Гипотетическое нарушение Лоренц-инвариантности и мюонный избыток в широких атмосферных ливнях

Н. С. Мартыненко<sup>1,2</sup> Г. И. Рубцов<sup>1</sup> П. С. Сатунин<sup>1</sup> **А. К. Шарофеев**<sup>1,2</sup> С. В. Троицкий<sup>1,2</sup>

> <sup>1</sup>ИЯИ РАН <sup>2</sup>МГУ

Сессия-конференция секции ядерной физики ОФН РАН, посвященная 70-летию В. А. Рубакова

Как можно реализовать нарушение Лоренц-инвариантности?

1. Кинематический подход

$$E^{2} = k^{2} + \sum_{n=1,2,\dots} s_{n} \frac{k^{2+n}}{M_{\text{LIV},(n)}^{n}},$$
(1)

Нарушение может быть разным: «подсветовое» и «надсветовое», в каждом из которых поведение физики может быть совершенно разной.

2. Подход эффективной теории поля:

$$\mathcal{L}_{\text{LIV}} \supset \mathcal{L}_{\text{SM}} + \sum_{n} \frac{1}{\Lambda_n} \mathcal{O}_n,$$
 (2)

в рамках которого реализуется нетривиальное дисперсионное соотношение.

К чему приводит нарушение Лоренц-инвариантности: тесты

- 1. Смещённые пороги реакций, другие ширины распадов, сечения рассеяния, временные задержки при распространении на большие расстояния (новые фазовые скорости), двойное лучепреломление... большое поле для феноменологии.
- 2. Новые разрешённые процессы, запрещённые законами сохранения.

| ( | Современные            | ограничения    |
|---|------------------------|----------------|
| ~ | o o p o ni o ni i bi o | or point romin |

| $e^{-}/\gamma$ | Test   | Sub(-) or | Limits                |                          |                          | Source          | Ref.             |
|----------------|--------|-----------|-----------------------|--------------------------|--------------------------|-----------------|------------------|
|                | of     | super(+)  |                       |                          |                          |                 |                  |
|                | QG     | luminal   |                       |                          |                          |                 |                  |
|                |        |           | $ \xi_0 ( \eta_0 )$   | $E_{\rm LIV}^{(1)}$ (eV) | $E_{\rm LIV}^{(2)}$ (eV) |                 |                  |
| e-             | Synch. | both      | $2 \times 10^{-20}$   | 10 <sup>33</sup>         | $2 \times 10^{25}$       | CRAB            | [1340,1341,1361] |
| e-             | VC     | (+)       | $10^{-20}$            | 10 <sup>31</sup>         | 10 <sup>23</sup>         | CRAB            | [1338,1344,1362] |
| γ              | PD     | (+)       | $7.1 \times 10^{-19}$ | $1.7 \times 10^{33}$     | $1.4 \times 10^{24}$     | LH. J2032+4102  | [1163]           |
| γ              | PD     | (+)       | $1.3 \times 10^{-17}$ | $2.2 \times 10^{31}$     | $8 \times 10^{22}$       | MultiSrc        | [1356]           |
| γ              | PD     | (+)       | $1.8 \times 10^{-17}$ | $1.4 \times 10^{31}$     | $5.8 \times 10^{22}$     | eHWCJ1825-134   | [1356]           |
| γ              | PD     | (+)       | $2.2 \times 10^{-17}$ | $9.9 \times 10^{30}$     | $4.7 \times 10^{22}$     | eHWCJ1907+063   | [1356]           |
| γ              | 3γ     | (+)       | -                     | -                        | $2.5 \times 10^{25}$     | LH. J2032+4102  | [1163]           |
| γ              | 3γ     | (+)       | -                     | -                        | $1.2 \times 10^{24}$     | eHWC J1825-134  | [1356]           |
| γ              | 3γ     | (+)       | -                     | -                        | $1.0 \times 10^{24}$     | eHWC J1907+063  | [1356]           |
| γ              | 3γ     | (+)       | -                     | -                        | $4.1 \times 10^{23}$     | CRAB            | [1355]           |
| γ              | AS     | (-)       | -                     | -                        | $1.7 \times 10^{22}$     | diffuse (Tibet) | [1164]           |
| γ              | AS     | (-)       | -                     | -                        | $6.8 \times 10^{21}$     | LH. J1908+0621  | [1164]           |
| γ              | AS     | (-)       | -                     | -                        | $1.4 \times 10^{21}$     | CRAB            | [1355]           |
| γ              | AS     | (-)       | -                     | -                        | $9.7 \times 10^{20}$     | CRAB            | [1355]           |
| γ              | AS     | (-)       | -                     | -                        | $2.1 \times 10^{20}$     | CRAB            | [1361]           |
| γ              | PP     | (-)       | -                     | $1.2 \times 10^{29}$     | $2.4 \times 10^{21}$     | MultiSrc (6)    | [1363]           |
| γ              | PP     | (-)       | $2 \times 10^{-16}$   | $2.6 \times 10^{28}$     | $7.8 \times 10^{20}$     | Mrk 501         | [1348,1364]      |
| γ              | PP     | (-)       | -                     | $1.9 \times 10^{28}$     | $3.1 \times 10^{20}$     | MultiSrc (32)   | [1359]           |

Рис.: Современные ограничения на нарушение ЛИ в КЭД. Обозначения: Synch. — синхротронное излучение, VC — вакуумное черенковское излучение, PD — распад фотона,  $3\gamma$  — расщепление фотонов, AS — ШАЛ, PP — рождение пар на диффузном внегалактическом фоновом свете. Из Addazi et al., 2022.

Подход эффективной теории поля в n = 2Лоренц-нарушенной КЭД

Рассматриваемая теория:

$$\mathcal{L} = \mathcal{L}_{\text{QED}} + \mathcal{L}_e + \mathcal{L}_\gamma, \tag{3}$$

Операторы старшей размерности:

$$\mathcal{L}_{\gamma} = \frac{s_2}{4M_{\rm LIV}^2} F_{kj} \partial_i^2 F^{kj},\tag{4}$$

$$\mathcal{L}_e = i\kappa\bar{\psi}\gamma^i D_i\psi + \frac{is_2^e}{M_{\rm LIV, e}^2} D_j\bar{\psi}\gamma^i D_i D_j\psi, \qquad (5)$$

где 
$$s_2, s_2^e = \pm 1$$
.  
В  $\mathcal{L}_{\gamma}$ :  $[s_2] \equiv [m]^0, \ [M_{\text{LIV}}] = [m]^1$ .  
В  $\mathcal{L}_e$ :  $[s_2^e] \equiv [m]^0, \ [\kappa] = [m]^0, \ [M_{\text{LIV}, e}] = [m]^1$ .  
 $M_{\text{LIV}}$  и  $M_{\text{LIV}, e}$  — параметры отклонения от ЛИ.

イロト 不良 とうせい かいしょう

# Лоренц-нарушенная КЭД для квартичного дисперсионного соотношения

Опустим рассмотрение  $\mathcal{L}_e$ : ограничение на  $M_{\text{LIV},e} = 2 \times 10^{16}$ ГэВ (95% С.L.) из аномального синхротронного излучения и вакуумного черенковского излучения мягких электронов от Crab Nebula (arXiv:1207.0670 [gr-qc]). Поэтому ограничимся лишь  $\mathcal{L}_{\gamma}$ , так как современное ограничение для «подсветового» режима составляет (arXiv:2106.06393 [hep-ph])

$$M_{\rm LIV} > 1.7 \times 10^{13} \ \Gamma$$
  $m B.$  (6)

Дисперсионное соотношение для фотонов:

$$E_{\gamma}^2 = k_{\gamma}^2 - \frac{k_{\gamma}^4}{M_{\rm LIV}^2}.$$
(7)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の

5 / 25

1. Первые признаки расхождения между предсказанием и наблюдаемым числом мюонов были зафиксированы в 1970-х в эксперименте SUGAR.

- 1. Первые признаки расхождения между предсказанием и наблюдаемым числом мюонов были зафиксированы в 1970-х в эксперименте SUGAR.
- В 2000 году совместное исследование HiRes и MIA обнаружило несоответствие числа мюонов в моделируемых и наблюдаемых ливнях при энергиях первичной частицы 10<sup>17</sup> – 10<sup>18</sup> эВ.

- 1. Первые признаки расхождения между предсказанием и наблюдаемым числом мюонов были зафиксированы в 1970-х в эксперименте SUGAR.
- В 2000 году совместное исследование HiRes и MIA обнаружило несоответствие числа мюонов в моделируемых и наблюдаемых ливнях при энергиях первичной частицы 10<sup>17</sup> – 10<sup>18</sup> эВ.
- 3. В 2008 году анализ данных якутской установки EAS показал 1.5-кратный избыток мюонов по сравнению с предсказаниями модели SIBYLL.

- 1. Первые признаки расхождения между предсказанием и наблюдаемым числом мюонов были зафиксированы в 1970-х в эксперименте SUGAR.
- В 2000 году совместное исследование HiRes и MIA обнаружило несоответствие числа мюонов в моделируемых и наблюдаемых ливнях при энергиях первичной частицы 10<sup>17</sup> – 10<sup>18</sup> эВ.
- 3. В 2008 году анализ данных якутской установки EAS показал 1.5-кратный избыток мюонов по сравнению с предсказаниями модели SIBYLL.
- 4. В 2010 году эксперимент NEVOD-DECOR также зафиксировал повышение плотности мюонов.

- 1. Первые признаки расхождения между предсказанием и наблюдаемым числом мюонов были зафиксированы в 1970-х в эксперименте SUGAR.
- В 2000 году совместное исследование HiRes и MIA обнаружило несоответствие числа мюонов в моделируемых и наблюдаемых ливнях при энергиях первичной частицы 10<sup>17</sup> – 10<sup>18</sup> эВ.
- 3. В 2008 году анализ данных якутской установки EAS показал 1.5-кратный избыток мюонов по сравнению с предсказаниями модели SIBYLL.
- 4. В 2010 году эксперимент NEVOD-DECOR также зафиксировал повышение плотности мюонов.

5. Наибольшее внимание к проблеме привлекли результаты крупнейших современных экспериментов Pierre Auger Observatory и Telescope Array.

- 5. Наибольшее внимание к проблеме привлекли результаты крупнейших современных экспериментов Pierre Auger Observatory и Telescope Array.
- 6. В то же время в ряде экспериментов, таких как EAS-MSU, KASCADE-Grande, IceTop и другие, избыток мюонов не был зафиксирован.

#### Эксперименты ШАЛ: мюоонная проблема

Как проверять мюонную проблему:

$$z \equiv \frac{\ln \left\langle N_{\mu}^{\text{obs}} \right\rangle - \ln \left\langle N_{\mu,p}^{\text{MC}} \right\rangle}{\ln \left\langle N_{\mu,Fe}^{\text{MC}} \right\rangle - \ln \left\langle N_{\mu,p}^{\text{MC}} \right\rangle},\tag{8}$$

где  $\langle N_{\mu}^{\rm obs} \rangle$  — среднее число мюонов, наблюдаемое в эксперименте,  $\langle N_{\mu,p}^{\rm MC} \rangle$  ( $\langle N_{\mu,Fe}^{\rm MC} \rangle$ ) — среднее число мюонов, полученное в симуляциях для ливня, инициированного протоном (железом). Если ливень инициирован протоном, то z = 0; если же железом, то z = 1.

(ロ) (四) (三) (三) (三) (0)

# Мюонная проблема



Рис.: Предсказания для парамера *z* на основе мюонной плотности в адронной модели EPOS-LHC. WHISP, 2023.

Кто видит мюонную проблему: SUGAR, NEVOD-DECOR, Auger FD+SD, Auger UMD+SD.

#### На пути к решению мюонной проблемы

Существенным для развития ШАЛ является процесс Бете-Хайтлера:

$$Z\gamma^*\gamma \to Ze^+e^- \tag{9}$$

— рождение электрон-позитронной пары внешним фотоном в кулоновском поле ядра. Классический результат (H. Bethe, W. Heitler, 1934):

$$\sigma_{\rm BH}^{\rm LI} = \frac{28Z^2\alpha^3}{9m_e^2} \left[\log\frac{183}{Z^{1/3}} - \frac{1}{42}\right].$$
 (10)

Сравнивая ЛИ рассмотрение с процессом с n = 2 нарушенной Лоренц-инвариантностью:

$$\frac{\sigma_{\rm BH}^{\rm LIV}}{\sigma_{\rm BH}^{\rm LI}} \simeq \frac{12m_e^2 M_{\rm LIV}^2}{7E_{\gamma}^4} \times \log \frac{E_{\gamma}^4}{2m_e^2 M_{\rm LIV}^2}.$$
 (11)

<ロト < 合 > < 言 > < 言 > 言 の Q (\* 10 / 25 Как решается мюонная проблема?

#### Заметим, что

$$\frac{\sigma_{\rm BH}^{\rm LIV}}{\sigma_{\rm BH}^{\rm LI}} \simeq \frac{12m_e^2 M_{\rm LIV}^2}{7E_{\gamma}^4} \times \log \frac{E_{\gamma}^4}{2m_e^2 M_{\rm LIV}^2} \sim E_{\gamma}^{-4} \log E_{\gamma}^4, \qquad (12)$$

следовательно,

$$\sigma_{\rm BH}^{\rm LIV} \ll \sigma_{\rm BH}^{\rm LI},\tag{13}$$

поэтому на высоких энергиях  $\lambda^{\text{LIV}} \gg \lambda^{\text{LI}}$ . Это позволяет утверждать, что развитие электрон-позитронного ливня будет меньше в плоскости XY в случае нарушения ЛН (он будет менее «обильным»).

#### Как решается мюонная проблема

Анализируя полное развитие ШАЛ выходит, что число  $\langle N_{\text{LIV},e} \rangle < \langle N_{\text{LI},e} \rangle$ . Однако число мюонов остаётся тем же самым (требуется проверка в симуляциях). Происходит недооценка энергии первичной частицы! Тем самым ожидаемое число мюонов недооценивается из-за недостатка электронов, что приводит к большим значениям z.

#### Состав ШАЛ

Число электронов можно оценить степенной функцией:

$$\langle N_e \rangle \propto A_{\rm reco}^{-\alpha_e} E_{\rm reco}^{\beta_e},$$
 (14)

то есть

$$\ln[E_{\rm reco}/{\rm GeV}] = \varepsilon_e + (\alpha_e \beta_e^{-1}) \ln A_{\rm reco} + \beta_e^{-1} \ln \langle N_e \rangle, \qquad (15)$$

откуда видно, что мы действительно будем недооценивать энергию  $E_{\text{reco}}$ , так как  $\langle N_{\text{LIV},e} \rangle < \langle N_{\text{LI},e} \rangle$ . Аналогично:

$$N_{\mu} \propto A^{\alpha_{\mu}} E^{\beta_{\mu}} \tag{16}$$

или

$$\ln \langle N_{\mu} \rangle = -n_{\mu} + \alpha_{\mu} \ln A + \beta_{\mu} \ln[E/\text{GeV}].$$
(17)

#### Разватие ШАЛ

Итого:

$$z = \frac{\ln A}{\ln 56} + \frac{\beta_{\mu}}{\alpha_{\mu} \ln 56} \ln \left[\frac{E}{E_{\text{reco}}}\right].$$
(18)

Удобно ввести следующие параметры для анализа:

$$r_e \equiv \ln\left[\frac{\langle N_{e,\mathrm{LI}}\rangle}{\langle N_{e,\mathrm{LIV}}\rangle}\right], \quad r_\mu \equiv \ln\left[\frac{\langle N_{\mu,\mathrm{LI}}\rangle}{\langle N_{\mu,\mathrm{LIV}}\rangle}\right].$$
 (19)

«Универсальный» параметр:

$$\xi \equiv (m_e M_{\rm LIV})^{-1/2} A^{-1} E.$$
 (20)

При этом удобно параметризовать  $r_e(\xi)$  следующим образом:

$$r_e(\xi) = r_{e,0} \ln\left[1 + \left(\frac{\xi}{\xi_0}\right)^{\varrho}\right], \quad r_\mu(\xi) = 0.$$
 (21)

<ロト <回 > < E > < E > E のQで 14/25 EPOS 1.99 (UrQMD 1.3.1) модель для высокоэнергетических (низкоэнергетических) адронных взаимодействий и EGS4 для электромагнитных взаимодействий.

Предполагается рассматривать только вертикальные ШАЛ  $\theta = 0$  с анализом состава частиц на уровне моря. Симуляции проводятся для двух типов частиц: протонов и железа. Энергеический порог на электроны:  $E_e > 1$  МэВ, на мюоны:  $E_{\mu} > 1$  ГэВ.

#### Алгоритм

1. Нахождение  $\varepsilon_e$ ,  $\alpha_e$ ,  $\beta_e$  и  $n_{\mu}$ ,  $\alpha_{\mu}$ ,  $\beta_{\mu}$  в диапазоне энергий  $10^{16}$  эВ до  $5 \times 10^{19}$  эВ в случае ЛИ. Усреднение по числу ливней.

| параметры | $\varepsilon_e$ | $\alpha_e \beta_e^{-1}$ | $\beta_e^{-1}$ | $n_{\mu}$ | $lpha_{\mu}$ | $eta_{\mu}$ |
|-----------|-----------------|-------------------------|----------------|-----------|--------------|-------------|
| значение  | 3.832           | 0.089                   | 0.890          | 3.621     | 0.076        | 0.921       |
| $1\sigma$ | 1.169           | 0.046                   | 0.053          | 0.173     | 0.012        | 0.008       |

2. Модификация EGS4 в CORSIKA в диапазоне  $M_{\rm LIV} \in \{10^{13}, 10^{14}, \ldots, 10^{18}\}$  эВ. Аппроксимируем зависимости  $r_e(\xi)$ . Проверяем, что  $r_\mu(\xi) = 0$ .

| значение           | $r_{e,0}$ | $\xi_0$ | Q     |
|--------------------|-----------|---------|-------|
| best-fitting value | 0.052     | 35.290  | 2.407 |
| $1\sigma$          | 0.013     | 2.156   | 0.568 |

# Монте-Карло на CORSIKA: $r_e(\xi)$

Первый шаг:



# Монте-Карло на CORSIKA: $r_{\mu}(\xi)$



Монте-Карло на CORSIKA: фиксированный  $M_{\rm LIV} = 3 \times 10^{17}$  ГэВ



・ロト・西ト・モン・ビン・ロト

19/25

# Монте-Карло на CORSIKA: фиксированная энергия $E = 10^{19}$ эВ



・ロト・日本・日本・日本・日本・日本

20 / 25

# Результаты І



Рис.: Предпочтительное значение параметра  $M_{\rm LIV} = 1.9 \times 10^{16}$  на основе данных Pierre Auger.

### Результаты II



Рис.: Исключено значения  $M_{\rm LIV} \le M_{\rm LIV} = 2.4 \times 10^{14}$  ГэВ с 95% С.L.

# Результаты III



Рис.: Значение  $M_{\rm LIV} > M_{\rm LIV} = 6.3 \times 10^{19}$ будут уже неотличимы от ЛИ случая.

2

イロト イヨト イヨト イヨト

#### Заключение

М<sub>LIV</sub> ~ 10<sup>16</sup> ГэВ может объяснять мюонную аномалию. Такой энергетический диапазон пока экспериментально не закрыт, тем более парамеры нарушения Лоренц-инвариантности M<sub>LIV</sub> ~ 10<sup>15..16</sup> ГэВ предпочительны для моделей гравитации Хоравы-Лифшица.

# Спасибо!

Работа выполнена при поддержке РНФ, грант 22-12-00253.

# Дополнительные слайды

#### Различные модели адронных взаимодействий



Рис.: Параметр z в различных адронных моделях. WHISP, 2023.

# $\chi^2$ -тест



◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ かへで 25 / 25