

I. N. Borzov 1,2

1 National Research Centre "Kurchatov Institute", Moscow, Russia

2 Bogolubov Laboratory of Theoretical Physics JINR, Dubna

Precision laser spectroscopy of the hyper-fine splitting spectra and beta-decay measurements of exotic nuclei at RIB facilities have reached a new level nowadays.

The nuclear charge radii and beta-decay half-lives near N=126 (important for the r-process) have been intensively explored recently at CERN, GSI etc...

This calls for theoretical studies of different nuclear observables $\langle r^2 \rangle$, Q_2 , μ and $T_{2,beta-decay}$ of exotic very neutron-rich nuclei in a single self-consistent framework.

Motivation

The self-consistent FFST with modified Fayans functional DF3-a is used for simultaneous description of the isotopic dependence of the radii (**R** charge) and **β decay** half-lives.

The isotopic behavior of the **R_charges** is sensitive to the spin-parity of the shell orbit occupied by the valence neutron. The β decay half-lives are sensitive to the ordering of neutron orbitals due to the GT and FF decays competitions!

By definition the Fayans functionals complies with experimental single-particle spectra. For N=126 region, the reference nucleus is 208Pb: Δε (n2g9/2 - n1i11/2) = -780 keV Relativistic Hartree-Bogoliubov (RHB) with covariant EDFs gives an inversed order of the neutron states at N > 126 !

How this difference may influence the simultaneous description of R_charge and T1/2

Fayans functional DF3-a. Self-Consistent Ground State.

$$E[\rho,\nu] = Tr\left(\frac{p^2}{2M}\rho\right) + E_{int}[\rho,\nu]$$

Kohn – Sham quasiparticle local EDF, $M^* = 1$

$$E_{\text{int}} = \sum_{\text{main,Coul,sl}} \varepsilon_n[\rho] + \frac{1}{2} v^* F^{\xi}[\rho] v$$

 F^{ξ} – volume + surface

$$\mathcal{E}(\rho) = \frac{a\rho^2}{2} \frac{1 + \alpha \rho^{\sigma}}{1 + \gamma \rho}.$$

$$f^{\xi}(x_{+}(\mathbf{r})) = f^{\xi}_{ex} + h^{\xi}(x_{+})^{q}(\mathbf{r}) + f^{\xi}_{\nabla}r_{0}^{2}\left(\nabla x_{+}(\mathbf{r})\right)^{2}$$

$$H = \begin{pmatrix} h - \mu & -\Delta \\ -\Delta & \mu - h \end{pmatrix}$$

$$h = \frac{p^2}{2m} + \frac{\delta E}{\delta \rho} \sim \rho \qquad \Delta = \frac{\delta E_{\text{int}}}{\delta \nu}$$

HFB-like iterative procedure $\rho_0, \nu_0 \Rightarrow h_0, \Delta_0 \Rightarrow \rho_1, \nu_1 \Rightarrow h_1, \Delta_1$

Fayans functional family - DF3, FANF⁰, DF3-a, DF3-f....

A. V. Smirnov, S. V. Tolokonnikov, and S. A. Fayans, Sov. J. Nucl. Phys. 48 , 995 (1988).	(DF1)
S.A. Fayans, S.V. Tolokonnikov,E.Trykov, D. Zawischa, Nucl.Phys. A676 (2000) 49.	(DF3)
I.N. Borzov, S.A. Fayans, E. Kromer, D. Zawischa Z. Phys. A335 117 (1996).	(DF3)
S.A. Fayans, JETP Lett. 68 , 169 (1998).	(FANDF ⁰)
S. V. Tolokonnikov and E. E. Saperstein, Phys. At. Nucl. 73 , 1684 (2010).	(DF3 - a)
I.N. Borzov, S. V. Tolokonnikov , Phys. At. Nucl. 82 , 471 (2019).	(DF3 - f)
K. Minamisono, W. Nazarewicz, W. Nörtershäuser, E.Olsen, M. R. Pearson, PG. Reinhard, E. E. Saperstein, and S. V. Tolokonnikov, et.al.	

Phys. Rev. Lett. 117, 252501 (2016). Laser Spectroscopy of Neutron-Rich Fe Isotopes....

"recently developed" Fayans functional – Fy, ... Fy (Δr; HFB)

K. Minamisono, W. Nazarewicz, W. Nörtershäuser, E.Olsen, M. R. Pearson,

P.-G. Reinhard, E. E. Saperstein, and S. V. Tolokonnikov, et.al.

Phys. Rev. Lett.117, 252501 (2016). Laser Spectroscopy of Neutron-Rich Fe Isotopes....

P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 95, 064328 (2017). Toward a global description of nuclear charge radii: Exploring the Fayans energy density functional

• R. F. Garcia Ruiz P.-G. Reinhard and W. Nazarewicz.... et al., <u>Nature Physics</u>, 12, 594 (2016). Unexpectedly large charge radii of neutron-rich calcium isotopes

- W.Nazarewicz et.al, <u>Nature Physics</u> 15, 432 (2019);
- R.de Groote et al., <u>Nature Physics</u> 16, 620(2020) Laser Spectroscopy of Neutron-Rich Cu isotopes.
- A. J. Miller, et.al , Phys. Rev. Lett., 122, 192502 (2019) Laser Spectroscopy of Neutron-Rich Tin Isotopes.
- A.Koszorús et.al., <u>Nature Letters</u> doi.org/10.1038/s41567-020-01136-5
- Radii of exotic potassium isotopes: challenge for nuclear theory and the magic character of N = 32.

I. Nuclear charge radii. Odd-even staggering. Kink of the isotopic curves at N=126

$$\langle r_{\rm ch}^2
angle = rac{1}{Z} \int r^2
ho_{\rm ch}({f r}) d^3 r$$

rms charge density

$$ho_{ au}({f r}) = \sum_{jls} n_{\lambda}^{ au} \phi_{\lambda}^{ au}({f r})$$
point-like densities ho_{i}

$$r_{ch} = \sqrt{\langle r^2 \rangle_p + 0.64} \,\mathrm{fm},$$

$$\begin{aligned} r_{\rm ch}^2 \rangle &= \langle r_p^2 \rangle + \langle \delta r_{\rm ch}^2 \rangle_p + N/Z \langle \delta r_{\rm ch}^2 \rangle_n \\ &+ \langle r_{s-o}^2 \rangle + \langle r_{\rm cm}^2 \rangle, \end{aligned}$$

Relativistic, spin–orbit, c.m. corrections

Laser Spectroscopy for the Study of Exotic Nuclei , X.F. Yang, S.J. Wang, S.G. Wilkins, , R.F. Garcia Ruiz, Prog. Part. Nucl. Phys. 129, 104005 (2023).

DF3-a. Charge radii in Pb isotopes. The different pairing options.

Electromagnetic moments and radii near N=126. I.N.Borzov, S.V.Tolokonnikov, Physics of Atomic Nuclei 87, 423 (2024).

Kink in the charge radii at N=126

Charge radii of thallium isotopes in the vicinity of magic N =126. Z.Yue, A. N. Andreyev, A. E. Barzakh , I.N. Borzov, et.al. Phys.Rev. C 110, 034315 (2024).

Electromagnetic moments and radii near N=126. I.N.Borzov, S.V.Tolokonnikov, Physics of Atomic Nuclei 87, 423 (2024). $\xi = \delta {<} r2{>} (128,126) \, / \, \delta {<} r2{>} (126,124)$

Для ф-ла Фаянса индикаторы излома согласуются с экспериментальными данными

Известные RMF функционалы U. C. Perera et.al., Phys.Rev. C 104, 064313 (2021) либо завышают *ξ*, либо приводят к сильной Z-зависимости. В релятивистских моделях (RMF) «излом» зарядовых радиусов при N=126 возникает за счет инверсии уровней n2g9/2 — n1i11/2. На эксперименте нет инверсии - уровень n2g9/2 ниже на 780 keV !

NEUTRONS

PHYSICAL REVIEW C 104, 064313 (2021)

Experimental 208Pb spectra

τnlj	E exp, MeV	E _{DF3-a}
n 1j 15/2	-2.51	-2.60
n 1i 11/2	-3.16	-3.12
n 2g 9/2	-3.94	-3.66

U. C. Perera , A. V. Afanasjev , and P. Ring. Charge radii in covariant density functional theory: A global view Phys.Rev. C **104**, 064313 (2021)

Nuclear beta-decay of Hg isotopes (... 2 proton holes at Z = 82!)

Конкуренция Гамов-Теллеровских и cross-shell переходов первого запрета **при N>126** → Чувствительность скорости бета-распада к энергиям, орбитальным квантовым числам и степени заполнения нейтронных уровней 2g9/2 и 1i11/2.

$$\lambda \sim T1/2^{-1} \sim \omega_{FF}^{5} < Q_{\beta}^{5} \qquad \omega_{FF} >> \omega_{GT}$$

$$B(GT^{-}) \sim ||^{2}_{s.p.} \sim$$

$$\sim (n_{\lambda} (n) - (1 - n_{\lambda} (p) * 8l (l+1) / (2l+1)))$$

При нормальном порядке заполнения при N ≥126: - существен вклад в T1/2 высокоэнергетических FF переходов с 2g9/2 (*l* = 4).

- GT и FF переходы идут и с 1i11/2 за счет спаривания Орбитальный момент l = 6, но мал фактор $n_{\lambda}^{(n)}$.

Полная скорость β-распада λ существенно зависит от того какая из «конкурирующих» орбиталей заполняется первой при N>126 : 2g9/2 (I=4) или 1i11/2 (I=6).

Beta-decay half-lives and Pn-values for Hg isotopes. DF3-a (with no inversion) vs. RMF (with g-i inversion)

DF3-а T1/2 om <mark>2 до 10</mark> раз выше эксп.

NL3* **Т1/2 до 100 раз ниже эксп.**

Инверсия в RMF завышает вклад FF переходов, и ускоряет β-распад !

Marketin, L. Huther, G. Martínez-Pinedo.Phys. Rev. C 93, 025805 , 2016

Включение в RMF связи с фононами (Particle Vibration Coupling) могло бы устранить инверсию, но (за счет смягчения силовой функции) привело бы к дальнейшему ускорению β-распада!

DF3-a. Energetics of 204Hg and unstable 205-212Hg isotopes

$$\lambda_{total} = \lambda_{GT} + \lambda_{FF}$$
% FF = 100* $\lambda_{FF} / \lambda_{total} = (T_{GT} - T_{GT+FF}) / T_{GT}$

DF3-a :	A=205 -207. 2g9/2 → 1h11/2	%FF~50 – 30 %
NL3 * : RQRPA	1ni11/2 → 1h11/2	%FF~100 -75%

The energies with respect to the parent g.s.

DF3-a calculations give a stable 204Hg.

The Gamow-Teller pygmy resonance enters the Q_{β} window at A=205 ($|Q_{\beta}|$ = 1.5 MeV).

The energies of the FF (spin-dipole) transitions with $\Delta J=1$ and $\Delta J=0$ are close to the Qbeta-values.

Самосогласованные FFST расчеты на основе функционала DF3-а для геометрических (R_charge), энергетических (Qв) свойств основных сотояний, а также магнитных моментов (μ – CQRPA , ω=0) и бета-распада (T1/2, Pn - CQRPA) тяжелых изотопов вблизи нейтронной оболочки N=126.

Для изотопов Hg индексы «изгиба» изотоп-зависимости зарядовых радиусов при пересечении магической оболочки N=126 достаточно хорошо описываются с функционалом DF3-а. Точность расчета такая же, как и в наших расчетах в изотопах Tl , Pb, Bi (Z=81 - 83).

Z. Yue , A. E. Barzakh , A. N. Andreev , I. N. Borzov , S.V.Tolokonnikov et.al. PHYSICAL REVIEW C 110, 034315 (2024).

Рассчитанные с тем же функционалом DF3-а периоды полураспада изотопов Pt, Au, <mark>Hg</mark>, Tl,Pb, Bi, Po сравнены с компиляцией МАГАТЭ (2017) и NUBASE 2020.

В FFST с функционалом Фаянса DF3-а одновременно описываются эксп. одночастичные спектры, зарядовые радиусы и периоды бета-распада: T1/2. Сравнение с RMF подходом — необходимость устранения «инверсии» в одночастичных спектрах...

Acknowlegments

A. E. Barzakh , A. N. Andreev

(For invitation to join and analyze their new CERN- experiments on Tl isotopes

S.V. Tolokonnikov

N=126 isotones are important for the r-process nucleosynthesis

 $T1/2 \exp = 16+6-5$

²⁰⁴Pt,
$$T_{1/2}(\text{tot}) = 16.43 \text{ s}, Q_{\beta} = 3.01 \text{ MeV}$$

I.N. Borzov, Physics of Atomic nuclei, 74,1442 (2011)

Competition between allowed and first-forbidden β decay in r-process waiting-point nuclei within a relativistic beyond-mean-field approach Caroline E. P. Robin and Gabriel Mart'inez-Pinedo, Phys. Rev. (2024), arXiv:2403.17115 **NL3***

"...Again, the too strong decrease of the half-lives due to QVC observed in 204Pt (~1s I.B.) and 206Hg (~80s) could potentially be explained by the fact that, in the present study, we do not include ground-state correlations induced by QVC. "

Energy Density Functional Methods for Atomic Nuclei

Most of the nuclear EDFs used in self-consistent mean-field calculations have been derived from phenomenological effective interactions.

 $\mathcal{E} = \mathcal{E}^{\mathrm{v}}(\rho, \tau) + \mathcal{E}^{\mathrm{s}}(\rho) + \mathcal{E}^{\mathrm{ls}}(\rho, \vec{J}) + \mathcal{E}^{\mathrm{Coul}}(\rho) + \mathcal{E}^{\mathrm{pair}}(\rho) + \mathcal{E}^{\mathrm{c.m.}}(\rho) \quad .$

$$E_0^{\text{int}}[\rho] = \int \mathcal{E}(\rho(\mathbf{r})) d^3 r = \int \frac{a\rho^2}{2} \left(1 + \alpha \rho^{\sigma}\right) d^3 r,$$

Skyrme DF

In S-C FFST normal part of Fayans DF: fractional-linear term depending on nucleon densities. The idea is to transform this anstatz to Migdal's quasiparticles

$$\mathcal{E}(\rho) = \frac{a\rho^2}{2} \frac{1 + \alpha \rho^{\sigma}}{1 + \gamma \rho}.$$

Fayans DF

! The Fayans DF includes Coulomb exchange, surface and pairing terms depending on density gradient

$$\varepsilon_{\text{pair}}(\mathbf{r}) = \frac{1}{2} \sum_{\tau = n, p} \mathcal{F}^{\xi, \tau}(\rho_+(\mathbf{r})) |\nu_{\tau}(\mathbf{r})|^2.$$

 $f^{\xi}(x_{+}(\mathbf{r})) = f^{\xi}_{\mathrm{ex}} + h^{\xi}(x_{+})^{q}(\mathbf{r}) + f^{\xi}_{\nabla}r_{0}^{2}(\nabla x_{+}(\mathbf{r}))^{2} . \qquad X_{+} = (\rho_{p} + \rho_{n})/2 \rho_{0}$

! Fayans functional is the Kohn-Sham type EDF with free (independent-particle) kinetic energy operator

 $\tau = p^2/2M$, effective mass $m^*/M_N = 1$

DF3-a + CQRPA, RHB + QRPA, Finite Amplitude Method

In the Finite Amplitude Method (FAM) odd-even effect in Qbeta values and T1/2 is too strong for Hg isotopes

E. M. Ney, J. Engel, T. Li, and N. Schunck, Global de-scription of β - decay with the axially deformed skyrme finite-amplitude method: Extension to odd-mass and odd-odd nuclei, *Phys. Rev. C* 102, 034326 (2020).

Согласовать RMF расчеты с эксп.данными по одночастичным спектрам можно, если усложнить модель добавив PVC ...2p-2h... Kink, скорее всего, можно будет описать, но бета-распад еще сильнее ускорится.

Функционал Фаянса. Новые ограничения из уравнений состояния.

И. Н. Борзов, С. В. Толоконников Ядерная физика 86 №3, 403-409 (2023)

Предложено новое уравнение состояния для функционала плотности энергии DF3-а. Варьируется свободный параметр h₋₂ изовекторной объемной части функционала с дополнительным условием на верхний предел энергии максимума гигантского дипольного резонанса в ядре 208Рв. При этом сохранено качество предыдущего фита DF3-а ядерным плотностям, массам ядер, одночастичным уровням и зарядовым радиусам. Параметры УРС - энергия симметрии J=S(ρ 0) и ее производная L(ρ 0) сравниваются с их оценками из экспериментов по массам и зарядовым радиусам ядер. Для извлеченного параметра наклона L(ρ 0) =55 - 60 МэВ величина «нейтронной шубы» Δ Rnp =0.183 – 0.170 фм (Табл.1), что близко к оценке Δ Rnp= 0.17 ± 0.004 фм, найденной в модели Гауссовских процессов из ядерных масс, радиусов нейтронных звезд и экспериментов по гравитационным волнам. Эта оценка точнее, чем найденная в нарушающем четность электронном рассеянии – в эксперименте PREX II -- Δ Rnp - 0.283 ± 0.071fm. Важно, что величина "нейтронной шубы" для референтного ядра 208Pb, оцененная в работе *R* Essik et.al Phys.Rev. C 104 (2021) , как Δ Rnp(exp) = = 0.183 ± 0.004 фм описывается в том же интервале значений h2-=1.5-2.0: Δ Rnp (th) = 0.183–0.170 фм.

Таблица 1. Расчет с функционалом DF3 для различных значений параметра h_2^- .

h_2^-	J (МэВ)	f_{in}^-	f_{ex}^{-}	f_{surf}^{-}	ω_{GDR} (²⁰⁸ Pb) (MəB)	$L(\rho_0)$ (M ₃ B)	ΔR_{np} (²⁰⁸ Pb) ($\phi_{\rm M}$)	ΔR_{np} (⁴⁸ Ca) (фм)
0	32.0	0.808	0.808	0.808	12.80	85.6	0.228	0.192
0.5	31.2	0.775	1.163	0.969	13.37	64.0	0.204	0.180
1	30.5	0.747	1.494	1.115	13.73	53.4	0.184	0.170
2	29.2	0.694	2.080	1.387	14.11	42.9	0.154	0.154
3	28.7	0.673	2.693	1.687	14.41	38.3	0.137	0.143

$$\omega_{GDR} = \sqrt{m_3/m_1}, m_1, m_3$$
 — первый и третий моменты силовой функции GDR.

 $\Delta Rnp(exp)^{208}Pb = 0.17 \pm 0.004 \ fm$ R Essik et.al PR C 104 (2021)

 $\Delta Rnp(exp) = 0.283 \pm 0.071 \, fm$ PREX-II Collaboration (2021) Most of the nuclear EDFs used in self-consistent mean-field calculations have been derived from phenomenological effective interactions. A recent proposal: the Skyrme functional combined with the surface and pairing parts from the Fayans functional.

$$\mathcal{E} = \mathcal{E}^{\mathrm{v}}(\rho, \tau) + \mathcal{E}^{\mathrm{s}}(\rho) + \mathcal{E}^{\mathrm{ls}}(\rho, \vec{J}) + \mathcal{E}^{\mathrm{Coul}}(\rho) + \mathcal{E}^{\mathrm{pair}}(\rho) + \mathcal{E}^{\mathrm{c.m.}}(\rho)$$

	Skyrme	Fayans
volume:	$\mathcal{E}_{Sk}^{v} = \sum_{t=0}^{1} \left[(C_{t0}^{\rho\rho} + C_{tD}^{\rho\rho}\rho_{0}^{\alpha})\rho_{t}^{2} + C_{t}^{\rho\tau}\rho_{t}\tau_{t} \right]$	$\mathcal{E}_{\rm Fy}^{\rm v} = \frac{1}{3} \varepsilon_F \rho_{\rm sat} \left[a_+^{\rm v} \frac{1 - h_{1+}^{\rm v} x_0^{\sigma}}{1 + h_{2+}^{\rm v} x_0^{\sigma}} x_0^2 + a^{\rm v} \frac{1 - h_{1-}^{\rm v} x_0}{1 + h_{2-}^{\rm v} x_0} x_1^2 \right]$
	$C_{t0}^{\rho\rho}, C_{tD}^{\rho\rho}, \alpha, C_t^{\rho\tau} \leftrightarrow E/A_{eq}, \rho_{eq}, K, J, L, \frac{m^*}{m}, \kappa_{\text{TRK}}$	$a^{\mathrm{v}}_{\pm},h^{\mathrm{v}}_{1\pm},h^{\mathrm{v}}_{2\pm}\leftrightarrow E/A_{\mathrm{eq}},\rho_{\mathrm{eq}},K,J,L,h^{\mathrm{v}}_{2-}$
surface :	$\mathcal{E}_{\mathrm{Sk}}^{\mathrm{s}} = \sum_{\substack{t=0\\1}}^{1} C_{t}^{\rho \Delta \rho} \rho_{t} \Delta \rho_{t}$	$\mathcal{E}_{\rm Fy}^{\rm s} = \frac{1}{3} \varepsilon_F \rho_{\rm sat} \frac{a_+^{\rm s} r_s^2 (\vec{\nabla} x_0)^2}{1 + h_+^{\rm s} x_0^{\sigma} + h_{\nabla}^{\rm s} r_s^2 (\vec{\nabla} x_0)^2}$
spin-orbit:	$\mathcal{E}_{\mathrm{Sk}}^{\mathrm{ls}} = \sum_{t}^{1} C_{t}^{ ho abla J} ho_{t} \mathbf{ abla} \cdot J_{t}$	$\mathcal{E}_{\mathrm{Fy}}^{\mathrm{ls}} = \sum_{t}^{1} C_{t}^{\rho \nabla J} \rho_{t} \nabla \cdot J_{t}$
pairing:	$\mathcal{E}_{\rm Sk}^{\rm pair} = \frac{1}{4} \sum_{q \in \{p,n\}} V_{\rm pair,q} \left(1 - \frac{\rho_0}{\rho_{\rm pair}}\right) \breve{\rho}_q^2$	$\mathcal{E}_{\rm Fy}^{\rm pair} = \frac{\frac{t=0}{2\varepsilon_F}}{3\rho_{\rm sat}} \breve{\rho}_q^2 \left[f_{\rm ex}^{\xi} + h_+^{\xi} x_{\rm pair}^{\gamma} + h_{\nabla}^{\xi} r_s^2 (\vec{\nabla} x_{\rm pair})^2 \right]$

where $x_t = \rho_t / \rho_{\text{sat}}$ and $x_{\text{pair}} = \check{\rho}_q / \rho_{\text{sat}}$. The γ , $\rho_{\text{sat}} = 0.16 \text{ fm}^{-3}$ and $\varepsilon_F = \varepsilon_F(\rho_{\text{sat}})$ are given, fixed values. The non-linear surface coefficient is fixed as $h^s_+ = h^v_{2+}$. Coulomb term and c.m. correction are irrelevant here. Note that the parameters for the volume terms are handled in term of nuclear matter parameters E/A_{eq} etc as is indicted in the line below the volume terms.

V.A Khodel, E.E Saperstein Phys.Repts. 92 (1982), A.B Migdal FFST. 2nd ed. 1983, S.A Fayans JETP Letters 104 (1998)

HFB with M3Y-P6a NN-interaction with density-dependent (3N) LS-part (It has no i-g inversion).

$$\underline{ls(\rho)} = D[\rho(\mathbf{R}_{ij})] \left[-\nabla_{ij}^2 \delta(\mathbf{r}_{ij}) \right] \mathbf{L}_{ij} \cdot (\mathbf{s}_i + \mathbf{s}_j),$$

 $D[\rho(\mathbf{r})] = -w_1 \frac{\rho(\mathbf{r})}{1 + d_1 \rho(\mathbf{r})}$

H. Nakada and T. InakuraEffects of three-nucleon spin-orbit interaction on isotope shifts of Pb nuclei.Phys. Rev. C 91, 021302(R) (2015).

FIG. 3. (Color online) Occupation probabilities on $n1g_{9/2}$ and $n0i_{11/2}$ obtained by the HFB calculations. Blue dot-dashed (green dotted) line is for $n1g_{9/2}$ and red solid (orange dashed) line for $n0i_{11/2}$ in the M3Y-P6a (M3Y-P6) results.

S=0, T=1 (nn,pp) mass dependent g.s . paring + S=1, T=0 (pn) dynamic pairing Continuum **pnQRPA**, full ph-basis, **SO(8) symmetry**

V: Particle-particle channel: $T=0, \delta$ -interaction with one parameter: g'_{pp}

CQRPA : NN-interaction parameters (ph): are the same for all nuclei with A>40.