Парадокс чувствительности

В.А. Дитлов

НИЦ «Курчатовский Институт» Б. Черёмушкинская ул. 25, 117218, Москва, Россия e-mail: <u>valery.ditlov@itep.ru</u>

Любой твердотельный детектор можно представить как некоторый материал, состоящий из множества чувствительных микрообъёмов, способных находиться в двух состояниях «Нет» или «Да». Локальным откликом детектора на воздействие радиации является переход чувствительного микрообъёма из состояния «Нет» в состояние «Да». Так, например, биоткань состоит из множества биоклеток, которые в результате воздействия могут перейти в инактивированное состояние «Да». В фотоэмульсии чувствительными микрообъёмами являются микрокристаллы AgBr, закреплённые в инертной матрице желатины. Локальным откликом является создание в микрокристалле центра проявления. В сплошных материалах, обрабатываемых процессом травления, чувствительным микрообъёмом является каждая точка материала. При воздействии радиации в этих точках создаются центры травления, Также общим для всех твёрдотельных детекторов свойством является то, что воздействие на них любой радиации осуществляется через выбиваемый поток δ -электронов и при прохождении ионов в материале образуется латентный трек, состоящий из множества локальных откликов в некотором объёме вокруг оси трека. Латентные треки становятся видимыми после процесса визуализации, подбираемого для конкретного материала.

На основе подобия свойств Р. Катц объединил различные материалы в один класс ядерных твердотельных трековых детекторов (ЯТТД) и разработал поход, называемый «Единая Теория Треков» [1]. В этой теории используется модель многих ударов:

$$P_{\nu}^{+}(r) = \sum_{i=\nu}^{\infty} \frac{\xi(r)^{i}}{i!} e^{-\xi(r)}$$
(1)

Частота эффективных актов взаимодействий записывается в виде отношения дозы D(r), выделенной в единице объёма детектора, к параметру D_{37} :

$$\xi(r) = \frac{D(r)}{D_{37}}$$
 (2)

При выделении потоком δ -электронов дозы энергии D_{37} без локального отклика в состоянии «Нет» остаются 37% чувствительных микрообъёмов детектора с одноударным откликом. Эта величина характеризует чувствительность детектора. Чем она меньше, тем чувствительнее детектор.

Таким образом, в подходе Р. Катца предполагается адекватность связи доза-эффект. Но эта адекватность не всегда имеет место [2-4]. В рамках модели многих ударов можно построить также единый подход к ЯТТД [5], но в котором для получения вероятности появления локального отклика используется непосредственно дифференциальная функция теории многократного рассеяния электронов $f(\vec{\Omega}, \vec{\eta}, s)$:

$$P_{\nu}^{+}(\vec{r}) = 1 - \sum_{q=0}^{N} \frac{1}{q!} \sum_{l=1}^{\nu-1} l! \sum_{i=1}^{l} \bigcap_{j=1}^{q} \left(\frac{N \left\langle \xi^{k_{i,j}} e^{-\xi} \right\rangle}{(k_{i,j})!} \right) \cdot e^{-N \left\langle 1 \right\rangle} + e^{-N \left\langle 1 - e^{-\xi} \right\rangle}$$
(3)

 $\Gamma_{\text{Ae}} < \xi^{k} e^{-\xi} >= \int d\vec{\Omega} \int_{(\vec{\Omega} \cdot \vec{n}) < 0} (\vec{\Omega} \cdot \vec{n}) dQ \int \xi^{k} (\vec{\Omega}, \vec{\eta}, s) \cdot e^{-\xi(\vec{\Omega}, \vec{\eta}, s)} f(\vec{\Omega}, \vec{\eta}, s) ds;$ (4)

За величину частоты эффективных актов взаимодействия электронов с чувствительным микрообъёмом детектора используется отношение:

$$\xi(s) = \frac{\left(\frac{dE(s)}{ds}\right)_{\omega_{cut}}}{\left(\frac{dE}{ds}\right)_0}$$
(5)

 $\omega_{\scriptscriptstyle cut}$ - энергия обрезания б-электронов следующего поколения.

В числителе стоят ограниченные по ω_{cut} продольные потери δ -электрона, входящего в чувствительный микрообъём по направлению $\vec{\Omega}$ с остаточным пробегом *s*. Значение $(dE/ds)_0$ характеризует чувствительность отдельного микрообъёма – чем оно ниже, тем чувствительнее микрообъём детектора.

Таким образом, твердотельные трековые детекторы можно упорядочить двумя способами - по величине D_{37} и по $(dE(s)/ds)_0$. В таблице 1 приведены 26 детекторов, упорядоченных по параметру Р. Катца D_{37} . В правой крайней колонке даны поперечные сечения чувствительных микрообъёмов приведённых в таблице детекторов.

Как и следовало ожидать, на первом месте расположена ядерная фотоэмульсия Кодак NTB-2. Недалеко от неё ниже расположились три типа ядерной фотоэмульсии Ильфорд - G-5, K-5 и K-2. Специально изготавливаемые низкочувствительные фотоэмульсии Ильфорд K-1 и K-0 расположились на 12-ом и 16-ом местах, соответственно. На последних трёх местах расположены лексан карбонат, слюда и трипсин.

Зная значение D_{37} и поперечное сечение чувствительного микрообъёма *S* можно найти значение нашего характеристического параметра [5]:

$$\left(\frac{dE}{ds}\right)_0 = S \cdot D_{37} \tag{6}$$

В Таблице 2 приводятся детекторы, упорядоченные по частоте взаимодействий δ-электронов в релятивистском минимуме ионизации

$$\xi_{r\min} = \frac{\left(\frac{dE}{ds}\right)_{\omega_{\max}, r_{\min}}}{\left(\frac{dE}{ds}\right)_{0}}.$$
(7)

Как можно увидеть, по этому параметру самым чувствительным детектором оказалось стекло. В третьей колонке приводятся средние частоты эффективных актов взаимодействий электронов с атомами чувствительного микрообъёма в релятивистском минимуме ионизации, а в четвёртой колонке этот же параметр дан для энергии электрона 5.4 кэВ. При меньших энергиях δ-электрон уже не может вылететь из микрокристалла AgBr [6]. В пятой колонке приводится характеристические потери в MэB/см, в шестой колонке эта же величина разделена на удельную плотность чувствительного микрообъёма. В седьмой колонке приводятся радиусы чувствительных микрообъёмов в нанометрах.

Когда на двух экранах Лионской Х-ой Международной конференции Solid State Nuclear Track Detectors появились эти таблицы, сидевший на первом ряду специалист по детекторам из стёкол индийский профессор А.П. Шарма [7] неожиданно встал и повернувшись к аудитории воскликнул: «Да! Я знаю, стекло является самым чувствительным детектором!»

Согласно же теории Р. Катца самым чувствительным детектором является ядерная фотоэмульсия. Такое различие воспринимается как <u>парадокс чувствительности</u>.

Появление этого парадокса объясняется следующим образом. Действительно, бэлектроны в стекле тратят меньшее количество энергии на создание центров травления, чем их энергетические затраты на создание центра проявления в микрокристалле фотоэмульсии. Однако в стекле обнаружить отдельный центр травления чрезвычайно трудно. Радиус центра травления стекла меньше радиуса фотоэмульсионного кристалла AgBr в 160 раз, а площадь поперечного сечения центра в 25000 раз меньше соответствующего сечения микрокристалла. Правда, размеры центров проявления микрокристаллов AgBr тоже намного меньше размеров микрокристаллов – они состоят всего из нескольких атомов металлического серебра, но они инициируют быструю экзотермическую химическую реакцию с выбрасыванием нити серебра из решётки AgBr. Эта нить образует клубок, наблюдаемый после проявления как фотоэмульсионное зерно [8]. Однако, в отличие от фотоэмульсии в стекле нельзя визуализировать отдельный чувствительный микрообъём. Для проведения процесса травления необходимо, чтобы в состоянии отклика «Да» находилась доля микрообъёмов стекла больше некоторого порогового значения. Т.к. размеры чувствительных микрообъёмов малы их количество в единице объёма велико то и плотность радиации должна быть тоже высокой. Поэтому значение *D*₃₇ будет большой.

Таким образом, для описания измеряемых параметров трека необходимо использовать некоторый пороговый параметр, формируемый высокой пороговой плотностью активных центров травления материала.

В работе [9] описывается метод решения задач теории многократного рассеяния электронов применительно к нашей теории детектирования. С помощью этого метода пространственные распределения локального отклика по объёмам латентных треков ионов во всём классе ядерных твёрдотельных детекторов вычисляется по одним и тем же алгоритмам.

Различие между фотоэмульсиями и обрабатываемыми травлением детекторами отображается на связи измеряемых параметров треков ядер с пространственным распределением локальных откликов вокруг оси трека. Для измерения параметров треков в ядерной фотоэмульсии не нужно вводить какие-либо дополнительные параметры и достаточно воспользоваться сравнительно простой формулой Неттинга для оптической плотности на расстоянии *x* от оси горизонтального трека:

$$D(x) = n_0 \cdot \lg e \cdot \pi a_0^2 \cdot k \cdot \int_{-\sqrt{R_{\max}^2 - x^2}}^{+\sqrt{R_{\max}^2 - x^2}} P_{\nu}^+ \left(\rho = \sqrt{x^2 + y^2}\right) \cdot dy$$
(8)

Здесь n_0 - число микрокристаллов в единице объёма, R_{max} - максимальный поперечный размер латентного трека иона, *у* –вертикальная координата интегрирования сечения трека по глубине вдоль поперечного сечения трека. Высокочувствительные ядерные фотоэмульсии обладают одноударным откликом чувствительного микрообъёма *v*=1.

По этой формуле в работе [9] найден большой набор измеряемых параметров треков тяжёлых и сверхтяжёлых ядер в фотоэмульсии без каких-либо калибровок. Напротив, использовались давно известные регистрационные параметры ядерной фотоэмульсии из работы [6].

Связь между параметрами вытравленных треков ионов с распределением локальных откликов в детекторах, обрабатываемых процессом травления, гораздо сложнее чем в фотоэмульсии. Для точного аналитического описания этой связи нужно решать чрезвычайно трудные задачи по диффузии травителя и продуктов травления внутри узких вытравливаемых полостей, описывать кинетику движения фронта травления. Приходится искать альтернативные пути и разрабатывать приближённые численные методы расчёта движения фронта травления [10] или вводить дополнительные пороговые параметры для описания травления латентного трека. Например, в работе [11] для треков ионов в оливине вводился пороговый параметр σ_0 поперечного сечения латентного трека, его вытравливание идёт при превышении поперечного сечения пороговой этой величины:

$$\sigma_{vm}(R) = 2\pi \int_{0}^{\infty} P_{v}^{+}(\rho, R) \rho d\rho \ge \sigma_{0} = 0.002693 \ mkm^{2}$$
(9)

....

Сначала в работе [11] из калибровки оливина на ядрах группы железа было найдено значение порогового поперечного сечения вытравливаемого трека σ_0 , а затем отыскивалась максимальная длина вытравливаемого трека, равная расстоянию между одинаковыми поперечными сечениями σ_0 , расположенными по обе стороны от максимального поперечного сечения трека. Вычисленная длина $L_{\rm max}$ для иона урана в оливине оказалась равной 1160 мкм, полученное экспериментальное значение лежит в интервале 1100 – 1200 мкм.

Заключение

Из работы следует, что для сравнения чувствительности различных детекторов нужно учитывать ещё порог визуализации трека, которым, например, в случае работы [11] является пороговое поперечное сечение латентного трека σ_0 (9).

Из второй таблицы следует ещё один результат относительно применимости теории Р. Катца [12]. В работе [5] показано, что формулы нашего подхода в частном случае низкочувствительных детекторов: $\xi \ll 1$ (10)

преобразуются в формулы теории Р. Катца и связь доза-эффект становится адекватной.

Согласно критерию (10) из таблицы 2 следует, что для энергий δ-электронов в релятивистском минимуме ионизации Единая теория треков Р. Катца применима только примерно к половине детекторов. Если же энергия электронов мала и находится где-то в области 5.4 кэВ, то теория Р. Катца применима к 21 или 22 детекторам списка таблицы.

Ещё нужно обратить внимание на то, что во второй таблице биоткани заняли последние места. Биоклетки оказались самыми устойчивыми к радиации чувствительными микрообъёмами. Видимо, их жизнедеятельность направлена на то, чтобы максимально противодействовать внешнему воздействию.

Литература

- 1. Katz R. Unified track theory. In: 7th Intern. Colloq. On Corpuscular Photography and visual solid detectors. Barcelona, 1970, pp. 1-29.
- Jacobson L. and Rosander R. The energy dose concept applied to heavy ion tracks in nuclear emulsion. In. *Cosmic Ray Physics Report LUIP-CR-73-13*, 1973, November, Department of Physics University of Lund, LUND Sweden 23p. <u>https://inis.iaea.org/collection/NCLCollectionStore/_Public/05/127/5127887.pdf?r=1</u>
- 3. Jakes, J., Gais, P., Voigt, J.,1997. *Radiat. Meas*.28(1-6), pp. 853-856. DOI: 10.1016/S1350-4487(97)00197-2
- 4. Иванов В.И. Курс дозиметрии. М.: Атомиздат, 1978. 392 стр.

- Ditlov V.A. Theory of Spatial calculation of primary action of δ-electrons in track detectors with account of multiple scattering. – In: Solid St. Nucl. Track Detectors. Pergamon Press, Ltd., 1980, p.131-141.
- 6. Bogomolov K.S. La theorie fluctuatoire de l'action photographique des particules nucleares faiblement ionisantes. In: Ergebnisse der Int. Konferenz f. Wiss. Photographe. Hellwich Koln, 1958, S.352-360.
- K.I. Comber, J.S. Yadav, V.P. Singh and A.P. Sharma. Development of a better etchant for soda glass nuclear track detector. – In: Solid St. Nucl. Track Detectors. Pergamon Press, Ltd., 1980, p.165-170.
- 8. Пауэлл С., Фаулер П., Перкинс Д. Исследование элементарных частиц фотографическим методом. М.: И.Л., 1962. 424 стр.
- 9. В.А. Дитлов. Применение теории многократного рассеяния электронов для описания параметров треков быстрых тяжёлых и сверхтяжёлых ядер. Физика элементарных частиц и атомного ядра. 2025, т. 56, вып. 2, с. 783-796.
- 10. Ditlov V.A. Calculated Tracks in Plastics and Crystals. Radiation Measurements, 1995, 25, (1-4), pp. 89-94.
- 11. Ditlov V.A., Perelygin V.P., Stetsenko S.G., Track Parameters of Multicharged Particles in Crystalline Detectors. In Proceedings of II International Workshop "SSNTD and their applications". 1993. Dubna. pp. 40-43.
- 12. Ditlov V. A. The Evolution of Track Theory throughout the History of the International Solid State Detector Conferences. Radiat. Meas. 2001. V. 34. P. 19–26.

Названия таблиц.

- Таблица 1. Упорядочение по чувствительности, заданной с помощью характеристической величины *D*₃₇ [5].
- Таблица 2. Упорядочение детекторов по чувствительности отдельной чувствительной области, задаваемой по количеству эффективных актов ионизации, приходящемуся на чувствительный микрообъём при прохождении через него одиночного электрона [5].

Таблица 1.

NºNº	Детекторы	D_{37}	$S cm^2$
	· · · · ·	эрг/см ³	
1	2	3	4
1.	Кодак NTB-2	$3.5 \cdot 10^3$	7.06.10-10
2.	Минеральное масло на жидком сцинтилляторе с РРО	10^{4}	7.06.10-12
3.	Дрожжевые клетки	$1.3 \cdot 10^4$	$5.10 \cdot 10^{-07}$
4.	Ильфорд G-5	$4.0 \cdot 10^4$	9.07·10 ⁻¹⁰
5.	Ильфорд К-5	$5.0 \cdot 10^4$	$3.14 \cdot 10^{-10}$
6.	Ильфорд К-2	$7.0 \cdot 10^5$	$5.31 \cdot 10^{-10}$
7.	Стекло	$3.0 \cdot 10^{6}$	$3.14 \cdot 10^{-14}$
8.	Бактериальные споры О2	$5.1 \cdot 10^{6}$	$1.87 \cdot 10^{-09}$
9.	Бактериальные споры N ₂	$6.9 \cdot 10^{6}$	$1.85 \cdot 10^{-09}$
10.	Термолюминесцентный дозиметр LiF	$1.0.10^{7}$	$3.14 \cdot 10^{-14}$
11.	Дозиметр Фрике	$1.0.10^{7}$	$1.13 \cdot 10^{-12}$
12.	Ильфорд К-1	$1.3 \cdot 10^{7}$	$4.50 \cdot 10^{-10}$
13.	Бактериальные споры H ₂ S	$1.3 \cdot 10^7$	$1.80 \cdot 10^{-09}$
14.	Цитидин	$2.0 \cdot 10^{7}$	3.13·10 ⁻¹⁴
15.	α-Аланин	2.0·10 ⁷	1.25·10 ⁻¹³
16.	Ильфорд К-0	2.4·10 ⁷	4.50·10 ⁻¹⁰
17.	Твердые бактериофаги Т⊥	3.9·10 ⁷	1.20·10 ⁻¹²
18.	Кристаллы NaI(Tl)	4.0·10 ⁷	3.31·10 ⁻¹³
19.	Твердые бактериофаги X-174	5.0·10 ⁷	1.00·10 ⁻¹²
20.	Аэрированный дозиметр Фрике	5.0·10 ⁷	1.00·10 ⁻¹²
21.	Твёрдые бактериофаги Т [*] 1	$5.7 \cdot 10^{7}$	1.13·10 ⁻¹²
22.	Нитрат целлюлозы	3.0·10 ⁸	9.07·10 ⁻¹⁴
23.	β-галактозидаз	3.0·10 ⁸	3.10·10 ⁻¹³
24.	Лексан поликарбонат	7.0·10 ⁸	1.26·10 ⁻¹³
25.	Слюда	3.0·10 ⁹	1.33·10 ⁻¹²
26.	Трипсин	3.6·10 ⁹	6.00·10 ⁻¹⁴

Таблица 2.

№	Детекторы	$\xi_{r \min}$	ξ _{5.4 keV}	$\left(\frac{dE}{ds}\right)_0 \frac{M \Im B}{cM}$	$\left(\frac{dE}{ds}\right) \cdot \frac{MeV.cm^2}{g}$	<i>а</i> 0 нм
1	2	3	4	5	6	7
1	Стекло	750	1700	0.059	0.0267	1
2	Термолюминесцентный дозиметр LiF	23.4	500	0.196	0.0849	1
3	Цитидин	11.0	230	0.392	0.195	0.998
4	Кристаллы NaI(Tl)	7.20	129	8.25	2.16	3.25
5	Кодак NTB-2	3.20	57.0	1.54	0.399	150
6	α-Аланин	0.81	18.6	2.81	2.81	2
7	Дозиметр Фрике	0.536	12.2	7.05	4.03	6
8	Ильфорд К-5	0.510	9.0	9.80	4.99	100
9	Минеральное масло на жидком	0.453	13.3	3.72	4.37	15
	сцинтилляторе с РРО					
10	Ильфорд G-5	0.221	3.9	22.6	5.93	170
11	Нитрат целлюлозы	0.118	2.31	17.0	17.0	1.7
12	Аэрированный дозиметр Фрике	0.110	2.46	35.2	17.7	5.64
13	Твёрдая бактериофага Т-1	0.068	1.55	29.2	29.2	6.18
14	Твёрдая бактериофага 0X-174	0.064	1.46	31.2	31.2	5.64
15	Оливин- ES	0.055	0.806	96.1	28.43	1.56
16	β-галактозидаз	0.050	1.13	60.0	39.9	3.14
17	Лексан поликарбонат	0.050	1.10	39.6	39.6	2.0
18	Твердая бактериофага Т*-1	0.050	1.10	40.2	40.2	6
19	Ильфорд К-2	0.0258	0.455	195	51.2	130
20	Макрофоль KG	0.0194	0.101	111.2	91.9	8.18
21	Трипсин	0.0148	0.340	135	135	1.38
22	CR-39	0.0123	0.0876	90.7	70.42	
23	Ильфорд К-1	0.00136	0.024	3680	976	120
24	Ильфорд К-0	0.0007	0.013	6740	16200	120
25	Дрожжевые клетки	0.00048	0.011	4140	4130	4030
26	Бактериальные споры О2	0.00031	0.0071	6360	6360	244
27	Слюда	0.00025	0.0059	2460	749	6.51
28	Бактериальные споры N ₂	0.00025	0.0057	7920	7920	243
29	Бактериальные споры H ₂ S	0.00014	0.0031	14600	14600	234