spin theory.

But there are a number of differences:

e in highest spin theory all spins unite with each other through interaction,
whereas in infinite spin theory all spins are combined together initially;

e in infinite spin theory there is dimensionfull parameter .



Infinite spin reps were researched in the 2000s in many studies. But, in almost
all paper, infinite spin particles were considered in flat space.

There are very few papers on infinite spin particle in curved space.

e In [Metsaev, 2017], the Lagrangian infinite spin formulation was constructed
by specific deformation of the Fronsdal Lagrangian on AdS. This result was
later confirmed in [Metsaev, 2019] within light-cone approach.

e In [Khabarov, Zinoviev, 2017], the Lagrangian construction for an infinite
spin field in AdS space was realized in the frame-like formulation.

e Infinite spin fields in AdS space were discussed also in the review [Bekaert,
Skvortsov, 2017].

e In these papers, the Lagrangian formulation for infinite spin fields was
constructed not in an arbitrary curved space-time, but only in AdS space.

This talk will present 1d infinite spin particle model and define
the representation of the SO(2,3) group realized on wave function of the
infinite spin particle in the AdS, space.



4D infinite (continuous) spin fields

Since infinite spin representations are infinite-dimensional (at a fixed
space-time coordinate), it is necessary

@ to consider an infinite tower of space-time fields
@ or consider generalized fields that depend on an additional coordinate.
To take into account symmetries, the second choice is preferred.

One of the possible choices is to use commuting vector y™ as additional
coordinate (see, for example, [E.Wigner, V.Bargmann]|, as well as most articles
on infinite spin fields).

In such formulation, infinite spin field ®(x™,y™) depends on
the position vector x™ and vector coordinate y™.

To describe irreducible infinite spin representations,
the field ®(x™,y™) obeys the Wigner-Bargmann equations of motion.

We use different formulation in describing
infinite (continuous) spin representations.



4D infinite spin fields with additional spinor coordinate

In our formulation, the additional variable is _
commuting Weyl spinor £%, £* = (£%)*, a = 1, 2.

The field ®(x; &, &) describing infinite integer-spin representation obeys the
following equations of motion [[.Buchbinder, SF, A Isaev, V.Krykhtin, 2018]

amam ¢(x;£,§) = 0,

[i(gamg’)am T u: o(x;6,E) = 0,

|:Z (gami) 8I‘T] - I‘l’- ¢(X,f,g) = 07

[sa 2] oxied = o.

Due to the first three equations, the field ®(x; &, £) satisfies
W2O(x;€,€) = —pd(x;€,).

and describes irreducible massless infinite spin representation.



4D infinite spin particle in flat space

In 1d description, the dynamics of infinite spin particle is determined by the
set of the first class constraints: [[.Buchbinder, SF, A.Isaev, V.Krykhtin, 2018§]

P"pm =~ O,
(™) pm—p ~ O,
(76" m)pm—p =~ O,
&m — 7€
in the phase space with canonical Poisson brackets
X" pn},, =00, (&%), =05, {7, =95

It is flat-space formulation of infinite spin particle.
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The main task is to generalize this model to the case of curved space-time.
The basic requirements for such a construction are:

e General covariant generalization of constraints with a given flat limit.

e Closure of the algebra of new constraints.

These conditions lead restrictions on space-time geometry.



Generalization to curved space-time

Now x#(7) are local coordinates in curved space, £%, %, m,, T are
two-component spinors in tangent space. Their Poisson brackets are

{XP‘?pV}pB = 555 {§a7ﬂ-ﬂ}p5 = 537 {gd’ﬁ-g}pg = 5; ’

Space-time geometry is described by metric g,.,(X), vierbein €]]'(x) and
spin connection w,™ (X).

Transition from flat space-time to curved space-time involves the replacement

1
Ewumanna Pm = emPy,

where Mmn = Eomnm — ﬁ&mng — generators of tangent Lorentz transformations

Py — P;L = Pp +

Components of “covariant momentum” satisfy the Poisson brackets algebra
1

{PN7PV}PB = 2

mn
Rp,l/ an 9

where R,,™, is the curvature tensor.



Restriction on space-time geometry

Covariant generalization of the flat space constraints should be of the form:
P"Pm+---~0, (£c™E) Pm—p+ - ~0, (76" T) Pm —pp+ -+~ =0

were the dots mean terms that disapper at vanishing the gravity background.

Closing the algebra of constraints leads to the following important
consequences:

@ Curved space must be the Riemannian space with zero torsion: T,,™ = 0.

@ Curvature tensor of the background geometry should be of the form:

Rmn‘ = £ (610n — 0mdp)

where k is a constant. That is, only spaces of constant curvature are
allowed as background: Minkowski space (k = 0),
de Sitter space (x > 0) and anti de Sitter space (k < 0).

o All additional terms (the dots in the formulas above) in the constraints
are fully defined. They include special non-minimal terms proportional to
curvature.



Curve space-time constraints

In the case of AdS, space the final constraints have the form

1 1
Fo = P"Pm—7Rm*M™My, — 5 wK? — 2pu|s["/? =~ 0,
1
F o= (60" Pn—p+ 762K ~ 0,
s —~m 1 1/24-2
F = (76 71')77m—,u—|—Z|/£| Ke ~ 0,
U = N-N =~ 0,

where K= N+N, N =¢%,, N =758%
The only non-zero Poisson bracket of constraints has the form

{F.F} = —KFo+|s['?K (F+F) .

Replacing phase space coordinates with operators (taking into account their
ordering) and considering constraints as equations of motion (first operator
quantization), we obtain field theory of infinite spin particle on AdS; space.



Infinite spin field in AdS; space

The infinite spin states in AdS; are described by the fields & = &(x, &, €),
subject to the conditions

Led=0, Ld=0, L'dé=0, Ud=0,

with the constraint operators

_ _ 1
Ly = D2+K(NN+N+N)+2/L|H‘1/2—§KK2,
= 1
L = i(¢o"¢)enDy —p—71Ix
0 0 1

+ _— i = v I T2k 2

L <()£U 5)emD — = 5 In[2K,

U = N-N.

Here the D,, are the covariant derivative operators defined by

1 o 0 = . o\a O
D, = 8# + > w#mn M, Mmn = & (Umn)aB 8—@ 4 &5 (Umn) 8 8—55
Lo, L, LT, N, N, K are operators corresponding to Fo, F, F, N, N, K.

&

F le, N= N = &5 —
or example, £« (%a, PR



SO(2, 3) symmetry
On considered space it is realized the AdS, algebra so(2, 3):
[Pm, Pn] = R72\]mn 5

[Imns P1] = 9niPm — 7miPn [Imn, Jk] = nkdmi + Tmidnk — i dmk — DmieInl 5

where R = || ~1/2 is the curvature radius of AdS, space.
The generators of the so(2,3) algebra have the form:

1
Pm = elnf] (8# — E w#kIJH) 5

Jmn = (nmuég - nnu(srl]jf])xu + an o

0
oxV
We obtain a very strong conclusion: the zero commutators

[Jmn, LO] - [Jmm L] = [\]mn, L+] - [Jmm U] =0
of all constraints operators and all so(2,3) generators.
Thus, the infinite spin field in AdS; space are SO(2, 3)-invariant.




Irreducible unitary SO(2, 3) representations

SO(2, 3) irreducible representations are defined by two Casimir operators:
@ the second order Casimir operator

1
C, =R*P"™P, — EJm”Jmn :
@ the fourth order Casimir operator

1 1 1 1
Cy = ) J™ Jn Cz—i—RZPmenPkan—i—Z Janmn_g (J anmn)z_Z \]annk\]lilm ‘
Infinite spin field in AdS, space is the eigenvector of Casimir operators:

Czq) = Czd), C4d) = C4d)7 where Cor = —2(1 + /J,R)7 Cq = /JR(]. + [,LR)

1 1
Casimir operators are not independent on the fields ®: C; = > Cy (E Co + 1) .

Since there is only one independent Casimir operator in the given irrep, this
irrep exactly corresponds to the most degenerate representation for the
SO(2,3) group [N.Limi¢, J.Niederle, R.Raczka, 1966].

These obtained results correspond to classification of classically unitary
infinite spin fields in AdS, obtained in [R.Metsaev, 2019] with using the
light-cone formalism.



Conclusion

We obtained the following results:

]

]

]

]

We present a new particle model that generalizes for curved space-time an
infinite spin particle in flat space. The model is described by commuting
Weyl spinor additional coordinates.

It is proved that this model is consistent only in an external gravitational
field corresponding to constant curvature spaces.

It is shown that in our model, infinite spin fields in AdS, space are
described by the most degenerate representations of the SO(2, 3) group.

Further research

Formulation of fermionic infinite spin field theory in curve space.

Derivation of cubic interaction vertex for infinite spin fields on AdS; space
among themselves and for their interactions with finite spin fields.

Construction of supersymmetric infinite spin filed theory in AdS,; space

In next talk I.LL. Buchbinder will present the BRST-like Lagrangian
formulation for infinite spin fields in AdSs space.



Thank you very much for your attention !



