

Баксанская нейтринная обсерватория Института ядерных исследований Российской академии наук

Модель отклика детектора ШАЛ "Ковёр-3"

Васильев Никита от имени коллаборации «Ковер-3»

Широкие атмосферные ливни (ШАЛ)

Баксанская Нейтринная Обсерватория, п. Нейтрино

Установка «Ковёр-3»

- А установка «Ковер»;
- В выносные пункты регистрации (ВПР);
- С подземный мюонный детектор (МД);
- D новые ВПР (пластический сцинтиллятор);
- Е не укомплектованные ВПР;
- F места для установки ВПР в будущем;

Ковер

Подземный мюонный детектор

р.ч. (релятивистская частица) – наиболее вероятное энерговыделение в детекторе в результате прохождении мюонов через детектор

17.02.2025

Ν

- Смоделированы 400 ячеек сцинтиллятора, образующие центральный «Ковёр» (квадрат со стороной 20 ячеек). Размер ячейки – 70*70*30 см³
- Xимический состав сцинтиллятора C_9H_{20}
- Плотность вещества сцинтиллятора 0.78 г/см³ 3
- Количество фотонов на МэВ ионизации 100
- Каждый сцинтиллятор окружен алюминиевыми стенками толщиной 3 мм, смазанными отражающей эмалью (коэффициент отражения = 0.95)
- ✤Модель регистрирует количество фотонов, попавших на окно ФЭУ (вероятность регистрации – 100%)

Гистограмма количества зарегистрированных сцинтилляционных фотонов, образовавшихся в «Ковре» после прохождения мюона

3D модель здания, в котором находится центральный детектор

- ✤Смоделированы 2 тоннеля мюонного детектора и 410 пластических сцинтилляторов, их заполняющие. Размер каждого туннеля 41×5 м²
- Химический состав сцинтиллятора $C_a H_b$, где а/b ≈ 1
- Плотность вещества сцинтиллятора 1.05 г/см³
- Количество фотонов на МэВ ионизации 500
- Алюминиевый кожух имеет форму усечённой четырёхгранной пирамиды. Толщина стенок порядка 2.5 мм)
- ✤Над мюонным детектором смоделирована гранитная насыпь, создающая порог в 1 ГэВ для вертикальных мюонов.

3D модель установки «Ковёр-3»

Пример отклика модели на ШАЛ, смоделированный в CORSIKA

351.831_22.7072_157.2_-8.52502_-2.31716_1.16997e+06

-1 -1 -1 -1 -1	-1 -1 -1 -1 -1	0 0 5																					4	0 2
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1	5 0 0																					A	1 0
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1																							2 0
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1																						0	2 0
1 -1 -1 -1 -1	-1 -1 -1 -1 -1	0 0 1																					2	0 0
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1	0 0 1																					4	0 0
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1	0 0 0																					8	4 5
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		0	ๆ ๆ	าต	าต	17	าจ	าเร	ๆ /	ๆๆ	ๆๆ	G	าอเ	าๆ	7	Э	ß	R	0		2		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		0	252	ТЭ	TЭ	<u>т</u> //	42	TD	<u>п</u> ф	88	88	0	TO .	55	0	3	0	ອ	9	9	3		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		0	11	13	12	16	17	16	15	13	13	12	14	13	8	8	9	7	8	10	6		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		6	13	15	15	15	18	14	15	17	16	15	14	9	13	9	12	8	9	13	11		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		5	15	18	15	19	21	16	17	14	16	15	14	13	15	13	9	12	9	4	7		
			0	17	20	18	10	18	20	21	10	10	18	17	16	15	0	าา	าา	በጠ	10	3		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		0		20	20	20	20	20 10	55 10	9.7	 10	20	9.7	17		้าจ	าจ		6	6	2		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		9	<u>то</u> ,	20	20	20	20	Ta	TS	T.	T0	20	<u>ц</u> ,	L/	ш//	19	19	프프	9	0	2		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		11	20	24	20	23	22	23	21	19	18	20	16	16	13	14	11	15	10	9	9		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		13	20	22	22	23	24	22	22	18	20	17	16	18	16	12	10	14	13	8	10		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		16	26	28	25	26	26	27	25	24	23	18	19	18	15	18	14	14	15	13	13		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		ົອາ	20	হুগ	20	20	ଅଛ	ଅଛ	ଅନ୍ତ	25	7A	າາ	22	วา	17	າຂ	ាត	າຈ	าว	າຈ	10		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		30	34	9 <u>8</u> 98	<u>20</u>	යව	ত্রন	20	20	<u>50</u>	ചെട	ຮຮ ຈຈ	<u>ଜନ</u> ର୩ (22	20	10	9.2	9.7	96	19	19		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		29	54	50	55	54	ЭT	50	50	20	29	23	<u> </u>	26	20	10	<u>ч</u>	π//	ТЭ	13	13		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		30	36	37	36	37	33	33	31	29	24	24	22	20	21	19	15	14	14	12	10		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		34	39	41	40	39	37	33	32	31	28	27	24	21	20	16	16	14	15	12	12		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		36	41	46	45	43	41	38	34	33	30	26	25	26	19	17	15	11	13	14	9		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		20	AG	52	54	40	13	ସ୍ଥ	হার	হস	<u>3</u> 0	୨ଜ	25	21	20	20	า/1	10	าา	19	10		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		99	40	52	54 C 4	50	49	20	ອອ	ଅନ୍ଦ୍ର ଅନ୍ଦ୍ର	90	20		39	20	20	<u>ມ</u>	50	55	86 9 P	10		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		<u>3/</u>	40	57	64	52	43	න්ම	ජ්	হা	<u> 29</u>	24	20,	<u> </u>	Tà	18	<u>1</u> 2	பில	42	12	9		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		33	44	52	55	50	<u>43</u>	39	34	31	28	24	23	21	19	18	17	13	14	12	11		
-1 -1 -1 -1 -1			29	40	46	46	44	41	37	33	30	28	25	24	22	19	21	19	14	14	12	10		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		26	36	40	40	40	38	35	34	31	30	25	25	21	21	20	18	18	16	13	าา		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		24	32	ସ୍ଥନ୍ତ	37	ସ୍ଥିନ	হন	3/1	হুগ	<u>ຊ</u> ທ	<u>୨</u> ଭ	21	24	20	20	 10	 10	าด	าธ	14	0		
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1		<u> </u>	92	99	90	20	99	2-2	98	20	60	64		20	20	29	20	20	29	25-2	9	_	_
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1	521																					0	-1 -1
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1	1 2 3																					-1	-1 -1
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1	0 3 4																					0	-1 -1
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1	4 3 3																					-1	-1 -1
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1																						1	1 1
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1																						-1	-1 -1
-1 -1 -1 -1 -1	-1 -1 -1 -1 -1	4 0 1																					0	-1 -1

- Смоделировано по 28200 ливней для трёх типов первичных частиц: γкванты, протоны, ядра железа
- ✤Распределение θ : равномерное по соз ² θ в диапазоне [0°, 40°]
- ✤Распределение Е: от 10 до 150 ТэВ с шагом 1 ТэВ. Для каждого значения сгенерировано по 200 ливней.
- ✤Уровень наблюдения: 1700 м над уровнем моря

- Направление прихода ШАЛ (θ, φ) восстанавливается по относительным временным задержкам 4 выносных пунктов в приближении плоского фронта
- Размер ливня Ne и возраст s восстанавливаются путём поиска науилучшей аппроксимации пространственного распределения плотностей частиц в детекторах центральной части НКГ-функцией:

$$ho_e(r,s,N_e) = igg(rac{N_e}{r_M^2}igg) rac{\Gamma(4,5-s_N)}{2\pi\Gamma(s_N)\Gamma(4,5-2s_N)} igg(rac{r}{r_M}igg)^{s_N-2} igg(1+rac{r}{r_M}igg)^{s_N-4,5}$$

Восстановление положения оси ШАЛ

- В каждом ряду фиксируется положение детектора с максимальным энерговыделением
- Ряду присваивается вес, равный сумме энерговыделений всех его ячеек
- Через получившийся набор точек проводится прямая с помощью МНК
- Аналогичная процедура проделывается со столбцами
- Пересечение двух прямых считается истинным положением оси ливня

Триггеры записи и реконструкции

- Суммарное энерговыделение в центральном «Ковре» превышает 15 р.ч.
- ♦С порогом 0,5 р.ч. сработали 4 основных выносных пункта

- Суммарное энерговыделение в центральном «Ковре» превышает 15 р.ч.
- ♦С порогом 0,5 р.ч. сработали 4 основных выносных пункта
- ✤Количество сработавших с порогом 0,5 р.ч. детекторов превышает 50
- Ось ливня восстановлена внутри центрального «Ковра»
- Восстановленный зенитный угол не превышает 40 градусов

Оценка эффективности срабатывания триггеров

Оценка эффективности срабатывания триггеров

Оценка эффективности срабатывания триггеров

✤Представлена детальная модель установки «Ковёр-3»

✤Показана эффективность триггеров установки «Ковёр-3» к γ-квантам, протонам и железу с энергией 10-150 ТэВ

✤На данный момент происходит дальнейшая обработка ливней, сгенерированных в CORSIKA, для оценки параметров установки

✤В ближайшие планы входит разработка более совершенных методов реконструкции параметров ШАЛ на основе результатов моделирования

Спасибо за внимание!

Коллаборация «Ковер-3»

В.С. Романенко^{а,b}, И.А. Вайман^а, Н.А. Васильев^с, Е.А. Горбачева^а, Д.Д. Джаппуев^а, Т.А. Джатдоев^{а,с}, И.М. Дзапарова^а,

К.В. Журавлева^а, И.С. Карпиков^а, Н.Ф. Клименко^а, А.У. Куджаев^а, А.Н. Куреня^а, А.С. Лидванский^а, О.И. Михайлова^а, В.В. Петков^а,

Е.И. Подлесный^d, Н.А. Позднухов^a, Г.И. Рубцов^a, С.В. Троицкий^{а,с}, И.Б. Унатлоков^a, М.М. Хаджиев^a, А.Ф. Янин^a.

^а Институт ядерных исследований Российской академии наук, Москва ^b Адыгейский Государственный Университет, Майкоп ^c Московский государственный университет имени М.В. Ломоносова, Москва

^d Норвежский университет науки и технологий, Тронхейм, Норвегия

Результат 10^4 симуляций в GEANT4 для 1000 фотонов на МэВ ионизации

Восстановление направления прихода ШАЛ в приближении плоскости

$$\chi^2 = \sum_{i=1}^{m} (n_x x_i + n_y y_i - c(t_i - t_0))^2$$

1

$$n_{x} = \frac{\langle xy \rangle \left(\langle yt \rangle - \langle y \rangle \langle t \rangle \right) + \langle x \rangle \left(\langle y^{2} \rangle \langle t \rangle - \langle y \rangle \langle yt \rangle \right) + \langle xt \rangle \left(\langle y \rangle^{2} - \langle y^{2} \rangle \right)}{\langle x^{2} \rangle \langle y \rangle^{2} + \langle x \rangle^{2} \langle y^{2} \rangle - 2 \langle x \rangle \langle y \rangle \langle xy \rangle + \langle xy \rangle^{2} - \langle x^{2} \rangle \langle y^{2} \rangle}c,$$

$$n_{y} = \frac{\langle xy \rangle \left(\langle xt \rangle - \langle x \rangle \langle t \rangle \right) + \langle y \rangle \left(\langle x^{2} \rangle \langle t \rangle - \langle x \rangle \langle xt \rangle \right) + \langle yt \rangle \left(\langle x \rangle^{2} - \langle x^{2} \rangle \right)}{\langle x^{2} \rangle \langle y \rangle^{2} + \langle x \rangle^{2} \langle y^{2} \rangle - 2 \langle x \rangle \langle y \rangle \langle xy \rangle + \langle xy \rangle^{2} - \langle x^{2} \rangle \langle y^{2} \rangle}c,$$

Чертёж мюонного детектора

