Гипотетическое нарушение Лоренц-инвариантности и мюонный избыток в широких атмосферных ливнях

Н. С. Мартыненко 1,2 Г. И. Рубцов 1 П. С. Сатунин 1 А. К. Шарофеев 1,2 С. В. Троицкий 1,2

 1 ИЯИ РАН 2 МГУ

Сессия-конференция секции ядерной физики ОФН РАН, посвященная 70-летию В. А. Рубакова

Как можно реализовать нарушение Лоренц-инвариантности?

1. Кинематический подход

$$E^{2} = k^{2} + \sum_{n=1,2,\dots} s_{n} \frac{k^{2+n}}{M_{\text{LIV},(n)}^{n}},$$
 (1)

Нарушение может быть разным: «подсветовое» и «надсветовое», в каждом из которых поведение физики может быть совершенно разной.

2. Подход эффективной теории поля:

$$\mathcal{L}_{\text{LIV}} \supset \mathcal{L}_{\text{SM}} + \sum_{n} \frac{1}{\Lambda_n} \mathcal{O}_n,$$
 (2)

в рамках которого реализуется нетривиальное дисперсионное соотношение.

К чему приводит нарушение Лоренц-инвариантности: тесты

- 1. Смещённые пороги реакций, другие ширины распадов, сечения рассеяния, временные задержки при распространении на большие расстояния (новые фазовые скорости), двойное лучепреломление... большое поле для феноменологии.
- 2. Новые разрешённые процессы, запрещённые законами сохранения.

Современные ограничения

e ⁻ /γ	Test of QG	Sub(-) or super(+) luminal	Limits			Source	Ref.
			$ \xi_0 (\eta_0)$	$E_{\text{LIV}}^{(1)}$ (eV)	E _{LIV} (eV)		
e-	Synch.	both	2×10^{-20}	10 ³³	2×10^{25}	CRAB	[1340,1341,1361]
e ⁻	VC	(+)	10^{-20}	10 ³¹	10 ²³	CRAB	[1338,1344,1362]
γ	PD	(+)	7.1×10^{-19}	1.7×10^{33}	1.4×10^{24}	LH. J2032+4102	[1163]
γ	PD	(+)	1.3×10^{-17}	2.2×10^{31}	8×10^{22}	MultiSrc	[1356]
γ	PD	(+)	1.8×10^{-17}	1.4×10^{31}	5.8×10^{22}	eHWCJ1825-134	[1356]
γ	PD	(+)	2.2×10^{-17}	9.9×10^{30}	4.7×10^{22}	eHWCJ1907+063	[1356]
γ	3γ	(+)	-	-	2.5×10^{25}	LH. J2032+4102	[1163]
γ	3γ	(+)	-	-	1.2×10^{24}	eHWC J1825-134	[1356]
γ	3γ	(+)	-	-	1.0×10^{24}	eHWC J1907+063	[1356]
γ	3γ	(+)	-	-	4.1×10^{23}	CRAB	[1355]
γ	AS	(-)	-	-	1.7×10^{22}	diffuse (Tibet)	[1164]
γ	AS	(-)	-	-	6.8×10^{21}	LH. J1908+0621	[1164]
γ	AS	(-)	-	-	1.4×10^{21}	CRAB	[1355]
γ	AS	(-)	-	-	9.7×10^{20}	CRAB	[1355]
γ	AS	(-)	-	-	2.1×10^{20}	CRAB	[1361]
γ	PP	(-)	-	1.2×10^{29}	2.4×10^{21}	MultiSrc (6)	[1363]
γ	PP	(-)	2×10^{-16}	2.6×10^{28}	7.8×10^{20}	Mrk 501	[1348,1364]
γ	PP	(-)	-	1.9×10^{28}	3.1×10^{20}	MultiSrc (32)	[1359]

Рис.: Современные ограничения на нарушение ЛИ в КЭД. Обозначения: Synch. — синхротронное излучение, VC — вакуумное черенковское излучение, PD — распад фотона, 3γ — расщепление фотонов, AS — ШАЛ, PP — рождение пар на диффузном внегалактическом фоновом свете. Из Addazi et al., 2022.

Подход эффективной теории поля в n=2 Лоренц-нарушенной КЭД

Рассматриваемая теория:

$$\mathcal{L} = \mathcal{L}_{\text{QED}} + \mathcal{L}_e + \mathcal{L}_{\gamma}, \tag{3}$$

Операторы старшей размерности:

$$\mathcal{L}_{\gamma} = \frac{s_2}{4M_{\rm LIV}^2} F_{kj} \partial_i^2 F^{kj},\tag{4}$$

$$\mathcal{L}_e = i\kappa \bar{\psi}\gamma^i D_i \psi + \frac{is_2^e}{M_{\text{LIV, e}}^2} D_j \bar{\psi}\gamma^i D_i D_j \psi, \tag{5}$$

где $s_2, s_2^e = \pm 1.$

B \mathcal{L}_{γ} : $[s_2] \equiv [m]^0$, $[M_{LIV}] = [m]^1$.

B \mathcal{L}_e : $[s_2^e] \equiv [m]^0$, $[\kappa] = [m]^0$, $[M_{LIV, e}] = [m]^1$.

 $M_{\rm LIV}$ и $M_{\rm LIV, e}$ — параметры отклонения от ЛИ.

Лоренц-нарушенная КЭД для квартичного дисперсионного соотношения

Опустим рассмотрение \mathcal{L}_e : ограничение на $M_{\text{LIV},e} = 2 \times 10^{16}$ ГэВ (95% С.L.) из аномального синхротронного излучения и вакуумного черенковского излучения мягких электронов от Crab Nebula (arXiv:1207.0670 [gr-qc]).

Поэтому ограничимся лишь \mathcal{L}_{γ} , так как современное ограничение для «подсветового» режима составляет (arXiv:2106.06393 [hep-ph])

$$M_{\rm LIV} > 1.7 \times 10^{13} \,\, \Gamma$$
 pB. (6)

Дисперсионное соотношение для фотонов:

$$E_{\gamma}^{2} = k_{\gamma}^{2} - \frac{k_{\gamma}^{4}}{M_{\text{LIV}}^{2}}.$$
 (7)

1. Первые признаки расхождения между предсказанием и наблюдаемым числом мюонов были зафиксированы в 1970-х в эксперименте SUGAR.

- 1. Первые признаки расхождения между предсказанием и наблюдаемым числом мюонов были зафиксированы в 1970-х в эксперименте SUGAR.
- 2. В 2000 году совместное исследование HiRes и MIA обнаружило несоответствие числа мюонов в моделируемых и наблюдаемых ливнях при энергиях первичной частицы $10^{17} 10^{18}$ эВ.

- 1. Первые признаки расхождения между предсказанием и наблюдаемым числом мюонов были зафиксированы в 1970-х в эксперименте SUGAR.
- 2. В 2000 году совместное исследование HiRes и MIA обнаружило несоответствие числа мюонов в моделируемых и наблюдаемых ливнях при энергиях первичной частицы $10^{17} 10^{18}$ эВ.
- 3. В 2008 году анализ данных якутской установки EAS показал 1.5-кратный избыток мюонов по сравнению с предсказаниями модели SIBYLL.

- 1. Первые признаки расхождения между предсказанием и наблюдаемым числом мюонов были зафиксированы в 1970-х в эксперименте SUGAR.
- 2. В 2000 году совместное исследование HiRes и MIA обнаружило несоответствие числа мюонов в моделируемых и наблюдаемых ливнях при энергиях первичной частицы $10^{17} 10^{18}$ эВ.
- 3. В 2008 году анализ данных якутской установки EAS показал 1.5-кратный избыток мюонов по сравнению с предсказаниями модели SIBYLL.
- 4. В 2010 году эксперимент NEVOD-DECOR также зафиксировал повышение плотности мюонов.

- 1. Первые признаки расхождения между предсказанием и наблюдаемым числом мюонов были зафиксированы в 1970-х в эксперименте SUGAR.
- 2. В 2000 году совместное исследование HiRes и MIA обнаружило несоответствие числа мюонов в моделируемых и наблюдаемых ливнях при энергиях первичной частицы $10^{17} 10^{18}$ эВ.
- 3. В 2008 году анализ данных якутской установки EAS показал 1.5-кратный избыток мюонов по сравнению с предсказаниями модели SIBYLL.
- 4. В 2010 году эксперимент NEVOD-DECOR также зафиксировал повышение плотности мюонов.

5. Наибольшее внимание к проблеме привлекли результаты крупнейших современных экспериментов Pierre Auger Observatory и Telescope Array.

- 5. Наибольшее внимание к проблеме привлекли результаты крупнейших современных экспериментов Pierre Auger Observatory и Telescope Array.
- 6. В то же время в ряде экспериментов, таких как EAS-MSU, KASCADE-Grande, IceTop и другие, избыток мюонов не был зафиксирован.

Эксперименты ШАЛ: мюоонная проблема

Как проверять мюонную проблему:

$$z \equiv \frac{\ln \left\langle N_{\mu}^{\text{obs}} \right\rangle - \ln \left\langle N_{\mu,p}^{\text{MC}} \right\rangle}{\ln \left\langle N_{\mu,Fe}^{\text{MC}} \right\rangle - \ln \left\langle N_{\mu,p}^{\text{MC}} \right\rangle},\tag{8}$$

где $\left\langle N_{\mu}^{\mathrm{obs}} \right\rangle$ — среднее число мюонов, наблюдаемое в эксперименте, $\left\langle N_{\mu,p}^{\mathrm{MC}} \right\rangle \left(\left\langle N_{\mu,Fe}^{\mathrm{MC}} \right\rangle \right)$ — среднее число мюонов, полученное в симуляциях для ливня, инициированного протоном (железом).

Если ливень инициирован протоном, то z=0; если же железом, то z=1.

Мюонная проблема

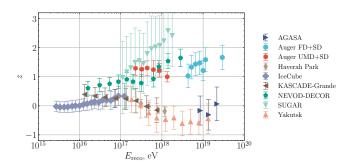


Рис.: Предсказания для парамера z на основе мю
онной плотности в адронной модели EPOS-LHC. WHISP, 2023.

Кто видит мюонную проблему: SUGAR, NEVOD-DECOR, Auger FD+SD, Auger UMD+SD.

На пути к решению мюонной проблемы

Существенным для развития ШАЛ является процесс Бете-Хайтлера:

$$Z\gamma^*\gamma \to Ze^+e^-$$
 (9)

— рождение электрон-позитронной пары внешним фотоном в кулоновском поле ядра. Классический результат (H. Bethe, W. Heitler, 1934):

$$\sigma_{\rm BH}^{\rm LI} = \frac{28Z^2\alpha^3}{9m_e^2} \left[\log \frac{183}{Z^{1/3}} - \frac{1}{42} \right]. \tag{10}$$

Сравнивая ЛИ рассмотрение с процессом с n=2 нарушенной Лоренц-инвариантностью:

$$\frac{\sigma_{\rm BH}^{\rm LIV}}{\sigma_{\rm BH}^{\rm LI}} \simeq \frac{12m_e^2 M_{\rm LIV}^2}{7E_{\gamma}^4} \times \log \frac{E_{\gamma}^4}{2m_e^2 M_{\rm LIV}^2}.$$
 (11)

Как решается мюонная проблема?

Заметим, что

$$\frac{\sigma_{\rm BH}^{\rm LIV}}{\sigma_{\rm BH}^{\rm LI}} \simeq \frac{12m_e^2 M_{\rm LIV}^2}{7E_{\gamma}^4} \times \log \frac{E_{\gamma}^4}{2m_e^2 M_{\rm LIV}^2} \sim E_{\gamma}^{-4} \log E_{\gamma}^4, \tag{12}$$

следовательно,

$$\sigma_{\rm BH}^{\rm LIV} \ll \sigma_{\rm BH}^{\rm LI},$$
 (13)

поэтому на высоких энергиях $\lambda^{\rm LIV}\gg\lambda^{\rm LI}$. Это позволяет утверждать, что развитие электрон-позитронного ливня будет меньше в плоскости XY в случае нарушения ЛН (он будет менее «обильным»).

Как решается мюонная проблема

Анализируя полное развитие ШАЛ выходит, что число $\langle N_{{\rm LIV},e} \rangle < \langle N_{{\rm LI},e} \rangle$. Однако число мюонов остаётся тем же самым (требуется проверка в симуляциях). Происходит недооценка энергии первичной частицы! Тем самым ожидаемое число мюонов недооценивается из-за недостатка электронов, что приводит к большим значениям z.

Состав ШАЛ

Число электронов можно оценить степенной функцией:

$$\langle N_e \rangle \propto A_{\rm reco}^{-\alpha_e} E_{\rm reco}^{\beta_e},$$
 (14)

то есть

$$\ln[E_{\text{reco}}/\text{GeV}] = \varepsilon_e + (\alpha_e \beta_e^{-1}) \ln A_{\text{reco}} + \beta_e^{-1} \ln \langle N_e \rangle, \qquad (15)$$

откуда видно, что мы действительно будем недооценивать энергию $E_{\rm reco}$, так как $\langle N_{{
m LIV},e}
angle < \langle N_{{
m LI},e}
angle.$

Аналогично:

$$N_{\mu} \propto A^{\alpha_{\mu}} E^{\beta_{\mu}} \tag{16}$$

или

$$\ln \langle N_{\mu} \rangle = -n_{\mu} + \alpha_{\mu} \ln A + \beta_{\mu} \ln[E/\text{GeV}]. \tag{17}$$

Разватие ШАЛ

Итого:

$$z = \frac{\ln A}{\ln 56} + \frac{\beta_{\mu}}{\alpha_{\mu} \ln 56} \ln \left[\frac{E}{E_{\text{reco}}} \right]. \tag{18}$$

Удобно ввести следующие параметры для анализа:

$$r_e \equiv \ln \left[\frac{\langle N_{e,\text{LI}} \rangle}{\langle N_{e,\text{LIV}} \rangle} \right], \quad r_\mu \equiv \ln \left[\frac{\langle N_{\mu,\text{LI}} \rangle}{\langle N_{\mu,\text{LIV}} \rangle} \right].$$
 (19)

«Универсальный» параметр:

$$\xi \equiv (m_e M_{\rm LIV})^{-1/2} A^{-1} E.$$
 (20)

При этом удобно параметризовать $r_e(\xi)$ следующим образом:

$$r_e(\xi) = r_{e,0} \ln \left[1 + \left(\frac{\xi}{\xi_0} \right)^{\varrho} \right], \quad r_{\mu}(\xi) = 0.$$
 (21)

Симуляции на CORSIKA 7.7550

EPOS 1.99 (UrQMD 1.3.1) модель для высокоэнергетических (низкоэнергетических) адронных взаимодействий и EGS4 для электромагнитных взаимодействий.

Предполагается рассматривать только вертикальные ШАЛ $\theta=0$ с анализом состава частиц на уровне моря. Симуляции проводятся для двух типов частиц: протонов и железа. Энергеический порог на электроны: $E_e>1$ МэВ, на мюоны: $E_\mu>1$ ГэВ.

Алгоритм

1. Нахождение ε_e , α_e , β_e и n_μ , α_μ , β_μ в диапазоне энергий 10^{16} эВ до 5×10^{19} эВ в случае ЛИ. Усреднение по числу ливней.

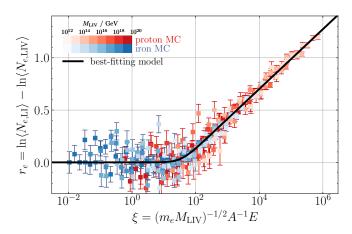
параметры	$arepsilon_e$	$\alpha_e \beta_e^{-1}$	β_e^{-1}	n_{μ}	α_{μ}	eta_{μ}
значение	3.832	0.089	0.890	3.621	0.076	0.921
1σ	1.169	0.046	0.053	0.173	0.012	0.008

2. Модификация EGS4 в CORSIKA в диапазоне $M_{\rm LIV} \in \left\{10^{13}, 10^{14}, \dots, 10^{18}\right\}$ эВ. Аппроксимируем зависимости $r_e(\xi)$. Проверяем, что $r_\mu(\xi)=0$.

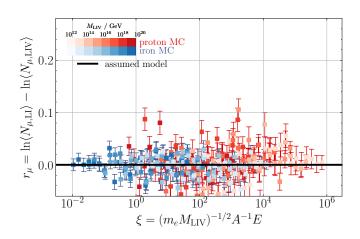
значение	$r_{e,0}$	ξ_0	ρ	
best-fitting value	0.052	35.290	2.407	
1σ	0.013	2.156	0.568	

Монте-Карло на CORSIKA: $r_e(\xi)$

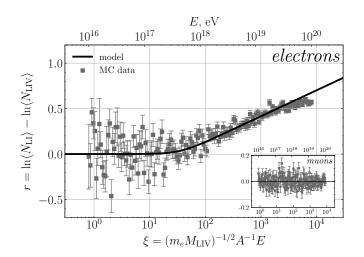
Первый шаг:



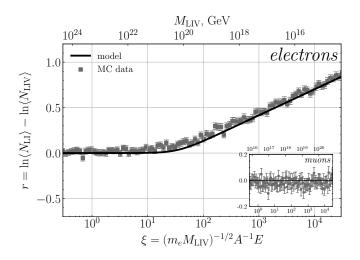
Монте-Карло на CORSIKA: $r_{\mu}(\xi)$



Монте-Карло на CORSIKA: фиксированный $M_{\rm LIV}=3\times10^{17}~\Gamma$ эВ



Монте-Карло на CORSIKA: фиксированная энергия $E=10^{19}~\mathrm{sB}$



Результаты І

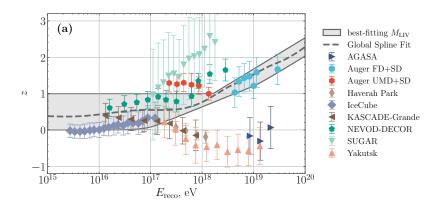


Рис.: Предпочтительное значение параметра $M_{\rm LIV}=1.9\times 10^{16}$ на основе данных Pierre Auger.

Результаты II

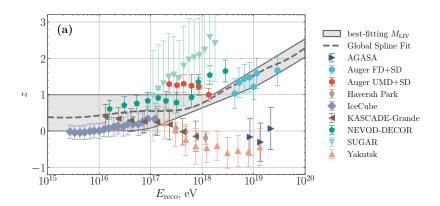


Рис.: Исключено значения $M_{\rm LIV} \le M_{\rm LIV} = 2.4 \times 10^{14}$ ГэВ с 95% С.L.

Результаты III

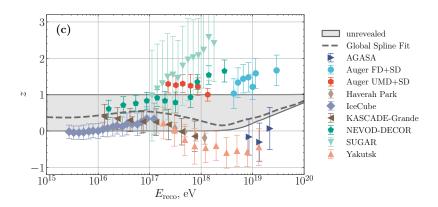


Рис.: Значение $M_{\rm LIV} > M_{\rm LIV} = 6.3 \times 10^{19}$ будут уже неотличимы от ЛИ случая.

Заключение

 $M_{\rm LIV} \sim 10^{16}~{\rm ГэВ}$ может объяснять мюонную аномалию. Такой энергетический диапазон пока экспериментально не закрыт, тем более парамеры нарушения Лоренц-инвариантности $M_{\rm LIV} \sim 10^{15..16}~{\rm ГэВ}$ предпочительны для моделей гравитации Хоравы-Лифшица.

Спасибо!

Работа выполнена при поддержке РНФ, грант 22-12-00253.

Дополнительные слайды

Различные модели адронных взаимодействий

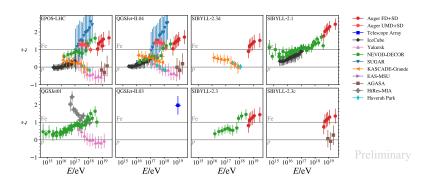


Рис.: Параметр z в различных адронных моделях. WHISP, 2023.

χ^2 -тест

