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Our results on desribing the in�nite (ontinuous) partile

on urve spae-time will be presented.

In 4D spae-time in�nite spin representations are massless (PmPm = 0)
unitary irreps of the Poinar�e group whih obey [E.Wigner, 1939;

V.Bargmann, E.Wigner, 1948℄:

W mWm = −µ
2 6= 0 , Wm = 1

2 εmnklPnMkl .

Eah of these representations ontains in�nite tower of states with all

(integer or half-integer) heliities.

The same spetrum of states is used in higher spin theory

that onsiders in�nite tower of the heliity states (W mWm = 0, Wm = λPm).

There are some similarities higher spin theory and in�nite spin theory.

But there are a number of di�erenes:

• in highest spin theory all spins unite with eah other through interation,

whereas in in�nite spin theory all spins are ombined together initially;

• in in�nite spin theory there is dimensionfull parameter µ.



In�nite spin reps were researhed in the 2000s in many studies. But, in almost

all paper, in�nite spin partiles were onsidered in �at spae.

There are very few papers on in�nite spin partile in urved spae.

• In [Metsaev, 2017℄, the Lagrangian in�nite spin formulation was onstruted

by spei� deformation of the Fronsdal Lagrangian on AdS. This result was

later on�rmed in [Metsaev, 2019℄ within light-one approah.

• In [Khabarov, Zinoviev, 2017℄, the Lagrangian onstrution for an in�nite

spin �eld in AdS spae was realized in the frame-like formulation.

• In�nite spin �elds in AdS spae were disussed also in the review [Bekaert,

Skvortsov, 2017℄.

• In these papers, the Lagrangian formulation for in�nite spin �elds was

onstruted not in an arbitrary urved spae-time, but only in AdS spae.

This talk will present 1d in�nite spin partile model and de�ne

the representation of the SO(2, 3) group realized on wave funtion of the

in�nite spin partile in the AdS4 spae.



4D in�nite (ontinuous) spin �elds

Sine in�nite spin representations are in�nite-dimensional (at a �xed

spae-time oordinate), it is neessary

to onsider an in�nite tower of spae-time �elds

or onsider generalized �elds that depend on an additional oordinate.

To take into aount symmetries, the seond hoie is preferred.

One of the possible hoies is to use ommuting vetor ym
as additional

oordinate (see, for example, [E.Wigner, V.Bargmann℄, as well as most artiles

on in�nite spin �elds).

In suh formulation, in�nite spin �eld Φ(xm, ym) depends on
the position vetor xm

and vetor oordinate ym
.

To desribe irreduible in�nite spin representations,

the �eld Φ(xm, ym) obeys the Wigner-Bargmann equations of motion.

We use di�erent formulation in desribing

in�nite (ontinuous) spin representations.



4D in�nite spin �elds with additional spinor oordinate

In our formulation, the additional variable is

ommuting Weyl spinor ξα, ξ̄α̇ = (ξα)∗, α = 1, 2.

The �eld Φ(x ; ξ, ξ̄) desribing in�nite integer-spin representation obeys the

following equations of motion [I.Buhbinder, SF, A.Isaev, V.Krykhtin, 2018℄

∂m∂m Φ(x ; ξ, ξ̄) = 0 ,

[

ı̇
(

ξσm ξ̄
)

∂m + µ

]

Φ(x ; ξ, ξ̄) = 0 ,

[

ı̇

(

∂

∂ξ
σm ∂

∂ξ̄

)

∂m − µ

]

Φ(x ; ξ, ξ̄) = 0 ,

[

ξ
∂

∂ξ
− ξ̄

∂

∂ξ̄

]

Φ(x ; ξ, ξ̄) = 0 .

Due to the �rst three equations, the �eld Φ(x ; ξ, ξ̄) satis�es

W 2Φ(x ; ξ, ξ̄) = −µ
2Φ(x ; ξ, ξ̄) .

and desribes irreduible massless in�nite spin representation.



4D in�nite spin partile in �at spae

In 1d desription, the dynamis of in�nite spin partile is determined by the

set of the �rst lass onstraints: [I.Buhbinder, SF, A.Isaev, V.Krykhtin, 2018℄

pmpm ≈ 0 ,
(

ξσm ξ̄
)

pm − µ ≈ 0 ,

(π̄σ̃mπ) pm − µ ≈ 0 ,

ξπ − π̄ξ̄ ≈ 0

in the phase spae with anonial Poisson brakets

{xm, pn}PB
= δm

n , {ξα, πβ}
PB

= δαβ ,
{

ξ̄α̇, π̄β̇

}

PB
= δα̇

β̇
.

It is �at-spae formulation of in�nite spin partile.

The main task is to generalize this model to the ase of urved spae-time.

The basi requirements for suh a onstrution are:

• General ovariant generalization of onstraints with a given �at limit.

• Closure of the algebra of new onstraints.

These onditions lead restritions on spae-time geometry.



Generalization to urved spae-time

Now xµ(τ) are loal oordinates in urved spae, ξα, ξ̄α̇, πα, π̄
α̇
are

two-omponent spinors in tangent spae. Their Poisson brakets are

{xµ, pν}PB
= δµν , {ξα, πβ}

PB
= δαβ ,

{

ξ̄α̇, π̄β̇

}

PB
= δα̇

β̇
.

Spae-time geometry is desribed by metri gµν(x), vierbein em
µ (x) and

spin onnetion ωµ
mn(x).

Transition from �at spae-time to urved spae-time involves the replaement

pµ → Pµ = pµ +
1
2
ωµ

mnMmn , Pm = eµ
mPµ ,

where Mmn = ξσmnπ − π̄σ̃mn ξ̄ � generators of tangent Lorentz transformations.

Components of �ovariant momentum� satisfy the Poisson brakets algebra

{Pµ,Pν}
PB

= −
1
2

Rµν
mnMmn ,

where Rµν
m

n is the urvature tensor.



Restrition on spae-time geometry

Covariant generalization of the �at spae onstraints should be of the form:

PmPm + · · · ≈ 0 ,
(

ξσm ξ̄
)

Pm − µ + · · · ≈ 0 , (π̄σ̃mπ)Pm − µ + · · · ≈ 0

were the dots mean terms that disapper at vanishing the gravity bakground.

Closing the algebra of onstraints leads to the following important

onsequenes:

Curved spae must be the Riemannian spae with zero torsion: Tµν
m = 0.

Curvature tensor of the bakground geometry should be of the form:

Rmn
kℓ = κ

(

δk
mδ

ℓ
n − δℓmδ

k
n

)

,

where κ is a onstant. That is, only spaes of onstant urvature are

allowed as bakground: Minkowski spae (κ = 0),
de Sitter spae (κ > 0) and anti de Sitter spae (κ < 0).

All additional terms (the dots in the formulas above) in the onstraints

are fully de�ned. They inlude speial non-minimal terms proportional to

urvature.



Curve spae-time onstraints

In the ase of AdS4 spae the �nal onstraints have the form

F0 = PmPm −
1
4

Rmn
kℓMmnMkℓ −

1
2
κK2 − 2µ|κ|1/2 ≈ 0 ,

F =
(

ξσm ξ̄
)

Pm − µ+
1
4
|κ|1/2K2 ≈ 0 ,

F̃ = (π̄σ̃mπ)Pm − µ+
1
4
|κ|1/2K2 ≈ 0 ,

U = N − N̄ ≈ 0 ,

where K = N + N̄ , N = ξαπα , N̄ = π̄α̇ξ̄
α̇
.

The only non-zero Poisson braket of onstraints has the form

{

F , F̃
}

PB
= −KF0 + |κ|1/2K

(

F + F̃
)

.

Replaing phase spae oordinates with operators (taking into aount their

ordering) and onsidering onstraints as equations of motion (�rst operator

quantization), we obtain �eld theory of in�nite spin partile on AdS4 spae.



In�nite spin �eld in AdS4 spae

The in�nite spin states in AdS4 are desribed by the �elds Φ = Φ(x , ξ, ξ̄) ,
subjet to the onditions

L0Φ = 0 , LΦ = 0 , L+Φ = 0 , UΦ = 0 ,

with the onstraint operators

L0 = D2 + κ
(

NN̄ + N + N̄
)

+ 2µ |κ|1/2 −
1
2
κK 2 ,

L = i(ξσm ξ̄)eµ
mDµ − µ−

1
4
|κ|1/2K 2,

L+ = i
( ∂

∂ξ
σm ∂

∂ξ̄

)

eµ
mDµ − µ−

1
4
|κ|1/2K 2,

U = N − N̄ .

Here the Dµ are the ovariant derivative operators de�ned by

Dµ = ∂µ +
1
2

ωµ
mn Mmn , Mmn = ξα (σmn)α

β ∂

∂ξβ
+ ξ̄α̇ (σ̃mn)

α̇
β̇

∂

∂ξβ̇

L0, L, L+
, N, N̄ , K are operators orresponding to F0, F , F̃ , N , N̄ , K.

For example, N = ξα
∂

∂ξα
, N̄ = ξ̄α̇

∂

∂ξ̄α̇



SO(2, 3) symmetry

On onsidered spae it is realized the AdS4 algebra so(2, 3):

[Pm,Pn] = R−2Jmn ,

[Jmn,Pl ] = ηnlPm − ηml Pn , [Jmn, Jkl ] = ηnk Jml + ηmlJnk − ηnlJmk − ηmk Jnl ,

where R = |κ|−1/2
is the urvature radius of AdS4 spae.

The generators of the so(2, 3) algebra have the form:

Pm = eµ
m

(

∂µ −
1
2
ωµ

klJkl

)

,

Jmn = (ηmµδ
ν
n − ηnµδ

ν
m) xµ ∂

∂xν
+Mmn .

We obtain a very strong onlusion: the zero ommutators

[Pm, L0] = [Pm, L] = [Pm, L+] = [Pm,U] = 0 ,

[Jmn, L0] = [Jmn, L] = [Jmn, L+] = [Jmn,U] = 0

of all onstraints operators and all so(2, 3) generators.

Thus, the in�nite spin �eld in AdS4 spae are SO(2, 3)-invariant.



Irreduible unitary SO(2, 3) representations

SO(2, 3) irreduible representations are de�ned by two Casimir operators:

the seond order Casimir operator

C2 = R2 PmPm −
1
2

JmnJmn ,

the fourth order Casimir operator

C4 = −
1
2

JmnJmn C2+R2PmJmnPk Jkn+
1
4

JmnJmn−
1
8
(JmnJmn)

2−
1
4

JmnJnkJklJ lm .

In�nite spin �eld in AdS4 spae is the eigenvetor of Casimir operators:

C2Φ = c2Φ , C4Φ = c4Φ , where c2 = −2(1 + µR), c4 = µR(1 + µR).

Casimir operators are not independent on the �elds Φ: C4 =
1
2
C2

(

1
2
C2 + 1

)

.

Sine there is only one independent Casimir operator in the given irrep, this

irrep exatly orresponds to the most degenerate representation for the

SO(2, 3) group [N.Limi�, J.Niederle, R.Razka, 1966℄.

These obtained results orrespond to lassi�ation of lassially unitary

in�nite spin �elds in AdS4 obtained in [R.Metsaev, 2019℄ with using the

light-one formalism.



Conlusion

We obtained the following results:

We present a new partile model that generalizes for urved spae-time an

in�nite spin partile in �at spae. The model is desribed by ommuting

Weyl spinor additional oordinates.

It is proved that this model is onsistent only in an external gravitational

�eld orresponding to onstant urvature spaes.

It is shown that in our model, in�nite spin �elds in AdS4 spae are

desribed by the most degenerate representations of the SO(2, 3) group.

Further researh

Formulation of fermioni in�nite spin �eld theory in urve spae.

Derivation of ubi interation vertex for in�nite spin �elds on AdS4 spae

among themselves and for their interations with �nite spin �elds.

Constrution of supersymmetri in�nite spin �led theory in AdS4 spae

In next talk I.L. Buhbinder will present the BRST-like Lagrangian

formulation for in�nite spin �elds in AdS4 spae.



Thank you very muh for your attention !


