Измерение анизотропного потока и спектра нейтральных пионов в столкновениях Bi+Bi при энергии 9.2 ГэВ в эксперименте MPD

Гордеев Павел

НИЦ "Курчатовский институт" НИЯУ МИФИ

Работа поддержана Министерством науки и высшего образования РФ, проект "Фундаментальные и прикладные исследования на экспериментальном комплексе класса мегасайенс NICA (ОИЯИ)" № FSWU-2025-0014

17 февраля 2025

Анизотропный поперечный поток

Асимметрия в координатном пространстве вследствие взаимодействия преобразуется в асимметрию импульса относительно плоскости симметрии столкновения:

$$\rho(\phi) = \frac{1}{2\pi} [1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\phi - \Psi_s))]$$
$$v_n = \langle \cos(n[\phi - \Psi_s]) \rangle$$

ν_n = ν_n (p_т, *y*, центральность, тип адрона) ψ_s – плоскость симметрии

Анизотропный поток прямых фотонов

Прямые фотоны

- образуются в электромагнитных процессах при столкновениях тяжелых ядер
- не взаимодействуют с другими частицами в области столкновения

Коллективные потоки прямых фотонов

- может пролить свет на механизмы формирования анизотропного потока, включая самые ранние стадии столкновения
- для количественной оценки необходимо измерить анизотропный поток инклюзивных и распадных фотонов (основной источник нейтральные пионы)

MPD @ NICA

- Цель исследование фазовой диаграммы сильновзаимодействующей материи в области высокого барионного химического потенциала
- Регистрация продуктов столкновений тяжелых ионов при энергиях √s_{NN} = 4-11 ГэВ.

Основные подсистемы

- Время-проекционная камера (ТРС)
- Время-пролетная система (TOF)
- Электромагнитный калориметр (ECal)
- Передние адронные калориметры (FHCal)

Описание исследования

- Цель: оценка эффективности измерения анизотропного потока инклюзивных фотонов и π⁰, и спектра π⁰ в эксперименте MPD @ NICA
- Набор данных: 50M реконструированных событий, UrQMD, Bi+Bi @ 9.2 ГэВ
- Отбор событий:
 - успешно реконструированная вершина в пределах 50 см от центра ТРС
 - ~25М событий после отбора
- Плоскость симметрии определяется по асимметрии выделения энергии спектраторов в FHCal

Методы реконструкции у и π^{0}

Два метода для реконструкции фотонов:

- Сигнал в калориметре (ECal)
- е+е- пары в ТРС от конверсионных фотонов

Три метода реконструкции π^0 :

- Калориметр (оба фотона реконструированы в ECal)
- Гибридный (ECal + конверсионный фотон)
- Конверсия (два конверсионных фотона, РСМ)

Конверсионный метод дает значительно лучшее разрешение по импульсу, но гораздо меньшую эффективность реконструкции

Эффективность реконструкции фотонов

- Эффективность близка к единице в широком интервале р_т-у при использовании калориметра
- Низкая эффективность для метода конверсии

Поток инклюзивных фотонов

- Хорошее согласие обоих методов с предсказанием модели
- Конверсионный метод требует большей статистики

Вычисление потока нейтральных пионов

- Фит зависимости vn от инвариантной массы пары фотонов с помощью функции ниже
- V_{sig} И V_{bg} свободные параметры, n_{sig} И n_{bg} определяются фитированием распределения инвариантной массы пары фотонов с помощью двухсторонней Crystall Ball function + полином второй степени
- Конверсионный метод требует большей статистики

$$v_{all}(M_{inv}) = rac{n_{sig}(M_{inv})v_{sig} + n_{bg}(M_{inv})(v_{bg}^{const} + v_{bg}^{lin} * M_{inv})}{n_{sig}(M_{inv}) + n_{bg}(M_{inv})}$$

Поток нейтральных пионов

- Удовлетворительное согласие с моделью обоих методов
- Дополнительная статистика требуется для гибридного метода

Спектр нейтральных пионов

- Метод ECAL-ECAL обладает наибольшей эффективностью, но измерения при низких импульсах характеризуются довольно плохим энергетическим разрешением, высоким адронным и комбинаторным фоном
- РСМ-РСМ использует преимущества гораздо лучшего энергетического разрешения трекинговой системы и превосходной чистоты реконструкции фотонов при низких импульсах, что приводит к гораздо более узким реконструированным пикам и меньшему фону

Машинное обучение. Boosted Decision Trees

- Рассматривается возможность использования машинного обучения для увеличения эффективности конверсионного метода
- Применение машинного обучения показывает значительный прирост в эффективности без потери чистоты

Заключение

- Дифференциальное измерение направленного и эллиптического потоков инклюзивных фотонов и нейтральных пионов, а также спектра нейтральных пионов в столкновениях Bi+Bi @ 9.2 ГэВ должно быть осуществимо в эксперименте MPD @ NICA
- Перекрестная проверка измерений гибридным и конверсионным методами будет возможна при разумной статистике
- Требуется оптимизация отборов для конверсионного метода, с целью увеличения эффективности при высоком уровне чистоты
- Планируется оценка возможности использования машинного обучения (BDT) для конверсионного метода

Отбор кластеров и е+е пар

- Отбор кластеров в Ecal:
 - $E_{core} > 50 \text{ M} \Rightarrow B$
 - минимальное количество ячеек 2
 - расстояние до ближайшего экстраполированного трека > 1 см
 - максимальное время пролета
- Отбор треков для реконструкции конверсионных фотонов:
 - > 10 хитов в ТРС
 - $|\eta| > 1$
 - p_T > 0.05 ГэВ/с
 - dE/dx < 5σ от электронной линии
- Отбор пар е⁺е⁻
 - треки с противоположными зарядами
 - $M_{inv} < 50 \text{ M}_{3}\text{B/c}^{2}$
 - DCA треков < 1.2 cm
 - отбор по критерию Арментероса-Подолянского
 - отбор на качество реконструированной вторичной вершины

Корреляционная матрица для сигнала

Co	rre	lati	on	Mat	rix	(si	gna	ıl)									
	Linear correlation coefficients in %																
$ \cos \Psi $	-7	-7	-5	4	-8	-7	-2	-3	-1	1	1	18	3	22	100		100
$q_{_{T}}$	-25	-26	26	2			27	-29	-2	-5	-5	90	4	100	22		80
α	-3		3	-1	2	-1	1		1	1	2		100	4	3		~~
M _{inv}	-23	-22	23	11		1	22	-24	-1	-4	-6	100		90	18		60
n _{dE/dx,2}	-2	6	-3		5	1	-7	3	7	9	100	-6	2	-5	1	_	40
n _{dE/dx,1}	6	-3	-5		-1	6	-9	4	8	100	9	-4	1	-5	1		20
R	-21	-22	1		35	37	-14	25	100	8	7	-1	1	-2	-1		20
CPA	8	10	-13	-1	1		-27	100	25	4	3	-24		-29	-3		0
DCA _{daug}	-18	-16	60	-2	7	7	100	-27	-14	-9	-7	22	1	27	-2		20
DCA ₂	-3	-39	3	-1	34	100	7		37	6	1	1	-1		-7		-20
DCA ₁	-39	-3	3	-1	100	34	7	1	35	-1	5		2		-8	_	-40
$\eta_{1\cdot 2}$	-1		-2	100	-1	-1	-2	-1				11	-1	2	4		60
χ^2	-18	-16	100	-2	3	3	60	-13	1	-5	-3	23	3	26	-5		-60
N _{clu,2}	32	100	-16		-3	-39	-16	10	-22	-3	6	-22		-26	-7		-80
N _{clu,1}	100	32	-18	-1	-39	-3	-18	8	-21	6	-2	-23	-3	-25	-7		100
	N	, N _{ciu}	2 22	η,,,	DC	A, DC	A, DC	A CP	AR	n	ax, 1 naE	Min Min	Q V	97	/co.	547	-100

Обучение Boosted Decision Trees

- For training: S=15'000 and B=15'000
- For testing: S=15'000 and B=38'000'000
- In the data sample we have ~2500 background to 1 real conversion photon

Variables for training

- N_clu number of TPC clusters
- χ^2 obtained from Kalman filter
- η_1-2 difference of pseudorapidity of tracks
- DCA Distance of Closest Approach to PV for tracks
- DCA_daug DCA between positively and negatively charged tracks
- CPA Cosine of Pointing Angle
- R conversion radius, distance from PV to SV
- n_dE/dx PID of tracks based on specific loss in TPC, number of σ from electron/positron line
- M_inv invariant mass of track pair
- Armenteros-Podolanski variables q_T and α
- |cosΨ| cosine of angle between pair plane and magnetic field (for Dalitz decays reduction)

16