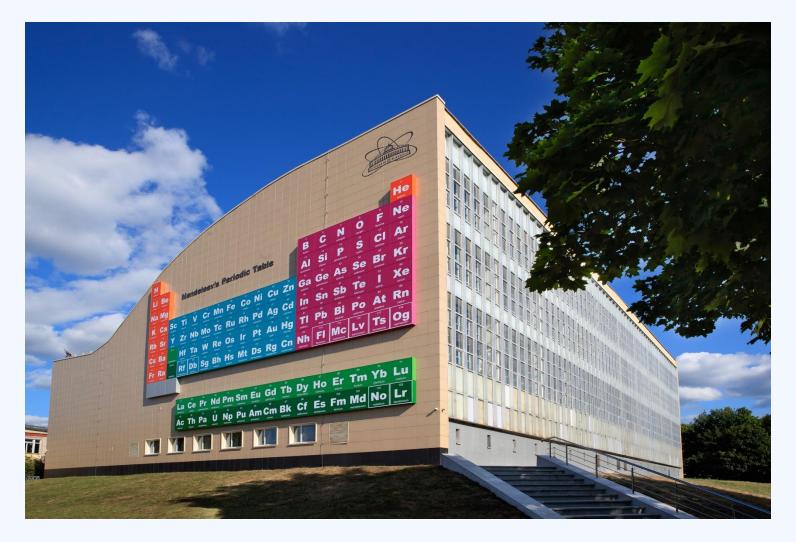


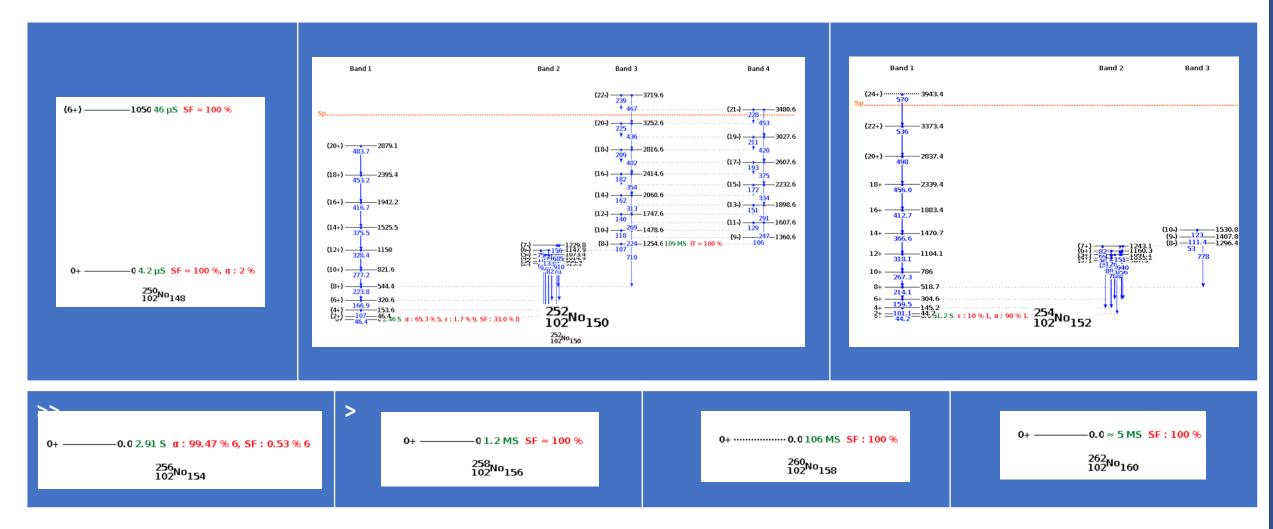
Low-energy spectra of nobelium isotopes: Skyrme random-phase-approximation analysis

M.A. Mardyban¹,², V. O. Nesterenko¹,², R.V. Jolos¹,², P.-G. Reinhard³, A. Repko⁴


¹Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia

² Dubna State University, Dubna, Moscow Region 141982, Russia

³ Institut für Theoretische Physik II, Universität Erlangen, D-91058, Erlangen, Germany


⁴Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia

Spectroscopy of superheavy nuclei is now one of the most hot research areas

Perhaps, the most extensive experimental data are collected for transfermium region, in particular for nobelium isotopes

At the moment, there are experimental* spectroscopic data only for 3/7 nuclei: 250,252,254 No

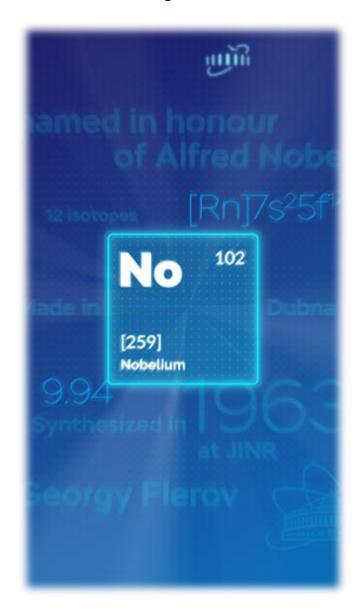
^{*} NNDC data base

The chain of even-even Nobelium nuclei is one of the most studied superheavy nuclei:

- The low-lying spectrum of ^{250,252,254}No;
- Quadrupole moment of ^{252,254}No
- Dipole giant resonance in ^{252,254}No;
- The scissors mode of ^{250–256}No;
- Single-particle properties and rotational bands in the ^{252,254}No; [Yue Shi et all, Phys. Rev. C 89, 034309 (2014)] [J. Dobaczewski et all, Nucl. Phys. A 944, 388 (2015)]
- Spontaneous fission for the nuclei ²⁵⁰⁻²⁶⁰No

[A. D. Efimov, I. N. Izosimov, JINR-E6-2022-19 (2022)] [G.G. Adamian, N.V. Antonenko and W. Scheid, Phys. Rev., 024320,C 81 (2010)] [R.V. Jolos, L.A. Malov, N.Yu Shirikova and A.V.Sushkov, J.Phys. G: Nucl. Part. Phys, 115103 (2011)]

[R.V. Jolos et all, Phys. Part. Nucl. Lett. Vol. 19, No. 6 (2022)]

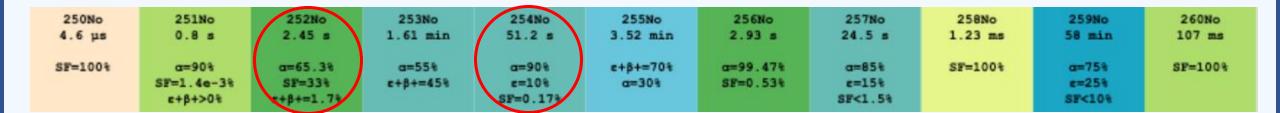

[W. Kleinig et all, Phys. Rev. C 78, 044313 (2008)]

[R. Rodriguez-Guzman, L.M. Robledo, Phys. Rev. C 98, 034308 (2018)]

[E.B. Balbutsev, I.V. Molodtsova, preprint arXiv: 2309.09340v2 (2023)]

But, despite the great interest in these nuclei, the characteristics of the ground state of these isotopes are still poorly studied...

Despite an impressive theoretical effort:



- Even modern self-consistent models still give rather different results and exhibit troubles in description of shell structures and other features seen in experiment
- This work was partly done within QPM, IBM, double nuclear system, and cluster models (however, the above models are not self-consistent)
- It is worth to enlarge the scope of calculated characteristics of superheavy nuclei and inspect, within the same self-consistent theory, a full set of low-energy vibrational states of main multipolarities: $K^{\Pi}=0^+,\,2^+,\,3^+,\,0^-,\,1^-,\,2^-,\,8^-$

250No	251No	252No	253No	254No	255No	256No	257No	258No	259No	260No
4.6 μs	0.8 s	2.45 s	1.61 min	51.2 s	3.52 min	2.93 s	24.5 s	1.23 ms	58 min	107 ms
SF=100%	α=90% SF=1.4e-3% ε+β+>0%	α=65.3% SF=33% c+β+=1.7%	α=55% ε+β+=45%	a=90% e=10% SF=0.17%	e+\$+=70% a=30%	a=99.47% SF=0.53%	a=85% e=15% SF<1.5%	SF=100%	α=75% ε=25% SF<10%	SF=100%

The main attention is paid to ^{252,254}No where calculated:

- Kⁿ= 8⁻ isomers (at 1.361 MeV in ²⁵²No and 1.747 MeV in ²⁵⁴No)
- Pairing vibrations or superdeformation Kⁿ = 0⁺ (at 0.77 MeV in ²⁵²No and 0.22 MeV in ²⁵⁴No)
- States Kⁿ=2⁺ (1.58 MeV in ²⁵²No and 1.31 MeV in ²⁵⁴No)
- Hexadecapole states with Kⁿ = 3⁺ and 4⁺
- Octupole states with $K^n = 0^-$, 1^- , 2^- and 3^-
- Superdeformation in ^{250,252,254}No

The main attention is paid to ^{252,254}No where calculated:

- Kⁿ= 8⁻ isomers (at 1.361 MeV in ²⁵²No and 1.747 MeV in ²⁵⁴No)
- Pairing vibrations or superdeformation Kⁿ = **0**⁺ (at 0.77 MeV in ²⁵²No and 0.22 MeV in ²⁵⁴No)
- States Kⁿ=2⁺ (1.58 MeV in ²⁵²No and 1.31 MeV in ²⁵⁴No)
- Hexadecapole states with $K^n = 3^+$ and 4^+
- Octupole states with $K^n = 0^-$, 1^- , 2^- and 3^-
- Superdeformation in ^{250,252,254}No

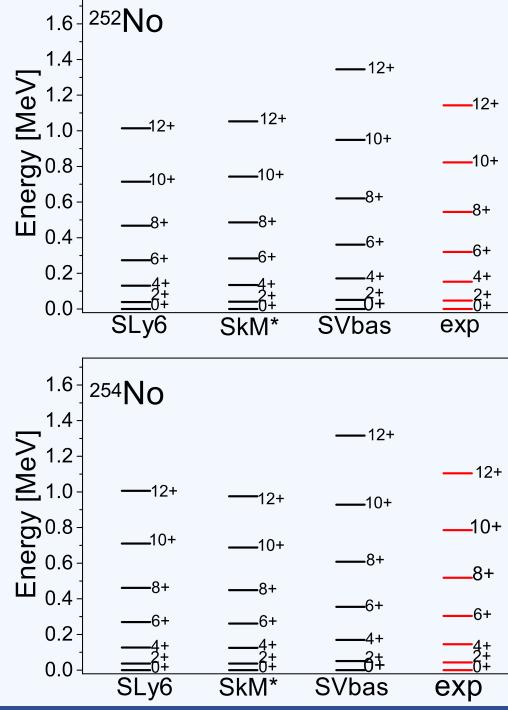
Skyrme forces

force	m/m*	kind of pairing
SVbas	0.90	surface
SkM*	0.79	volume
SLy6	0.69	volume

[P. Klupfel et al, PRC 79 034310 (2009)]

[J. Bartel et al, NPA 386, 79 (1982)]

[E. Chabanat et al, NPA, 635 231 (1998)]


$$V_{\text{pair}}^q(\mathbf{r}, \mathbf{r}') = G_q \left[1 - \eta \left(\frac{\rho(\mathbf{r})}{\rho_{\text{pair}}} \right) \right] \delta(\mathbf{r} - \mathbf{r}')$$

Where Gq are pairing strength constants (q = p, n). We get so-called density-dependent surface pairing for $\eta = 1$ and volume pairing for $\eta = 0$

Calculation details:

Codes — SkyAx [P.-G. Reinhard et al, Comp. Phys. Communic. 258, 107603 (2021)] QRPA [A. Repko et al, arXiv:1510.01248 (nucl-th), 2015]

- Accurate extraction of spurious admixtures
 [V. O. Nesterenko et al, Eur. Phys. J. A 55, 213 (2019)]
- 2D grid in cylindric coordinates
- All proton and neutron s-p levels up to +40 MeV

ლ[™] 0.28 0.27 0.26 256 252 254 258 260 1020 -1005 -J [hbar²/MeV] 252 254 256 258 260 Energy gap [MeV] 254 256 258 260 252 254 256 258 E2 [MeV] - theor 0.05 -

The characteristics of the ground states of ²⁵⁰⁻²⁶²No with increasing number neutrons

$$\beta_{20} = \frac{4\pi}{3} \frac{Q_{20}}{AR^2}$$
, $R = R_0 A^{1/3}$, $R_0 = 1.2 \text{ fm}$

$$J_{TV} = 2\sum_{\nu>0} \frac{|<\nu|J_x|0>|^2}{E_\nu - E_0}$$

$$V_{\text{pair}}^{q}(\mathbf{r}, \mathbf{r}') = G_{q} \left[1 - \eta \left(\frac{\rho(\mathbf{r})}{\rho_{\text{pair}}} \right) \right] \delta(\mathbf{r} - \mathbf{r}')$$

$$E_I = rac{\hbar^2}{2\mathcal{J}}I(I+1)$$

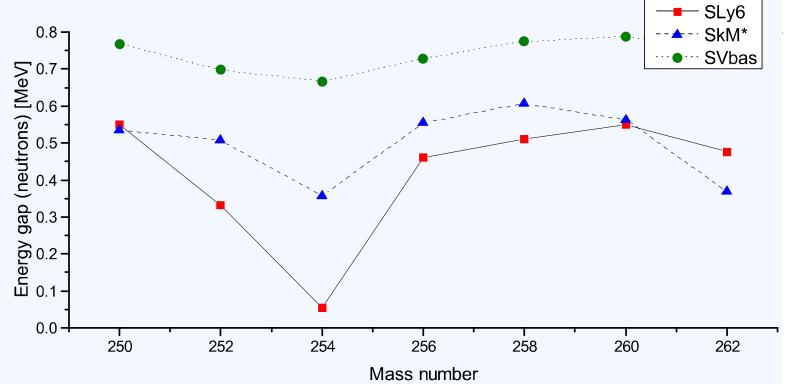
Initially it was assumed that these characteristics would evolve monotonically, but we see irregularity at ^{252, 254}No

0.27 0.26 1020 -1005 -J [hbar²/MeV] Energy gap [MeV] E2 0.08 - 0.07 - 0.06 - 0.05 -· theor 0.05 -

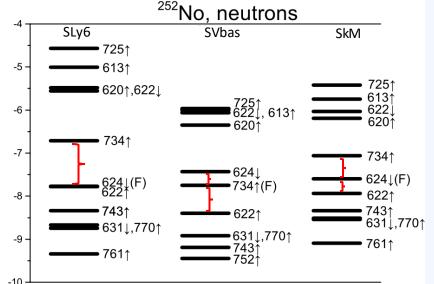
The characteristics of the ground states of ²⁵⁰⁻²⁶²No with increasing number neutrons

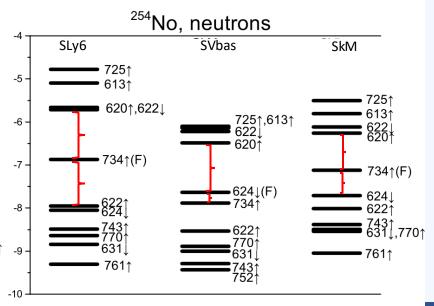
$$\beta_{20} = \frac{4\pi}{3} \frac{Q_{20}}{AR^2}$$
, $R = R_0 A^{1/3}$, $R_0 = 1.2 \text{ fm}$

$$J_{TV} = 2\sum_{\nu>0} \frac{|<\nu|J_x|0>|^2}{E_\nu - E_0}$$


$$V_{\text{pair}}^q(\mathbf{r}, \mathbf{r}') = G_q \left[1 - \eta \left(\frac{\rho(\mathbf{r})}{\rho_{\text{pair}}} \right) \right] \delta(\mathbf{r} - \mathbf{r}')$$

$$E_I = rac{\hbar^2}{2\mathcal{J}}I(I+1)$$


Initially it was assumed that these characteristics would evolve monotonically, but we see irregularity at ^{252, 254}No


Does this irregularity (decline in neutron pairing)

depend on the chosen Skyrme force?

- All 3 Skyrme forces support this irregularity;
- For ²⁵⁴No the Fermi level isolated, so neutron pairing almost disappears;
- For ²⁵²No the Fermi level is also quite far from neighboring levels, so pairing is also poorly developed

K[□]= 8⁻ isomers

252No: the 8⁻ state is usually assigned as neutron 2qp configuration nn[734 ↑, 624 ↓]

- R.-D. Herzberg and P.T. Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008)
- F.P. Heßberger, arXiv:2309.10468v2[nucl-ex].
- B. Sulignano et al, Eur. Phys. J. A 33, 327 (2007).

254No: forces predict different 2qp configurations nn[734 ↑, 613 ↓] and pp[514 ↓, 624 ↑]

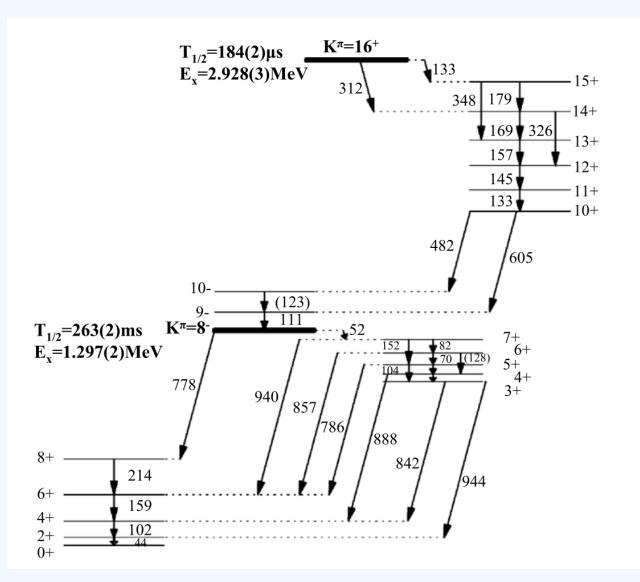
- V.G. Soloviev, A.V. Sushkov, A.Yu. Shirikova, Sov. J. Nucl. Phys. 54, 748 (1991)
- R.M. Clark et al, Phys. Lett. B690, 19 (2010)

- R.V. Jolos, L.A. Malov, N.Yu.
 Shirikova and A.V. Sushkov, J. Phys.
 G: Nucl. Part. Phys. 38, 115103 (2011).
- Xiao-Tao He, Shu-Young Zhao, Zhen-Hua Zhang and Zhong-Zhou Ren, Chines Physics C 44, 034106 (2020)
- G.G. Adamian, N.V. Antonenko, anf W. Scheid, Phys. Rev. C 81, 024320 (2010)
- F.P. Hessberger et al, Eur. Phys. J A43, 55 (2010)

Force	$E_{\nu=1}$	B(E98)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-scheme
	$[\mathrm{MeV}]$	[W.u.]		$[\mathrm{MeV}]$		
		252	2 No, E_{x} =1.254 M	[eV		
SLy6	1.361	0.038	$nn[624\downarrow,734\uparrow]$	1.317	0.996	F,F+1
SkM*	1.330	0.025	$nn[734\uparrow,624\downarrow]$	1.198	0.992	F,F+1
SVbas	1.913	0.119	$nn[624\downarrow,734\uparrow]$	1.751	0.912	F,F+1
		$^{254}]$	No, $E_{\text{exp}} = 1.295 \text{ N}$	ЛeV		
SLy6	1.747	0.014	$nn[734\uparrow,613\uparrow]$	1.780	0.994	F,F+3
SkM*	1.554	0.333	$pp[514\downarrow,624\uparrow,]$	1.482	0.990	F+1,F+2
SVbas	1.994	0.370	$pp[514\downarrow,624\uparrow,]$	1.751	0.791	F+1,F+2
			$nn[734\uparrow,613\uparrow]$	2.026	0.169	F,F+3

Features of calculated 8⁻ states in 252,254 No: QRPA excitation energies $E_v = 1$, reduced transition probabilities B(E98), the main 2qp component qq', its energy $\epsilon_{qq'}$, contribution to the state norm $N_{qq'}$ and F-scheme of 2qp excitation.

K[□]= 8⁻ isomers


252No: the 8⁻ state is usually assigned as neutron 2qp configuration nn[734 ↑, 624 ↓]

- R.-D. Herzberg and P.T. Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008)
- F.P. Heßberger, arXiv:2309.10468v2[nucl-ex].
- B. Sulignano et al, Eur. Phys. J. A 33, 327 (2007).

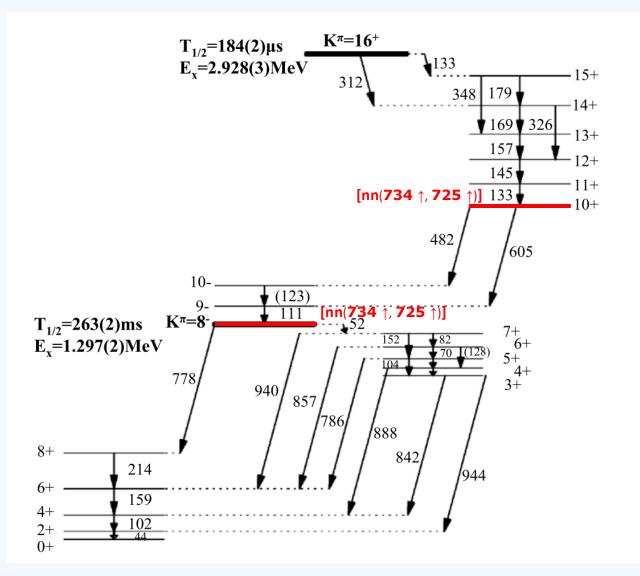
254No: forces predict different 2qp configurations nn[734 ↑, 613 ↓] and pp[514 ↓, 624 ↑]

- V.G. Soloviev, A.V. Sushkov,
 A.Yu. Shirikova, Sov. J. Nucl.
 Phys. 54, 748 (1991)
- R.M. Clark et al, Phys. Lett. B690, 19 (2010)

- R.V. Jolos, L.A. Malov, N.Yu.
 Shirikova and A.V. Sushkov, J. Phys.
 G: Nucl. Part. Phys. 38, 115103 (2011).
- Xiao-Tao He, Shu-Young Zhao, Zhen-Hua Zhang and Zhong-Zhou Ren, Chines Physics C 44, 034106 (2020)
- G.G. Adamian, N.V. Antonenko, anf W. Scheid, Phys. Rev. C 81, 024320 (2010)
- F.P. Hessberger et al, Eur. Phys. J A43, 55 (2010)

R.M. Clark et al, Phys. Lett. B690, 19 (2010)

K[□]= 8⁻ isomers


252No: the 8⁻ state is usually assigned as neutron 2qp configuration nn[734 ↑, 624 ↓]

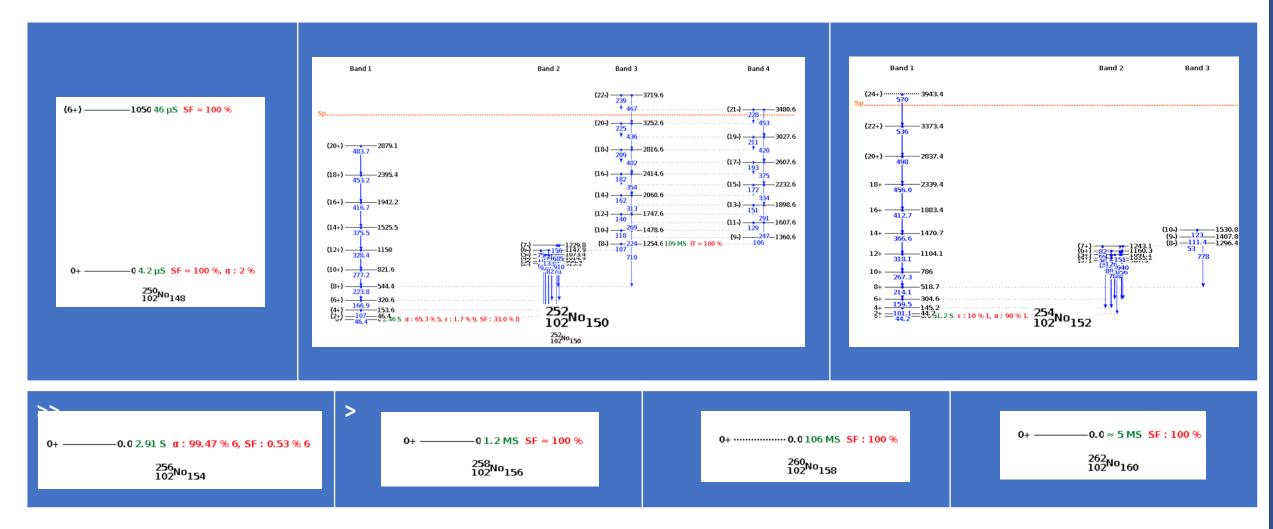
- R.-D. Herzberg and P.T. Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008)
- F.P. Heßberger, arXiv:2309.10468v2[nucl-ex].
- B. Sulignano et al, Eur. Phys. J. A 33, 327 (2007).

254No: forces predict different 2qp configurations nn[734 ↑, 613 ↓] and pp[514 ↓, 624 ↑]

- V.G. Soloviev, A.V. Sushkov, A.Yu. Shirikova, Sov. J. Nucl. Phys. 54, 748 (1991)
- R.M. Clark et al, Phys. Lett. B690, 19 (2010)

- R.V. Jolos, L.A. Malov, N.Yu.
 Shirikova and A.V. Sushkov, J. Phys.
 G: Nucl. Part. Phys. 38, 115103 (2011).
- Xiao-Tao He, Shu-Young Zhao, Zhen-Hua Zhang and Zhong-Zhou Ren, Chines Physics C 44, 034106 (2020)
- G.G. Adamian, N.V. Antonenko, anf W. Scheid, Phys. Rev. C 81, 024320 (2010)
- F.P. Hessberger et al, Eur. Phys. J A43, 55 (2010)

R.M. Clark et al, Phys. Lett. B690, 19 (2010)

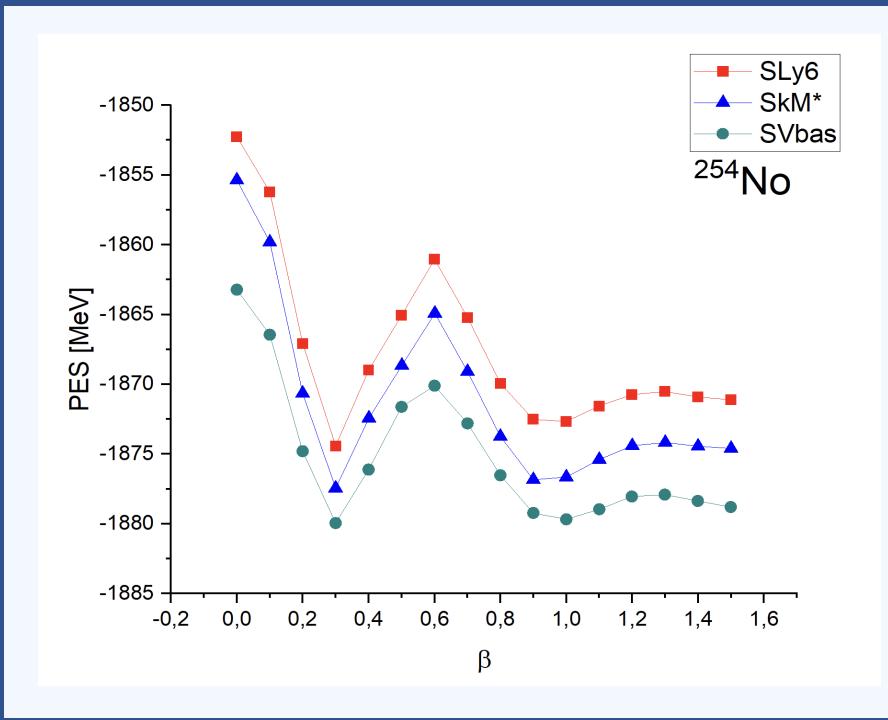

Pairing vibrations $K^n = 0^+$

Force	E (MeV)	B(E20) (W.u.)	$\rho^2(E0) (10^{-3})$	qq'	$\epsilon_{qq'} \; ({\rm MeV})$	$N_{aa'}$	F-order
	, ,		2	⁵² No		- 11	
SLy6	1.13	1.4	2.2	$pp[514\downarrow,514\downarrow]$	1.16	0.56	F+1, F+1
				$pp[521\downarrow,521\downarrow]$	1.16	0.38	F,F
SkM*	0.84	1.1	1.2	$pp[521\downarrow,521\downarrow]$	1.01	0.46	F,F
				$pp[514\downarrow, 514\downarrow]$	1.09	0.42	F+1,F+1
SVbas	1.25	5.8	2.6	$pp[514\downarrow,514\downarrow]$	1.23	0.56	F+1,F+1
				$pp[521\downarrow,521\downarrow]$	1.20	0.36	F,F
			2	54 No			
SLy6	1.13	1.3	2.0	$pp[514\downarrow,514\downarrow]$	1.16	0.56	F+1, F+1
				$pp[521\downarrow,521\downarrow]$	1.15	0.40	F,F
SkM*	0.88	4.4	1.4	$pp[521\downarrow,521\downarrow]$	1.02	0.45	F,F
				$pp[514\downarrow,514\downarrow]$	1.08	0.43	F+1,F+1
SVbas	1.24	6.3	2.5	$pp[514\downarrow,514\downarrow]$	1.22	0.57	F+1,F+1
				$pp[521\downarrow,521\downarrow]$	1.19	0.34	F,F

- Calculations predict for the lowest $K^n = 0^+$ state in ²⁵⁴No an exceptionally low excitation energy 0.22 MeV (this state is basically pairing vibrational)
- Recent shell-model calculations with the projection after variation also predicts Kⁿ = 0+ state with E=0.86 MeV as the lowest non-rotational state of ²⁵⁴No (D.D. Dao and F. Nowacki, Phys. Rev. C 105, 054314 (2022))
- [M. Forge et al 2023 J. Phys.: Conf. Ser. 2586 012083] also predicts K" = 0+ state with E=0.89 MeV (shape coexistence)

So, excited 0+ states below 1 MeV in superheavy nuclei are quite possible

At the moment, there are experimental* spectroscopic data only for 3/7 nuclei: 250,252,254 No

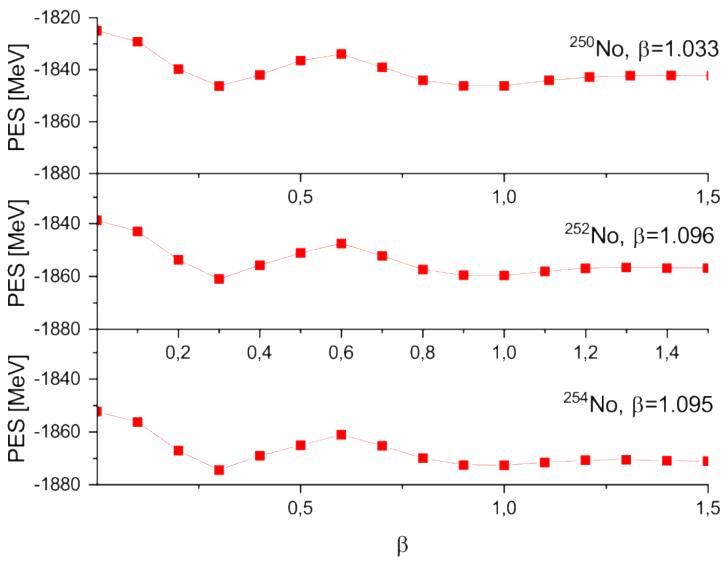

^{*} NNDC data base

Pairing vibrations $K^n = 0^+$

Force	E (MeV)	B(E20) (W.u.)	$\rho^2(E0) (10^{-3})$	qq'	$\epsilon_{qq'} \; ({\rm MeV})$	$N_{aa'}$	F-order
	, ,		2	⁵² No		- 11	
SLy6	1.13	1.4	2.2	$pp[514\downarrow,514\downarrow]$	1.16	0.56	F+1, F+1
				$pp[521\downarrow,521\downarrow]$	1.16	0.38	F,F
SkM*	0.84	1.1	1.2	$pp[521\downarrow,521\downarrow]$	1.01	0.46	F,F
				$pp[514\downarrow, 514\downarrow]$	1.09	0.42	F+1,F+1
SVbas	1.25	5.8	2.6	$pp[514\downarrow,514\downarrow]$	1.23	0.56	F+1,F+1
				$pp[521\downarrow,521\downarrow]$	1.20	0.36	F,F
			2	54 No			
SLy6	1.13	1.3	2.0	$pp[514\downarrow,514\downarrow]$	1.16	0.56	F+1, F+1
				$pp[521\downarrow,521\downarrow]$	1.15	0.40	F,F
SkM*	0.88	4.4	1.4	$pp[521\downarrow,521\downarrow]$	1.02	0.45	F,F
				$pp[514\downarrow,514\downarrow]$	1.08	0.43	F+1,F+1
SVbas	1.24	6.3	2.5	$pp[514\downarrow,514\downarrow]$	1.22	0.57	F+1,F+1
				$pp[521\downarrow,521\downarrow]$	1.19	0.34	F,F

- Calculations predict for the lowest $K^n = 0^+$ state in ²⁵⁴No an exceptionally low excitation energy 0.22 MeV (this state is basically pairing vibrational)
- Recent shell-model calculations with the projection after variation also predicts Kⁿ = 0+ state with E=0.86 MeV as the lowest non-rotational state of ²⁵⁴No (D.D. Dao and F. Nowacki, Phys. Rev. C 105, 054314 (2022))
- [M. Forge et al 2023 J. Phys.: Conf. Ser. 2586 012083] also predicts K" = 0+ state with E=0.89 MeV (shape coexistence)

So, excited 0+ states below 1 MeV in superheavy nuclei are quite possible



Few words about superdeformation:

1) All 3 Skyrme forces demonstrate second minimum

2)
$$\beta \approx 1$$

3) As before, let's focus on SLy6

 250,252,254 No demonstrate superdeformation (second minimum near $\beta=1$)

Hexadecapole states with $K^n = 3^+$ and 4^+

Force	E	B(E43)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct
			$^{252}\mathrm{No}$			
SLy6	1.10	3.04	$pp[521\downarrow,514\downarrow]$	1.16	0.99	F,F+1
	2.13	2.91	$pp[521\downarrow,512\uparrow]$	2.11	0.95	F,F+3
SkM*	1.00	3.61	$pp[521\downarrow,514\downarrow]$	1.05	0.97	F,F+1
	1.69	2.67	$pp[521\downarrow,512\uparrow]$	1.61	0.94	F,F+3
SVbas	1.19	2.73	$pp[521\downarrow,514\downarrow]$	1.21	0.98	F,F+1
	1.93	2.43	$pp[521\downarrow,512\uparrow]$	1.86	0.95	F,F+3
			254 No, $E_{\rm x}$ =0.98	7 Me	V	
SLy6	1.11	2.41	$pp[521\uparrow,514\downarrow]$	1.15	0.99	F,F+1
	1.89	1.78	$nn[620\uparrow,613\uparrow]$	1.89	1.00	F+1,F+3
SkM*	1.01	3.24	$pp[521\downarrow,514\downarrow]$	1.05	0.97	F,F+1
	1.41	2.15	$nn[624\downarrow],620\uparrow]$	1.39	1.00	F,F+1
SVbas	1.17	3.00	$pp[521\downarrow,514\downarrow]$	1.20	0.99	F,F+1
	1.87	3.28	$nn[620\uparrow,613\uparrow]$	1.98	0.48	F+1,F+3
			$pp[521\downarrow,512\uparrow]$	1.89	0.47	F,F+3

_		D(D(1)		I		.
Force	E	B(E44)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct
			$^{252}\mathrm{No}$			
SLy6	1.16	$5.5 \ 10^{-4}$	$pp[521\downarrow,514\uparrow]$	1.16	1.00	F,F+1
	2.11	1.78	$nn[624\downarrow,620\uparrow]$	2.34	0.50	F,F+2
			$nn[622\uparrow,622\downarrow]$	2.41	0.42	F-1,F+3
SkM*	1.00	3.61	$pp[521\downarrow,514\downarrow]$	1.05	0.97	F,F+1
	1.69	2.67	$pp[521\downarrow,512\uparrow]$	1.61	0.94	F,F+3
SVbas	1.19	2.73	$pp[521\downarrow,514\downarrow]$	1.21	0.98	F,F+1
	1.93	2.43	$pp[521\downarrow,512\uparrow]$	1.86	0.95	F,F+3
			254 No, $E_{\rm x}$ =0.987	MeV	V	
SLy6	1.16	0.07	$pp[521\downarrow,514\downarrow]$	1.15	1.00	F,F+1
	1.89	$1 \ 10^{-4}$	$nn[620\uparrow,613\uparrow]$	1.89	1.00	F+1,F+3
SkM*	1.01	3.24	$pp[521\downarrow,514\downarrow]$	1.05	0.97	F,F+1
	1.41	2.15	$nn[624\downarrow],620\uparrow]$	1.39	1.00	F,F+1
SVbas	1.17	3.00	$pp[521\downarrow,514\downarrow]$	1.20	0.99	F,F+1
	1.87	3.28	$nn[620\uparrow,613\uparrow]$	1.98	0.48	F+1,F+3
			$pp[521\downarrow,512\uparrow]$	1.89	0.47	F,F+3

- The first 3+ state is purely 2qp
- All the forces predict for this state the proton 2qp configuration pp[521 ↓, 514 ↓]

So, we see that effect of the hexadecapole residual interaction for 3+ states in ^{252,254}No is negligible

• The calculated 4+ states in 252,254 No have the energies and structure very similar to 3+ states. This is not surprising since both kinds of states are basically formed by the same proton 2qp configuration pp[521 \downarrow , 514 \downarrow] with |K1 - K2| = 3 and K1 + K2 = 4.

Hexadecapole states with $K^n = 3^+$ and 4^+

Force	E	B(E43)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct
10100		D(D 10)	²⁵² No	$\sim qq^{\prime}$	1 1 99	1 burdet
SLy6	1.10	3.04	$pp[521\downarrow,514\downarrow)$	1.16	0.99	F,F+1
	2.13	2.91	$pp[521\downarrow,512\uparrow]$	2.11	0.95	F,F+3
SkM*	1.00	3.61	$pp[521\downarrow,514\downarrow)$	1.05	0.97	F,F+1
	1.69	2.67	$pp[521\downarrow,512\uparrow]$	1.61	0.94	F,F+3
SVbas	1.19	2.73	$pp[521\downarrow,514\downarrow)$	1.21	0.98	F,F+1
	1.93	2.43	$pp[521\downarrow,512\uparrow]$	1.86	0.95	F,F+3
			254 No, $E_{\rm x}$ =0.987	7 Me	V	
SLy6	1.11	2.41	$pp[521\uparrow,514\downarrow)$	1.15	0.99	F,F+1
	1.89	1.78	$nn[620\uparrow,613\uparrow]$	1.89	1.00	F+1,F+3
SkM*	1.01	3.24	$pp[521\downarrow,514\downarrow]$	1.05	0.97	F,F+1
	1.41	2.15	$nn[624\downarrow],620\uparrow]$	1.39	1.00	F,F+1
SVbas	1.17	3.00	$pp[521\downarrow,514\downarrow]$	1.20	0.99	F,F+1
	1.87	3.28	$nn[620\uparrow,613\uparrow]$	1.98	0.48	F+1,F+3
			$pp[521\downarrow,512\uparrow]$	1.89	0.47	F,F+3

Force	E	B(E44)	qq'	6/	$N_{qq'}$	F-struct
10100		<i>D</i> (<i>D</i> 11)	²⁵² No	Qq^{\prime}	1 ' q q'	1 burace
			NO			
SLy6	1.16	$5.5 \ 10^{-4}$	$p[521\downarrow,514\uparrow)$	1.16	1.00	F,F+1
	2.11	1.78	$nn[624\downarrow,620\uparrow]$	2.34	0.50	F,F+2
			$nn[622\uparrow,622\downarrow]$	2.41	0.42	F-1,F+3
SkM*	1.00	3.61	$p[521\downarrow,514\downarrow]$	1.05	0.97	F,F+1
	1.69	2.67	$pp[521\downarrow,512\uparrow]$	1.61	0.94	F,F+3
SVbas	1.19	2.73	$p[521\downarrow,514\downarrow)$	1.21	0.98	F,F+1
	1.93	2.43	$pp[521\downarrow,512\uparrow]$	1.86	0.95	F,F+3
			254 No, $E_{\rm x}$ =0.987	MeV	7	
SLy6	1.16	0.07	$p[521\downarrow,514\downarrow]$	1.15	1.00	F,F+1
	1.89	$1 \ 10^{-4}$	$nn[620\uparrow,613\uparrow]$	1.89	1.00	F+1,F+3
SkM*	1.01	3.24	$pp[521\downarrow,514\downarrow]$	1.05	0.97	F,F+1
	1.41	2.15	$nn[624\downarrow],620\uparrow]$	1.39	1.00	F,F+1
SVbas	1.17	3.00	$p[521\downarrow,514\downarrow]$	1.20	0.99	F,F+1
	1.87	3.28	$nn[620\uparrow,613\uparrow]$	1.98	0.48	F+1,F+3
			$pp[521\downarrow,512\uparrow]$	1.89	0.47	F,F+3

- The first 3+ state is purely 2qp
- All the forces predict for this state the proton 2qp configuration pp[521 ↓, 514 ↓]

So, we see that effect of the hexadecapole residual interaction for 3+ states in ^{252,254}No is negligible

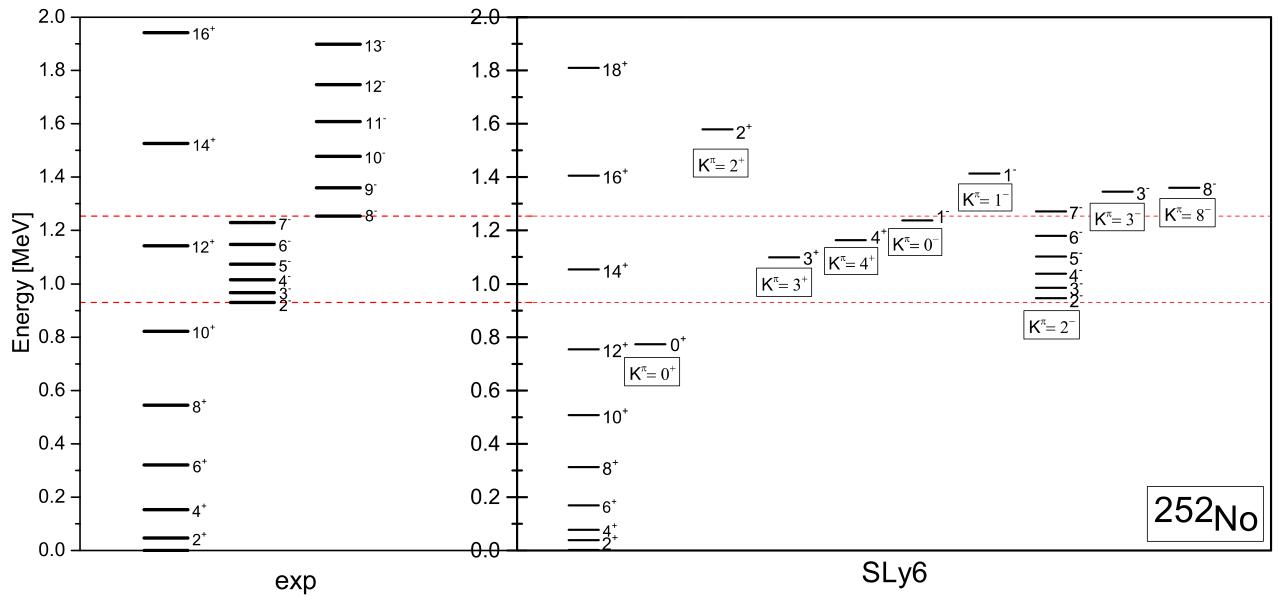
• The calculated 4+ states in 252,254 No have the energies and structure very similar to 3+ states. This is not surprising since both kinds of states are basically formed by the same proton 2qp configuration $pp[521 \downarrow, 514 \downarrow]$ with |K1 - K2| = 3 and K1 + K2 = 4.

Octupole states with $K^n = 0^-$, 1^- , 2^- and 3^-

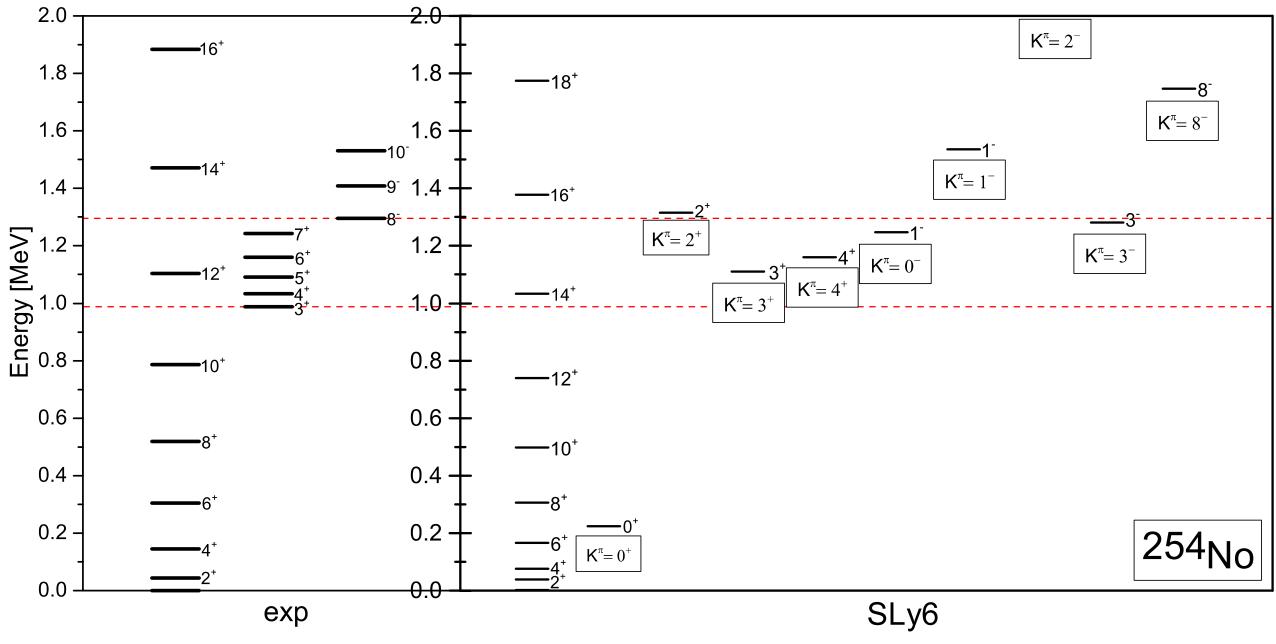
- In agreement with the experimental analysis, all three Skyrme forces suggest for the first 2-state in 252 No the 2qp configuration nn[734 \uparrow , 622 \uparrow]
- In the QPM study [R.V. Jolos, L.A. Malov, N.Yu. Shirikova and A.V. Sushkov, J. Phys. G: Nucl. Part. Phys. 38, 115103 (2011)], the first 2⁻ state is the lowest among the octupole excitations in ²⁵²No. We get the same result for SLy6 but not for SkM* and SVbas.
- In ²⁵⁴No, our calculations for the first 2⁻ stat give rather high energies (1.80-2.12 MeV) and essentially different structure and collectivity.

Force	K^{π}	E	B(E3K)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct	K^{π}	E	B(E3K)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct
				$^{252}\mathrm{No}$							$^{254}\mathrm{No}$			
SLy6	0-	1.24	9.1	$pp[514\downarrow,633\uparrow]$	1.35	0.93	F+1,F-1	0-	1.25	11.2	$pp[514\downarrow,633\uparrow]$	1.38	0.87	F+1,F-1
	1-	1.41	1.5	$nn[734\uparrow,624\downarrow]$	1.32	0.98	F+1,F	1-	1.54	8.4	$nn[734\uparrow,613\uparrow]$	1.78	0.82	F,F+3
	2^{-}	0.95	11.5	$nn[734\uparrow,622\uparrow]$	1.30	0.92	F+1,F-1	2^{-}	2.12	0.6	$nn[734\uparrow,622\uparrow]$	2.13	0.94	F,F-1
	3-	1.35	0.1	$pp[633\uparrow,521\downarrow]$	1.35	1.00	F-1,F	3-	1.28	0.03	$nn[734\uparrow,622\downarrow]$	1.213	0.94	F,F+2
SkM*	0-	1.35	20.7	$pp[514\downarrow,633\uparrow]$	1.52	0.79	F+1, F-1	0-	1.37	16.3	$pp[514\downarrow,633\uparrow]$	1.51	0.84	F+1,F-1
	1-	1.16	2.2	$nn[734\uparrow,624\downarrow]$	1.20	0.97	F,F+1	1-	1.47	1.5	$pp[624\uparrow,514\downarrow]$	1.48	0.95	F+2,F+1
	2^{-}	1.46	6.2	$nn[734\uparrow,622\uparrow]$	1.61	0.92	F,F-1	2^{-}	1.80	3.7	$nn[725\uparrow,624\downarrow]$	1.71	0.85	F+3,F
	3-	1.48	0.05	$pp[633\uparrow,521\downarrow]$	1.48	1.00	F-2,F	3-	1.48	0.04	$pp[633\uparrow,521\downarrow]$	1.48	1.00	F-1,F
SVbas	0-	1.32	7.7	$pp[514\downarrow,633\uparrow]$	1.42	0.92	F+1, F-1	0-	1.30	7.4	$pp[514\downarrow,633\uparrow]$	1.40	0.92	F+1,F-1
	1-	1.71	6.1	$nn[734\uparrow,624\downarrow]$	1.75	0.77	F+1,F	1-	1.72	12.3	$nn[734\uparrow,613\uparrow]$	2.03	0.42	F,F+3
				$pp[633\uparrow,512\uparrow]$	2.06	0.10	F-1,F+3				$pp[633\uparrow,512\uparrow]$	2.09	0.30	F-1,F+3
										-	$pp[624\uparrow,514\downarrow]$	1.86	0.10	F+2,F+1
	2^{-}	1.62	12.6	$nn[734\downarrow,622\uparrow]$	1.9	0.72	F+1,F-1	2^{-}	1.90	14.5	$pp[633\uparrow,521\downarrow]$	2.15	0.44	F-1,F
			-	$pp[633\uparrow,521\uparrow]$	2.15	0.13	F-1,F-2			-	$nn[734\uparrow,622\uparrow]$	2.33	0.26	F,F-2
	3-	1.40	0.06	$pp[633\uparrow,521\downarrow]$	1.40	1.00	F-1,F	3-	1.39	0.05	$pp[633\uparrow,521\downarrow]$	1.40	1.00	F-1,F

Octupole states with $K^n = 0^-$, 1^- , 2^- and 3^-


- In agreement with the experimental analysis, all three Skyrme forces suggest for the first 2-state in 252 No the 2qp configuration nn[734 \uparrow , 622 \uparrow]
- In the QPM study [R.V. Jolos, L.A. Malov, N.Yu. Shirikova and A.V. Sushkov, J. Phys. G: Nucl. Part. Phys. 38, 115103 (2011)], the first 2⁻ state is the lowest among the octupole excitations in ²⁵²No. We get the same result for SLy6 but not for SkM* and SVbas.
- In ²⁵⁴No, our calculations for the first 2⁻ stat give rather high energies (1.80-2.12 MeV) and essentially different structure and collectivity.

Force	K^{π}	E	B(E3K)		$\epsilon_{qq'}$	$N_{qq'}$	F-struct	K^{π}	E	B(E3K)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct
				$^{252}\mathrm{No}$							$^{254}\mathrm{No}$			
SLy6	0-	1.24	9.1	$pp[514\downarrow,633\uparrow]$	1.35	0.93	F+1,F-1	0-	1.25	11.2	$pp[514\downarrow,633\uparrow]$	1.38	0.87	F+1,F-1
	1-	1.41	1.5	$nn[734\uparrow,624\downarrow]$	1.32	0.98	F+1,F	1-	1.54	8.4	$nn[734\uparrow,613\uparrow]$	1.78	0.82	F,F+3
	(2^{-})	0.95	11.5	$nn[734\uparrow,622\uparrow]$	1.30	0.92	F+1,F-1	2^{-}	2.12	0.6	$nn[734\uparrow,622\uparrow]$	2.13	0.94	F,F-1
	3-	1.35	0.1	$pp[633\uparrow,521\downarrow]$	1.35	1.00	F-1,F	3-	1.28	0.03	$nn[734\uparrow,622\downarrow]$	1.213	0.94	F,F+2
SkM*	0-	1.35	20.7	$pp[514\downarrow,633\uparrow]$	1.52	0.79	F+1, F-1	0-	1.37	16.3	$pp[514\downarrow,633\uparrow]$	1.51	0.84	F+1,F-1
	1-	1.16	2.2	$nn[734\uparrow,624\downarrow]$	1.20	0.97	F,F+1	1-	1.47	1.5	$pp[624\uparrow,514\downarrow]$	1.48	0.95	F+2,F+1
	(2^{-})	1.46	6.2	$nn[734\uparrow,622\uparrow]$	1.61	0.92	F,F-1	2-	1.80	3.7	$nn[725\uparrow,624\downarrow]$	1.71	0.85	F+3,F
	3	1.48	0.05	$pp[633\uparrow,521\downarrow]$	1.48	1.00	F-2,F	3-	1.48	0.04	$pp[633\uparrow,521\downarrow]$	1.48	1.00	F-1,F
SVbas	0-	1.32	7.7	$pp[514\downarrow,633\uparrow]$	1.42	0.92	F+1, F-1	0-	1.30	7.4	$pp[514\downarrow,633\uparrow]$	1.40	0.92	F+1,F-1
	1-	1.71	6.1	$nn[734\uparrow,624\downarrow]$	1.75	0.77	F+1,F	1-	1.72	12.3	$nn[734\uparrow,613\uparrow]$	2.03	0.42	F,F+3
				$pp[633\uparrow,512\uparrow]$	2.06	0.10	F-1,F+3				$pp[633\uparrow,512\uparrow]$	2.09	0.30	F-1,F+3
										-	$pp[624\uparrow,514\downarrow]$	1.86	0.10	F+2,F+1
	(2^-)	1.62	12.6	$nn[734\downarrow,622\uparrow]$	1.9	0.72	F+1,F-1	2-	1.90	14.5	$pp[633\uparrow,521\downarrow]$	2.15	0.44	F-1,F
			-	$pp[633\uparrow,521\uparrow]$	2.15	0.13	F-1,F-2			-	$nn[734\uparrow,622\uparrow]$	2.33	0.26	F,F-2
	3-	1.40	0.06	$pp[633\uparrow,521\downarrow]$	1.40	1.00	F-1,F	3-	1.39	0.05	$pp[633\uparrow,521\downarrow]$	1.40	1.00	F-1,F


Octupole states with $K^n = 0^-$, 1^- , 2^- and 3^-

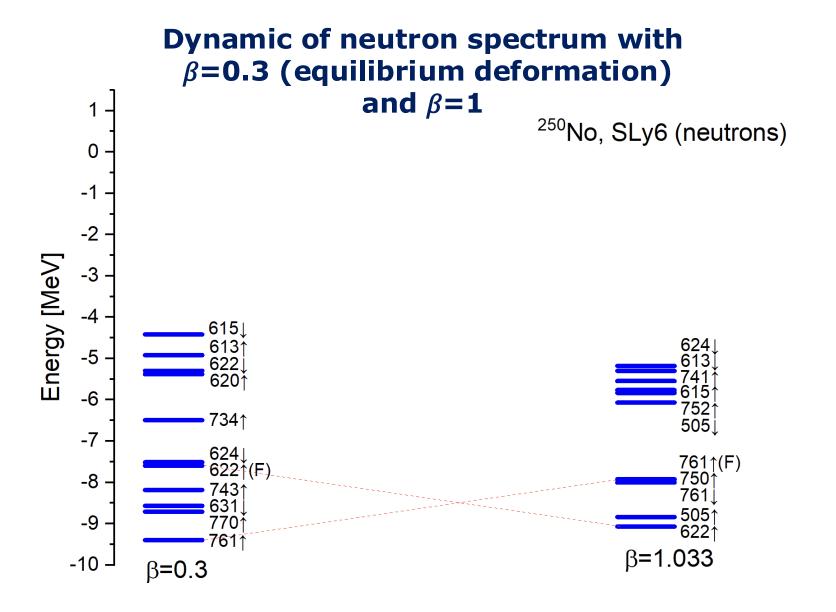
- In agreement with the experimental analysis, all three Skyrme forces suggest for the first 2-state in 252 No the 2qp configuration nn[734 \uparrow , 622 \uparrow]
- In the QPM study [R.V. Jolos, L.A. Malov, N.Yu. Shirikova and A.V. Sushkov, J. Phys. G: Nucl. Part. Phys. 38, 115103 (2011)], the first 2⁻ state is the lowest among the octupole excitations in ²⁵²No. We get the same result for SLy6 but not for SkM* and SVbas.
- In ²⁵⁴No, our calculations for the first 2⁻ stat give rather high energies (1.80-2.12 MeV) and essentially different structure and collectivity.

Dance	τεπ		D(E9 IZ)	?		A 7	E -4	τεπ	E	D(E9 V)	?	_	A 7	T4	
Force	IN.	$\mid E \mid$	B(E3K)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct	N.	E	B(E3K)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct	
				²⁵² No					$n = \begin{bmatrix} 1 & 1.54 & 8.4 & nn[734 \uparrow, 613 \uparrow] & 1.78 & 0.82 & F,F+3 \\ 2 & 2.12 & 0.6 & nn[734 \uparrow, 622 \uparrow] & 2.13 & 0.94 & F,F-1 \\ 3 & 1.28 & 0.03 & nn[734 \uparrow, 622 \downarrow] & 1.213 & 0.94 & F,F+2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 3 & 2 & 2 & 2 & 2 & 2 & 2 \\ 4 & 2 & 2 & 2 & 2 & 2 & 2 \\ 5 & 2 & 2 & 2 & 2 & 2 & 2 \\ 6 & 2 & 2 & 2 & 2 & 2 & 2 \\ 7 & 2 & 2 & 2 & 2 & 2 \\ 7 & 2 & 2 & 2 & 2 & 2 \\ 7 & 2 & 2 & 2 & 2 & 2 \\ 7 & 2 & 2 & 2 & 2 & 2 \\ 7 & 2 & 2 & 2 & 2 & 2 \\ 7 & 2 & 2 & 2 \\ 7 & 2 & 2 & 2 \\ 7 & 2 & 2 & 2 \\ 7 & 2 & 2 & 2 \\ 7 & 2 & 2 & 2 \\ 7 & 2 $						
SLy6	0-	1.24	9.1	$pp[514\downarrow,633\uparrow]$	1.35	0.93	F+1,F-1	0-	1.25	11.2	$pp[514\downarrow,633\uparrow]$	1.38	0.87	F+1,F-1	
	1-	1.41	1.5	$nn[734\uparrow,624\downarrow]$	1.32	0.98	F+1,F	1-	1.54	8.4	$nn[734\uparrow,613\uparrow]$	1.78	0.82	F,F+3	
	2^{-}	0.95	11.5	$nn[734\uparrow,622\uparrow]$	1.30	0.92	F+1,F-1	(2^{-})	2.12	0.6	$nn[734\uparrow,622\uparrow]$	2.13	0.94	F,F-1	
	3-	1.35	0.1	$pp[633\uparrow,521\downarrow]$	1.35	1.00	F-1,F	3-	1.28	0.03	$nn[734\uparrow,622\downarrow]$	1.213	0.94	F,F+2	
SkM*	0-	1.35	20.7	$pp[514\downarrow,633\uparrow]$	1.52	0.79	F+1, F-1	0-	1.37	16.3	$pp[514\downarrow,633\uparrow]$	1.51	0.84	F+1,F-1	
	1-	1.16	2.2	$nn[734\uparrow,624\downarrow]$	1.20	0.97	F,F+1	1-	1.47	1.5	$pp[624\uparrow,514\downarrow]$	1.48	0.95	F+2,F+1	
	2^{-}	1.46	6.2	$nn[734\uparrow,622\uparrow]$	1.61	0.92	F,F-1	(2^{-})	1.80	3.7	$nn[725\uparrow,624\downarrow]$	1.71	0.85	F+3,F	
	3-	1.48	0.05	$pp[633\uparrow,521\downarrow]$	1.48	1.00	F-2,F	3	1.48	0.04	$pp[633\uparrow,521\downarrow]$	1.48	1.00	F-1,F	
SVbas	0-	1.32	7.7	$pp[514\downarrow,633\uparrow]$	1.42	0.92	F+1, F-1	0-	1.30	7.4	$pp[514\downarrow,633\uparrow]$	1.40	0.92	F+1,F-1	
	1-	1.71	6.1	$nn[734\uparrow,624\downarrow]$	1.75	0.77	F+1,F	1-	1.72	12.3	$nn[734\uparrow,613\uparrow]$	2.03	0.42	F,F+3	
				$pp[633\uparrow,512\uparrow]$	2.06	0.10	F-1,F+3				$pp[633\uparrow,512\uparrow]$	2.09	0.30	F-1,F+3	
										-	$pp[624\uparrow,514\downarrow]$	1.86	0.10	F+2,F+1	
	2^{-}	1.62	12.6	$nn[734\downarrow,622\uparrow]$	1.9	0.72	F+1,F-1	(2^{-})	1.90	14.5	$pp[633\uparrow,521\downarrow]$	2.15	0.44	F-1,F	
			-	$pp[633\uparrow,521\uparrow]$	2.15	0.13	F-1,F-2			-	$nn[734\uparrow,622\uparrow]$	2.33	0.26	F,F-2	
	3-	1.40	0.06	$pp[633\uparrow,521\downarrow]$	1.40	1.00	F-1,F	3-	1.39	0.05	$pp[633\uparrow,521\downarrow]$	1.40	1.00	F-1,F	

- The band of the ground state is slightly compressed
- The band, which built on state 2⁻ is described well and the two others bands are also described satisfactorily

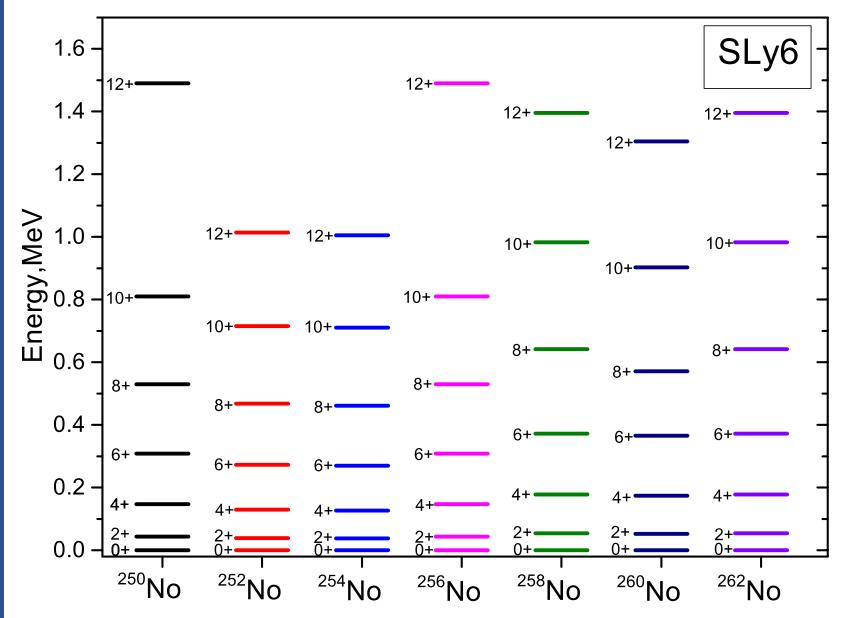
We also describing the 3 experimental bands quite well and working to carry out the more detailed analyzes about the band starting with 8-

Conclusion


- The low-energy spectra of the Nobelium chain were studied within the framework of three Skyrme forces (SLy6, SkM*, SVbas) with different types of pairing
- It was shown that for the ground state bands of ²⁵⁰⁻²⁶⁰No the irregularity occurs in the region ²⁵²⁻²⁵⁴No
- For ^{252,254}No isotopes this irregularity associated with pairing effect and evolution of the single-particle spectrum
- All three Skyrme forces maintain this irregularity, despite different types of neutron pairing (volume/surface)
- The theoretically obtained bands for the lower spectrum for ^{252, 254}No are in good agreement with experiment
- We also make the predictions about low-energy bands of different multipolarity $(K^n = 0^+, 2^+, 3^+, 0^-, 1^-, 2^-, 8^-)$, some of then can be found experimentally for ^{252,254}No

Thank you for your attention!

Low-energy spectra of nobelium isotopes: Skyrme random-phase-approximation analysis


Authors: V. O. Nesterenko, M. A. Mardyban, A. Repko, R. V. Jolos, P. -G. Reinhard

Backup slides

There is a gap near the Fermi level (in both case) which can give strong pairing effects

The irregularity in ²⁵²No and ²⁵⁴No at low-energy spectrum

Our tasks are:

- to analyze the occurrence of the irregularity for ^{252,254}No
- to make predictions not only for the ground state energy band, but for other bands too

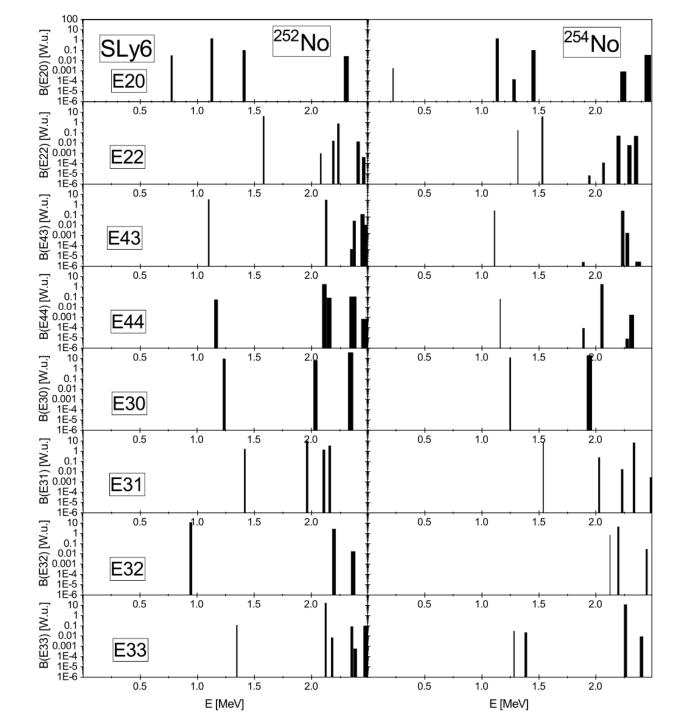
States $K^{\Pi} = 2$

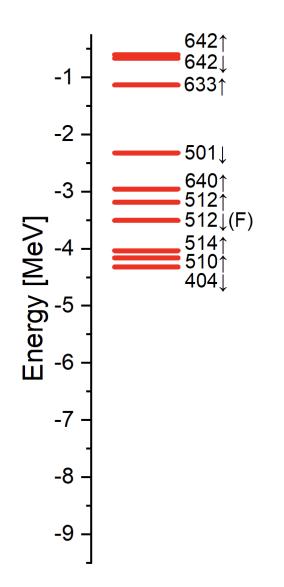
- In most of the cases, if the first state is collective, then the next one is 2qp and vice versa, but:
- The first $K^{\Pi} = 2^{+}$ states are <u>y-vibrational collective</u> in ²⁵²No (SLy6, SV-bas) and in ²⁵⁴No (SkM*, SV-bas)
- Instead, the first 2+ states are <u>purely 2qp</u> in ²⁵²No (SkM*) and in ²⁵⁴No (SLy6)

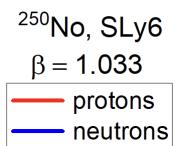
Anyway, all the calculated 2+ lie above the observed 2- (252No) and 3+ (252No) K-isomers

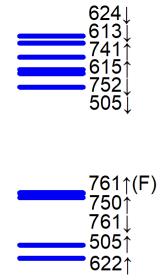
- We know only IBM calculations

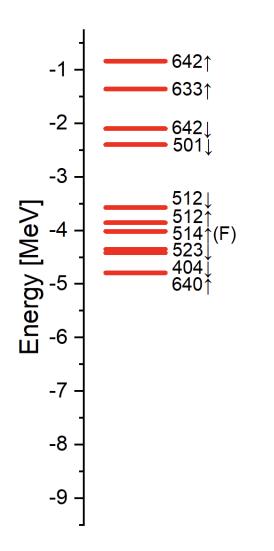
 [A. D. Efimov and I. N. Izosimov, Phys. Atom. Nucl. 84, 660 (2021)];


 [A. D. Efimov and I. N. Izosimov, JINR-E6-2022-19 (2022)]
- In contrast to our results, calculations predict $K^n = 2^+$ states at 1.09 MeV (252 No) and 0.94 MeV (254 No).


To estimate the true relevance of various theoretical results for No isotopes, the experimental data are necessary.


Force	E	B(E22)	qq'	$\epsilon_{qq'}$	$N_{qq'}$	F-struct	
	$^{252}\mathrm{No}$						
SLy6	1.58	3.87	$nn[622\uparrow,620\uparrow]$	2.33	0.39	F-1,F+2	
			$pp[521\downarrow,521\uparrow]$	2.06	0.32	F,F-2	
			$nn[624\downarrow,622\downarrow]$	2.42	0.21	F,F+3	
	2.08	-	$pp[514\downarrow], 521\uparrow]$	2.06	1.00	F+1,F-2	
SkM*	1.70	0.06	$pp[512\uparrow,521\downarrow]$	1.61	0.99	F+3,F	
	1.78	-	$nn[622\uparrow],620\uparrow]$	2.28	0.35	F-1,F+2	
			$nn[624\downarrow],622\downarrow]$	2.14	0.29	F+1,F+3	
			$pp[514\downarrow], 521\uparrow]$	2.06	1.00	F+1,F-2	
SVbas	1.62	2.72	$pp[521\uparrow], 521\downarrow]$	1.95	0.38	F-2,F	
			$nn[622\uparrow,620\uparrow]$	2.48	0.29	F-1,F+2	
			$nn[624\downarrow],622\downarrow]$	2.24	0.19	F,F+3	
	1.89	-	$pp[512\uparrow,521\downarrow]$	1.86	0.99	F+3,F	
	$^{254}\mathrm{No}$						
SLy6	1.31	0.17	$nn[622\uparrow,620\uparrow]$	1.32	0.97	F-1,F+1	
	1.53	-	$nn[622\uparrow,620\uparrow]$	2.24	0.42	F-1,F+1	
			$pp[521\uparrow], 521\downarrow]$	2.05	0.27	F-2,F	
			$nn[624\downarrow],622\downarrow]$	2.39	0.20	F-2,F+2	
SkM*	1.32	2.62	$nn[624\downarrow,622\downarrow]$	1.63	0.60	F,F+2	
			$nn[622\downarrow],620\uparrow]$	1.60	0.18	F+2,F+1	
			$nn[622\uparrow],620\uparrow]$	2.20	0.11	F-2,F+1	
	1.62	-	$nn[622\downarrow],620\uparrow]$	1.60	0.80	F-2,F+1	
			$nn[624\downarrow,622\downarrow]$	1.63	019	F,F+2	
SVbas	1.45	4.46	$nn[622\downarrow,620\uparrow]$	1.77	0.40	F+2,F+1	
			$pp[521\uparrow], 521\downarrow]$	1.95	0.20	F-2,F	
			$nn[624\downarrow],622\downarrow]$	2.15	0.17	F-1,F+2	
	1.87	-	$nn[622\downarrow],620\uparrow]$	1.77	0.56	F-1,F+2	
			$pp[521\uparrow], 521\downarrow]$	1.95	0.21	F-2,F	
			$nn[622\uparrow,620\uparrow]$	2.28	0.14	$ _{\mathrm{F+2,F+1}} $	
	1					· · · · · · · · · · · · · · · · · · ·	


TABLE X. The lowest SLy6 neutron and proton 2qp configurations $K = K_1 + K_2$ and $K = |K_1 + K_2|$ in 252,254 No.


$\epsilon_{qq'}$	qq'	F-struct	K_1+K_2	K_1 - K_2				
²⁵² No								
1.16	$pp[521\downarrow,514\downarrow]$	F,F+1	$\underline{4^+}$	<u>3</u> +				
1.35	$pp[633\uparrow,514\downarrow]$	F-1,F+1	7^-	0-				
1.35	$pp[633\uparrow,521\downarrow]$	F-1,F+1	4^-	3_				
2.06	$pp[521\uparrow,521\downarrow]$	F-2,F	<u>2</u> +	1+				
2.25	$pp[521\uparrow,633\uparrow]$	F-2,F-1	5^-	<u>2</u> -				
2.30	$pp[633\uparrow,512\uparrow]$	F-1,F+3	6-	1_				
1.30	$nn[734\uparrow,622\uparrow]$	F,F-2	7-	2_				
1.32	$nn[624\downarrow,734\uparrow]$	F,F+1	<u>8</u> -	1-				
2.08	$nn[624\downarrow,743\uparrow]$	F,F-2	7^-	0_				
2.33	$nn[622\uparrow,620\uparrow]$	F-1,F+2	<u>3</u> +	2+				
2.34	$nn[624\downarrow,620\uparrow]$	F,F+2	$\underline{4^+}$	3+				
	²⁵⁴ No							
1.15	$pp[521\downarrow,514\downarrow]$	F,F+1	<u>4</u> +	<u>3</u> +				
1.38	$pp[633\uparrow,514\downarrow]$	F-1,F+1	7^-	0_				
1.38	$pp[633\uparrow,521\downarrow]$	F-1,F	4^-	<u>3</u> -				
2.05	$pp[521\uparrow,521\downarrow]$	F-2,F	<u>2</u> +	1+				
2.27	$pp[521\uparrow,633\uparrow]$	F-2,F-1	5^-	<u>2</u> -				
2.43	$pp[633\uparrow,512\uparrow]$	F-1,F+3	6^-	<u>1</u> -				
1.21	$nn[734\uparrow,622\downarrow]$	F,F+2	6^-	3_				
1.32	$nn[622\uparrow,620\uparrow]$	F-1,F+1	<u>2</u> +	1+				
1.78	$nn[734\uparrow,613\uparrow]$	F,F+3	8-	1-				
1.89	$nn[620\uparrow,613\uparrow]$	F+1,F+3	<u>4</u> +	<u>3</u> +				
2.13	$nn[622\uparrow,734\uparrow]$	F-1,F	7^-	2_				
2.17	$nn[734\uparrow,615\downarrow]$	F,F+5	9-	0_				

