

«КУРЧАТОВСКИЙ ИНСТИТУТ»

Физическая программа исследований в области больших р_т на выведенных пучках Нуклотрона комплекса NICA

Г.Б. Шарков, А.В. Ставинский, С.С. Шиманский

17.02.2025 Сессия-конференция секции ядерной физики ОФН РАН, посвященная 70-летию В.А. Рубакова

Некоторые проблемы современной нпКХД

- Большие необъяснённые спиновые эффекты при √(s) ~ 2 5 ГэВ
- Нет данных по n⁺ + n⁺ взаимодействиям для проверки нарушения изотопической симметрии в сильных взаимодействиях
- Дикварки (в т.ч. странные): используются в моделях (в т.ч. для описания нейтронных звёзд), но нет прямых доказательств существования
- Повышенный выход барионов и дейтронов в области р_т > 0,5 ГэВ/с
- Свойства многонуклонных (многокварковых) систем мало изучены и нет определённости в их природе (флуктоны, SRC и др.)
- Роль дикварков, странных кварков в многонуклонных (многокварковых) системах (и в эволюции нейтронных звёзд?)

Параметры Нуклотрона подходят для изучения редких процессов с р_т > 0.5 ГэВ/с

ерния у Ния у МИСРИ

Максимальная Е_р

Максимальная E_A(q/A=0.5)

Интенсивность (р) на сброс 2 сек

Заполнение колец коллайдера NICA

Время работы коллайдера NICA

Поляризованные пучки

Поляризованные и криогенные мишени

Мишень с замороженными LHEP JINR mobile cryogenic target СПИНАМИ — MPT Г.Б. Шарков, А.В. Ставинский, С.С. Шиманский et.al. Сессия-конференция секции ЯФ ОФН РАН к 70-летию В.А. Рубакова

Между заполнением колец NICA Нуклотрон будет работать на выведенные пучки

Спиновая физика

A.M.T. Lin et al., PL 74B, 273;

Большая поляризация гиперонов в области р_т > 0.5 ГэВ/с

Даже в неполяризованных столкновениях

Упругие реакции с поляризованным $p\uparrow+n\uparrow$ при 90° с.ц.м.

$p\uparrow + p\uparrow \longrightarrow p\uparrow + p\uparrow$	для калибровки		
$p\uparrow + n\uparrow \rightarrow p\uparrow + n\uparrow$	мало данных		

 $n\uparrow + n\uparrow \longrightarrow n\uparrow + n\uparrow$ Нет данных

Поиск нарушения изотопической симметрии в сильном взаимодействии при больших pT (флейворной универсальности между u и d кварками)

Эксклюзивные NN реакции при $x_T \sim 1$ для $\sqrt{(s)} < 6$ ГэВ N $\uparrow + N \uparrow \rightarrow BB + MM$ где B (p, n, $\Lambda, \Delta, \Sigma, ...$), M ($\pi, K, ...$) Механизмы поляризации гиперонов

$$\begin{split} & \mathbf{N}\uparrow + \mathbf{N}\uparrow \longrightarrow \mathbf{B}\mathbf{B}(\Lambda\Lambda) + \pi \ \pi \ (\mathbf{K}\mathbf{K}) \\ & \mathbf{N}\uparrow + \mathbf{N}\uparrow \longrightarrow \Delta \ \Delta \end{split}$$

E.A. Crosbie et al., PR D23, 600 Г.Б. Шарков, А.В. Ставинский, С.С. Шиманский et.al. Сессия-конференция секции ЯФ ОФН РАН к 70-летию В.А. Рубакова

ФОДС

В.В.Абрамов и др.,

ЯФ 45(5) (1987), 845-851

contributions to the B = N, Λ° -baryon production in hard NN -collision: a) the quark-diquark subprocess; b) the diquark-diquark subprocess; c),d) the double quark-diquark collisions.

Сильные эффекты при снижении энергии Описание данных с помощью дикварков

Постоянство отношения d/p с ростом p_т, в том числе в pp-столкновениях

Дикварки

Эксклюзивные реакции при больших р_т Флэйворный состав и спиновые состояния

Измеряя отношения выходов π[±] и π⁰, можно получить указания на наличие и состав дикварков

Повышенный выход гиперонов может послужить указанием на взаимодействие с дикварком

Г.Б. Шарков, А.В. Ставинский, С.С. Шиманский et.al. Сессия-конференция секции ЯФ ОФН РАН к 70-летию В.А. Рубакова

SRC и/или кумулятивные процессы

Многокварковые (многонуклонные) состояния проявляются как в hA, так и в глубоконеупругих еA

пр корреляции сильно отличаются от рр

Г.Б. Шарков, А.В. Ставинский, С.С. Шиманский et.al. Сессия-конференция секции ЯФ ОФН РАН к 70-летию В.А. Рубакова

Флуктон-флуктонные взаимодействия – способ создать плотную холодную материю в лаборатории Кумулятивная частица может служить триггером для

 $\pi, \gamma, \gamma(\pi^{o}), \dots$ high p_{t}

- Система отдачи «холодная» ($\delta p \rightarrow 0$) и плотная ($\delta x \rightarrow 0$)
- Тогда должны быть существенны ограничения принципа Паули
- Выход: бозонизация, дикварки, рождение странности...

регистрации системы отдачи

Г.Б. Шарков, А.В. Ставинский, С.С. Шиманский et.al. Сессия-конференция секции ЯФ ОФН РАН к 70-летию В.А. Рубакова

НИЯУ

Странность в плотной ядерной материи и нейтронных звёздах

С ростом плотности в нейтронных звёздах вырастает влияние запрета Паули Выход 1* : рождение Σ⁻ (в т.ч. для компенсации электрического заряда р⁺) Выход 2 : (при дальнейшем росте плотности) рождение п→Λ⁰ (Σ⁰)

стает влияние запрета Паули нектрического заряда р⁺) кдение $n \rightarrow \Lambda^{0}(\Sigma^{0})$ * Schaffner-Bielich NPA 835 (2010) 279

Figure 4: Σ^0/Λ results versus collision \sqrt{s} ($\sqrt{s_{\rm NN}}$ for p/d+A) [1]. Meson-nucleon reaction results are excluded for clarity, but exist only at intermediate energies and lie in the same range. The dashed line is the ratio of isospin degeneracy factors (1/3).

G. Van Buren (for the STAR Collaboration) arXiv:nucl-ex/0512018

Дикварки и отношения Λ/Σ

Зависимость изоспина и состава дикварков

From: Craig Roberts <cdroberts.phy.anl@gmail.com>

Craig D. Roberts et.al. Phys. Rev. C 96, 015208:

Λ (изоспин=0): [ud]s, [us]d-[ds]u, {us}d-{ds}u
Σ⁰ (изоспин=1): [us]d+[ds]u, {us}d+{ds}u

в Σ⁰ разрешены только странные дикварки

«As you note below, depending on the assumed reaction mechanism, this difference in diquark content could affect the Lambda/Sigma production ratio in AA collisions.»

Зависимость изоспина и спина дикварков

p_т > 0.5 ГэВ/с (подавлено взаимодействие в конечном состоянии)

Model baryon=quark+diquark: diquark (ud, uu, dd): I=S = 1 or 0 поэтому интересно измерять отношение на поляризованных пучках

И.Ю.Кобзарев, Б.В.Мартемьянов, М.Г.Щепкин УФН 162, вып.4,1992,стр.1-41(in Russian) See, also, Anisovich A.V., et al., Int. J. Modern Phys. A, 25:15 (2010); arXiv:1001.1259[hep-ph] (Quark-Diquark Systematics of Baryons)

Экспериментальная установка (v0.0)

Мишени

р, d, He³,... (в т.ч. поляризованные) NRNO

Вершинный детектор NRNO

ТОГ и Трекер

TOF: Δt < 100πc

СП тороидальный магнит ИЯФ СО РАН

Нейтронный детектор

•Аксептанс ~0.25 sr (~40% полного аксептанса в центральной области быстрот) •Временное разрешение < 150пс • $\Delta p/p < 2\% \Rightarrow PID$, трекинг (вместе с вершинным детектором)

•ZDC

Трекер: straw Вершинный детектор Нейтронные детекторы Мишень и малый тороид 3,5 M Пучок ZDC TOF Дипольный магнит Трекер СП тороидальный магнит Г.Б. Шарков, А.В. Ставинский, С.С. Шиманский et.al. Сессия-конференция секции ЯФ ОФН РАН к 70-летию В.А. Рубакова

Нейтронный детектор важен не только для регистрации нейтронов, но и гиперонов

Г.Б. Шарков, А.В. Ставинский, С.С. Шиманский et.al. Сессия-конференция секции ЯФ ОФН РАН к 70-летию В.А. Рубакова

Высокогранулированный нейтронный детектор HGND

3D детектор Аналоги: ZDC для NICA и HGND для BM@N Регистрация сигнала в каждой ячейке

- Измерение нейтронов по времени пролёта
- ► σ(t) < 150 пс</p>
- ~5 ячеек на нейтрон
- Регистрация >1 нейтрона в модуле
- Регистрация p, d, γ (с заменой поглотителя на BGO)...

Поглотитель (1) и 9 сцинтилляционных ячеек (2) помещены в светонепроницаемую коробку (3), которая закрыта с одной стороны светонепроницаемой крышкой (4). Печатная плата (5) с девятью SIPM, усилителями, датчиком температуры и разъемами подключается непосредственно к сцинтилляционной матрице. 13 Г.Б. Шарков, А.В. Ставинский, С.С. Шиманский et.al. Сессия-конференция секции ЯФ ОФН РАН к 70-летию В.А. Рубакова

Коллектив, выразивший заинтересованность в участии в проект на дату доклада

П. Алекссеев³, Е. Антохин⁵, Т. Атовуллаев¹, А. Атовуллаева¹, С. Афанасьев¹, А. Балдин¹, В. Блеко¹, А. Бочкова¹, Н. Жигарева³, А. Канцырев³, В. Ким⁴, А. Мартемьянов³, М. Милой¹, М. Пацюк¹, Е. Piasetzky⁶, Д. Сакулин¹, А. Саламатин¹, А. Скобляков³, Г. Таер³, Е. Тарковский³, С. Черепанов¹, О. Неп⁷,...

- 1. ОИЯИ
- 2. НИЯУ МИФИ
- 3. ККТЭФ НИЦ КИ
- 4. ПИЯФ НИЦ КИ
- 5. ИЯФ СО РАН
- 6. Tel-Aviv University, Tel-Aviv, Israel
- 7. Massachusetts Institute for Technology, Cambridge, MA, USA

холл Лаборатории Теоретической Физики ОИЯИ, г. Дубна

71

10

Mid

No

Ku

(

CC URQMD 10⁵ ev.	2 GeV/c	3GeV/c	4GeV/c	10GeV/c	30GeV/c
all	2 520 772	2 579 414	2 640 908	2 882 405	3 283 145
Р	271 961	266 605	266 161	248 805	228 866
Ν	271 720	266 368	266 624	248 612	228 820
π^0	43 878	64 268	85 051	162 099	282 712
π^+	37 929	55 837	74 365	145 040	255 919
π^{-}	37 969	55 702	74 208	144 887	254 974
\mathbf{K}^{0}	230	1 121	2 398	8 278	20 299
K^+	235	1 110	2 304	8 365	20 332
Λ	225	951	1 922	5 878	11 331
Σ^0	86	468	927	2 451	3 857
Σ^+	66	372	788	1 972	3 278
$\Sigma^{\text{-}}$	83	362	785	2 099	3 247
antiK ⁰	2	45	130	2 027	9 500
K-	3	33	130	2 102	9 623

3 Α ΓэΒ: K⁰+K⁺(2 231)~Λ+Σ(2 153)

Г.Б. Шарков, А.В. Ставинский, С.С. Шиманский et.al. Сессия-конференция секции ЯФ ОФН РАН к 70-летию В.А. Рубакова