Измерение анизотропных потоков лямбда-гиперонов в экспериментах MPD и BM@N

Трошин В.В., Мамаев М.В., Парфёнов П.Е., Тараненко А.В. ОИЯИ, НИЯУ МИФИ

Сессия-конференция секции ядерной физики ОФН РАН 17-21 февраля 2025

Работа поддержана Министерством науки и высшего образования РФ, проект "Фундаментальные и прикладные исследования на экспериментальном комплексе

класса мегасайенс NICA (ОИЯИ)" № FSWU-2025-0014

Anisotropic transverse flow

Spatial asymmetry of energy distribution at the initial state is transformed, through the strong interaction, into momentum anisotropy of the produced particles.

$$egin{aligned} Erac{d^3N}{d^3p} &= rac{1}{2\pi} rac{d^2N}{p_T dp_T dy} (1 + \sum_{n=1}^\infty 2 v_n \cos(n(\phi - \Psi_{RP}))) \ & \bigvee \ & v_n &= \langle \cos(n(\phi - \Psi_{RP}))
angle \end{aligned}$$

In the experiment reaction plane angle Ψ_{RP} can be approximated by participant Ψ_{PP} or spectator Ψ_{SP} symmetry planes.

Anisotropic transverse flow in heavy-ion collisions at Nuclotron-NICA energies

Strong energy dependence of dv_1/dy and v_2 at $\sqrt{s_{NN}} = 4-11$ GeV.

Anisotropic flow at FAIR/NICA energies is a delicate balance between:

- The ability of pressure developed early in the reaction zone
- Long passage time (strong shadowing by spectators).

Differential flow measurements $v_n(\sqrt{s_{NN}}$, centrality, pid, p_T, y) will help to study:

- effects of collective (radial) expansion on anisotropic flow
- interaction between collision spectators and produced matter
- baryon number transport

Several experiments (MPD, BM@N, STAR FXT, CBM, HADES, NA61/SHINE) aim to study properties of the strongly-interacted matter in this energy region.

Aims to study flow of Λ

Yasushi Nara et al. Phys.Rev.C 106 (2022) 4, 044902

- A potential is important to explanation of existence of two-solar-mass neutron stars
- Constrained by directed flow of Λ
- Models cannot fully describe anisotropic flow for NICA energy range
- Best agreement with model includes interactions with hyperons

MPD experiment at NICA

Main subsystems at Stage-I:

TPC ($|\eta| \le 1.6$): charged particle tracking + momentum reconstruction + dE/dx identification

TOF ($|\eta| \le 1.4$): charged particle identification

ECal (2.9 < $|\eta|$ < 1.4): energy and PID for γ/e^{\pm}

FHCal (2 < $|\eta|$ < 5) and **FFD** (2.9 < $|\eta|$ < 3.3): event triggering + event geometry

Expected beams at the first year(s) of operation (Stage-I):

○ MPD-CLD: Xe/Bi+Xe/Bi at $\sqrt{s_{NN}}$ ~ 7 GeV
 ○ MPD-FXT: Xe/Bi +W at $\sqrt{s_{NN}}$ ~ 3 GeV

A hyperon reconstruction and anisotropic flow measurements $\Lambda \rightarrow p + \pi^{-1}$

Centrality and track selection

1.

- PV primary vertex
- V_0 vertex of hyperon decay
- dca distance of closest approach
- path decay length

 v_1 and v_2 of Λ hyperons for Bi+Bi at $\sqrt{S_{NN}}$ =9.2 GeV with PHSD

Full scale reconstruction shows reasonable agreement with simulated data

The BM@N experiment: recent Xe+Cs(I) 3.8 AGeV run

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n=e^{in\phi}$$

where $\boldsymbol{\phi}$ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 $\Psi_n^{\ EP}$ is the event plane angle

Flow methods for v_n calculationTested in HADES:M Mamaev et al 2020 PPNuclei 53, 277–281
M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122Scalar product (SP) method: $v_1 = \frac{\langle u_1 Q_1^{F1} \rangle}{R_1^{F1}}$ $v_2 = \frac{\langle u_2 Q_1^{F1} Q_1^{F3} \rangle}{R_1^{F1} R_1^{F3}}$ Where R₁ is the resolution correction factor

$$R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP})
angle$$

Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution): $R_1^{F2(F1,F3)} = \frac{\sqrt{\langle Q_1^{F2}Q_1^{F1} \rangle \langle Q_1^{F2}Q_1^{F3} \rangle}}{\sqrt{\langle Q_1^{F2}Q_1^{F1} \rangle \langle Q_1^{F2}Q_1^{F3} \rangle}}$

$$R_1^{r_2(r_1,r_3)} = rac{\sqrt{\sqrt{Q_1^{F1}Q_1^{F3}}}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}
angle}}$$

Corrections for non-uniform acceptance - see slide №15

Performance study with JAM fully reconstructed data

For performance study 15 M events of fully reconstructed data from JAM model are used

Very limited p_T-rapidity coverage An agreement with signal from model

Fitting the m_{inv} distributions in p_T -y bins

Summary

- Performance study for flow measurements of Λ hyperons for Bi+Bi at $\sqrt{S_{NN}}$ =9.2 GeV with PHSD at MPD and Xe+Cs(I) at $\sqrt{S_{NN}}$ =3.26 GeV with JAM at BM@N are provided
 - Invariant mass fit method for reconstructed data show an agreement with simulated data
- Application of invariant mass fit method for directed flow measurements at recent BM@N Xe+Cs(I) experimental run is shown
 - Further analysis is under work

Outlook

- Obtain rapidity and transverse momentum dependence of v_1 for experimental data.
- Comparison results with existing data from other experiments
- Further efficiency study and analysis of systematic effects

BACKUP

Corrections on acceptance

 ϕ yield of Λ candidates

Non-uniform acceptance - corrections are required

Corrections are based on method in: I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

1. Recentering

2. Twist

3. Rescaling

 $v_{1,2}(y)$ in Au+Au $\sqrt{s_{NN}}$ =3 GeV: model vs. STAR data

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

Model description of v_n :

- Good overall agreement for v_n of protons
- v_n of light nuclei is not described
- u_n of arLambda is not well described
 - nucleon-hyperon and hyperon-hyperon interactions
- Light mesons (π, K) are not described
 - No mean-field for mesons

Models have a huge room for improvement in terms of describing v_n