ИЗУЧЕНИЕ ФОТО-ЯДЕРНЫХ РЕАКЦИЙ НА УСТАНОВКЕ «ДЕЙТРОН» НА ВЭПП-3

В.В. Гаузштейн Старший научный сотрудник ИЯФ СО РАН им. Г.И. Будкера

17.02.2025

Актуальность исследований

• Исследование структуры нуклона

Конституэнтная кварковая модель

$$m_u \approx m_d \approx \frac{1}{3} M_N$$

• Источник информации – нуклонный спектр

u

d

u

(массы, ширины и кв.числа N-и △резонансов)

 Проблема: сильное перекрытие резонансов

Актуальность исследований

• Преимущество фотопроцессов

- Э.М. поле <u>надежный инструмент</u> исследования $\alpha_{\scriptscriptstyle \mathfrak{IM}} \approx 1/137 \quad \Leftrightarrow \quad \langle XA' | T | A\gamma \rangle \rightarrow \langle XA' | \{\rho, \vec{j}\} | A \rangle$
- Более богатая информация о структуре барионов
- Высокая <u>точность</u> измерений. Особенно важно для <u>поляризационных наблюдаемых.</u>

Установки для исследования фотореакций

Установка	E _{max}	I _e
CEBAF, JLAB, CIIIA	11 ГэВ	200 мкА
МАМІ, Германия	1.5 ГэВ	100 мкА
ELSA, Германия	3.5 ГэВ	
LEPS, Япония	2.4 ГэВ	
ELPH, Япония	1.3 ГэВ	
ДЕЙТРОН, ВЭПП-3	2 ГэВ	100 мА

Ускорительно-накопительный комплекс ВЭПП-3

Главные результаты: двухчастичная фотодезинтеграция дейтрона

- Измерены Т₂₀, Т₂₁ и Т₂₂ компоненты тензорной анализирующей способности реакции двухчастичного фоторасщепления дейтрона γ+d→p+n
- Rachek et al. Phys. Rev. Lett. (2007) 98 182303

Главные результаты: фоторождение π° -мезона

Измерена Т₂₀ компоненты тензорной анализирующей способности реакций $y+d \rightarrow d+\pi^{\circ}$ и $y+d \rightarrow p+n+\pi^{\circ}$ $\gamma + d \rightarrow p + n + \pi^{\circ}$

> 250 300 350 400 450

arm

•

Θ^{C.M.} = 130°

200 250 300 350 400 E_γ, MeV

E_v, MeV

7

Последний заход в 2021 и 2023 гг.

- Симметричная система из двух плеч, регистрирующих протоны и нейтроны с энергией 50 ÷ 400 МэВ. Энергия электронов - 800 МэВ
- трековая система: многопроволочные пропорциональные и дрейфовые камеры;
- слои сцинтилляторов для разделения заряженных/нейтральных частиц и для ΔЕ/Е-анализа;
- адронный калориметр-сэндвич (железо+сцинтиллятор), сегментированный по Х,Z → для эффективной регистрации нейтронов большой энергии.

Система мечения Фотонов

Три дипольных магнита в линейном промежутке ВЭПП-3

Магнит D2 и трековые GEM-детекторы образуют магнитный спектрометр электронов, потерявших от 50% до 80% энергии на излучение фотона.

Реконструируя энергию и угол рассеянного электрона можно определять энергию и плоскость поляризации фотона, вызвавшего ядерную реакцию.

L→ E_v = (400-600) МэВ

Источник поляризованных атомов

-1/2

-1/2

-2/3

0

5

Pz

Pzz

0

0

0

0

S1-S5 – шести-полюсные магниты

МFT, SFT – блоки ВЧ переходов

Тензорная поляризация: >95% (+1 или -2) Векторная поляризация: <5%

Интенсивность струи поляризованных атомов из ИПА: 8.2x10¹⁶ ат/сек

Накопительная ячейка

- толщина мишени: 5 × 10¹³ ат/см²
- светимость 2×10^{31} см⁻² (при $I_e = 70$ мА)
- тензорная поляризация ≈ 40%

Регистрация (рр)-совпадений

Результаты для үд→ррл⁻

- кинематика реакции восстанавливается через E_{γ} , E_{p12} , Θ_{p12} и ϕ_{p12}
- главный критерий идентификации событий M_x

$$M_x^2 = \left(\boldsymbol{P}_0 - \boldsymbol{P}_{pp} \right)^2$$

 P_0 – 4-импульс начальной (γ +d)-системы, P_{pp} - 4-импульс (p+p)-системы

[•] LEGS at BNL

• Проблема полного опыта

 Метод решения: измерение и анализ наблюдаемых, наиболее чувствительных к модельным параметрам

Сечение $\gamma d \rightarrow \pi^0 d$ чувствительно к динамике на малых межнуклонных расстояниях

 $\gamma + d \rightarrow p + n$

