Introduction 0000	Calculations 000	Results 0000	Summary 000	Auxillary

Absorption of twisted photon by an electron in a strong magnetic field

A.A Shchepkin, D.V. Grosman, I.I. Shkarupa and D.V. Karlovets

Faculty of Physics, ITMO University

Introduction	Calculations 000	Results 0000	Summary 000	Auxillary 000000000000000000000000000000000000

Twisted states

Twisted (vortex) states are **waves** with well-defined:

- longitudinal momentum, k_z ;
- absolute transverse momentum, $\kappa = |\mathbf{k}_{\perp}|$;
- energy, $E = \frac{\kappa^2 + k_z^2}{2m}$;
- angular momentum projection, $l_z = m$.

Generation of vortices in strong magnetic field

$$(H_c = m_e^2 c^3 / e\hbar = 4.4 \times 10^{13} \,\mathrm{G})$$

Emission in strong magnetic field $(H \sim H_c)$ is mostly twisted (Maruyama+'22, Pavlov&Karlovets'24).

Stellar nucleosynthesis. Radiative transfer in astrophysical environments such as neutron stars, kilonovae etc.

Gauge of the vector potential

Landau gauge

Symmetric gauge

 $\mathcal{A}^{\mu} = \{0, 0, Hx, 0\}$

 $\mathcal{A}^{\mu} = H/2 \times \{0, -y, x, 0\}$

 $\Phi(\boldsymbol{r}) \propto H_n(\tilde{x}) e^{-\tilde{x}^2/2} e^{i(p_z z + p_y y)}$ $\tilde{x} = (x - \rho_H^2 p_x) / \rho_H$

Axial symmetry is not preserved. No orbital angular momentum.

$$\Phi(m{r}) \propto ilde{
ho}^l L_s^l(ilde{
ho}) e^{- ilde{
ho}^2/2} e^{i p_z z}
onumber \ ilde{
ho} =
ho/
ho_H$$

Axial symmetry is preserved. Orbital angular momentum (*l*) arises.

Properties of Landau states in symmetric gauge

Introduction	Twisted photon	Calculations	Results	Summary	Auxillary
0000		000	0000	000	000000000000000000000000000000000000

Twisted photon

Emitted radiation by an electron in strong magnetic field is mostly twisted (Maruyama'22, Pavlov&Karlovets'24)

The photon is described with the Bessel shape (Knyazev&Serbo'18)

$$\psi_{\kappa m k_z} = J_m(\kappa \rho) \exp[i(m\varphi_r + k_z z)] \quad (3)$$

Introduction	Calculations	Results	Summary	Auxillary
0000	●○○	0000	000	000000000000000000000000000000000000

Kinematics

Conservation laws

$$\varepsilon_f = \varepsilon_i + \omega,$$

$$p_{zf} = p_{zi} + k_z,$$

$$j_f = j_i + m.$$
(4)

Energy of the absorbed photon

$$\omega = (s_f - s_i + m)\omega_c - \frac{\kappa^2}{2\varepsilon_{s_i,j_i}}, \quad \omega_c = \frac{eH}{\varepsilon_{s_i,j_i}}$$
(5)

First order matrix element

$$S_{fi}^{(1)} = \langle e_f | \hat{S} | e_i, \gamma \rangle =$$

= $-ie \int d^4x \, j_{fi}^{\mu}(x) A_{\mu}(x).$ (6)
 $j_{fi}^{\mu}(x) = \overline{\Psi}_f(x) \gamma^{\mu} \Psi_i(x).$ (7)

Introduction	Calculations	Results	Summary	Auxillary
0000	○○●	0000	000	000000000000000000000000000000000000

Generalized cross section

Cross section		Denerglands on a	
$d\sigma = \frac{dW}{\mathcal{L}}$	(8)	Dependence on κ	(10)
Absorption probability		$\left S_{fi}^{(-)}\right \propto \exp\left(-\frac{\sqrt{2}}{2}\right)$	(10)
$dW = \left S_{fi}^{(1)} \right ^2 \frac{L}{2\pi} dp_{zf} \Delta s_f \Delta j_f,$	(9)	$\kappa_c = m_e \sqrt{H/H_c}$	(11)

Luminosity

$$\mathcal{L} = \int d^4x \frac{d^3p}{(2\pi)^3} \frac{d^3k}{(2\pi)^3} v(\boldsymbol{p}, \boldsymbol{k}) w^{(e)}(\boldsymbol{r}, \boldsymbol{p}) w^{(\gamma)}(\boldsymbol{r}, \boldsymbol{k}), \qquad (12)$$

Introduction	Twisted photon	Calculations	Results	Summary	Auxillary
0000	O	000	●000	000	000000000000000000000000000000000000

Total absorption cross-section, κ

A.A. Shchepkin

Total absorption cross-section, j_i

A.A. Shchepkin

Cross sections for spin transitions, $H = H_c$

A.A. Shchepkin

Cross sections for spin transitions, $H = 10^{-4} H_c$

A.A. Shchepkin

Key results

Twisted photon absorption cross sections are exponentially suppressed when transverse photon momentum $\kappa > m_e \sqrt{H/H_c}$.

Absorption cross sections **grow** with **increasing** TAM of the initial electron and **decrease** with **increasing** TAM of the incident photon

Cross sections for "down \rightarrow up" spin flip are always larger than for "up \rightarrow down" flip. It can be the reminiscent of the Sokolov-Ternov effect.

Acknowledgments

The work was carried out with the support of the Russian Science Foundation Grant No. 23-62-10026

Introduction 0000	Calculations	Results 0000	Summary ○○●	Auxillary 000000000000000000000000000000000000

Thank you for your attention!

Reference to our publication: https: //link.springer.com/article/10.1140/epjc/s10052-024-13697-3

IntroductionTwisted photonCalculationsResultsSummaryAuxillary00000000000000000000

QED processes in magnetic field

First order

Second order

Introduction	Calculations 000	Results 0000	Summary 000	Auxillary 000000000000000000000000000000000000

Landau states

Squared Dirac equation

$$\left[(i\partial_{\mu} - e\mathcal{A}_{\mu})^2 - m_e^2 + eH\Sigma_z \right] \Phi(x) = 0$$
(13)

Spin operator

$$\Sigma_z = \begin{pmatrix} \sigma_z & 0\\ 0 & \sigma_z \end{pmatrix} = \operatorname{diag}\{1, -1, 1, -1\}.$$
 (14)

Solution to the squared Dirac equation

$$\Phi(x) = \begin{pmatrix} c_1 \Phi_+(x) \\ c_2 \Phi_-(x) \\ c_3 \Phi_+(x) \\ c_4 \Phi_-(x) \end{pmatrix}$$
(15)

$$\Phi_{\pm}(x) = N_{s,j}\psi_{s,j\mp 1/2}(\tilde{\rho})e^{-it\varepsilon_{s,j}+i(j\mp 1/2)\varphi+ip_z z}$$
(16)

$$\psi_{s,j\mp 1/2}(\tilde{\rho}) = \tilde{\rho}^{|j\mp 1/2|} L_s^{|j\mp 1/2|} (\tilde{\rho}^2) e^{-\tilde{\rho}^2/2}$$
(17)

$$\begin{array}{ll} s = 0, 1, 2, \dots & \tilde{\rho} = \rho / \rho_H \\ j = \pm 1/2, \pm 3/2, \dots & \rho_H = \sqrt{2/|e|H}. \end{array}$$

A.A. Shchepkin

Introduction	Calculations	Results	Summary	Auxillary
0000	000	0000	000	000000000000000000000000000000000000

Solution basis

$$\Phi_{\uparrow}(x) = \begin{pmatrix} \Phi_{+}(x) \\ 0 \\ 0 \\ 0 \end{pmatrix}, \ \sigma_{z} = \frac{1}{2}, \qquad \Phi_{\downarrow}(x) = \begin{pmatrix} 0 \\ \Phi_{-}(x) \\ 0 \\ 0 \end{pmatrix}, \ \sigma_{z} = -\frac{1}{2}$$
(18)

Bispinor solution

$$\Psi(x) = \left[\gamma^{\mu}(i\partial_{\mu} - e\mathcal{A}_{\mu}) + m_e\right]\Phi(x).$$
(19)

Solution to the Dirac equation

$$\Psi_{\uparrow}(x) = N_{s,j} \begin{pmatrix} (\varepsilon + m_e)\psi_{s,j-1/2}(\tilde{\rho})e^{-i\varphi/2} \\ 0 \\ p_z\psi_{s,j-1/2}(\tilde{\rho})e^{-i\varphi/2} \\ 2\rho_H^{-1}i\psi_{s,j+1/2}(\tilde{\rho})e^{i\varphi/2} \end{pmatrix} e^{i(p_zz+j\varphi-\varepsilon t)}, \quad (20)$$

$$\Psi_{\downarrow}(x) = N_{s,j} \begin{pmatrix} 0 \\ (\varepsilon + m_e)\psi_{s,j+1/2}(\tilde{\rho})e^{i\varphi/2} \\ -2\rho_H^{-1}i(s+j+1/2)\psi_{s,j-1/2}(\tilde{\rho})e^{-i\varphi/2} \\ -p_z\psi_{s,j+1/2}(\tilde{\rho})e^{i\varphi/2} \end{pmatrix} e^{i(p_zz+j\varphi-\varepsilon t)}. \quad (21)$$

Vector potential for twisted photon

Vector potential

$$\boldsymbol{A}_{\kappa m k_z \Lambda}(\boldsymbol{r}) = \int a_{\kappa m k_z}(\boldsymbol{q}) \boldsymbol{e}_{\boldsymbol{q} \Lambda} e^{i \boldsymbol{q} \cdot \boldsymbol{r} - i \omega t} \frac{d^3 q}{(2\pi)^3}, \qquad (22)$$
$$a_{\kappa m k_z}(\boldsymbol{q}) = \frac{(2\pi)^2}{\kappa} \delta(q_\perp - \kappa) \delta(q_z - k_z) e^{i m \varphi_q}. \qquad (23)$$

Normalization

$$\int_{V} \frac{\boldsymbol{E}^{2} + \boldsymbol{H}^{2}}{8\pi} d^{3}\boldsymbol{r} = \omega \quad \Longleftrightarrow \quad \int_{V} |\boldsymbol{A}|^{2} d^{3}\boldsymbol{r} = \frac{2\pi}{\omega}$$
(24)

A.A. Shchepkin A

Absorption of twisted photon by an electron in a strong magnetic field

Auxillary

Vector potential of the twisted photon

$$\boldsymbol{A}_{\kappa m k_{z}\Lambda}(\boldsymbol{r}) = \sqrt{\frac{\pi\kappa}{3\omega LR}} e^{ik_{z}z - i\omega t} \sum_{\sigma=0,\pm 1} d^{(1)}_{\sigma,\lambda}(\theta_{k}) e^{i(m-\sigma)\varphi_{r}} J_{m-\sigma}(\kappa\rho) \boldsymbol{\chi}_{\sigma}$$
(25)

Wigner matrices

$$d_{\sigma,\lambda}^{(1)}(\theta_k) = \frac{1}{2}(1 + \sigma\lambda\cos\theta_k), \quad \sigma \neq 0$$
$$d_{0,\lambda}^{(1)}(\theta_k) = \frac{\lambda}{2}\sin\theta_k$$

Spin operator eigenvectors

Auxillary

$$egin{aligned} m{\chi}_{\pm} = \mp rac{1}{\sqrt{2}} \{1, \pm i, 0\} \ m{\chi}_{0} = \{0, 0, 1\} \end{aligned}$$

Introduction 0000	Calculations	Results 0000	Summary 000	Auxillary 000000000000000000000000000000000000

Vector potential in the coordinate space

$$\boldsymbol{A}_{\kappa m k_{z}\Lambda}(\boldsymbol{r}) = \sqrt{\frac{\pi\kappa}{3\omega LR}} e^{ik_{z}z + im\varphi_{r} - i\omega t} \times \\ \times \begin{pmatrix} id_{-1\Lambda}^{(1)}(\theta_{k})J_{m+1}(\kappa\rho)e^{i\varphi_{r}} + id_{1\Lambda}^{(1)}(\theta_{k})J_{m-1}(\kappa\rho)e^{-i\varphi_{r}} \\ d_{-1\Lambda}^{(1)}(\theta_{k})J_{m+1}(\kappa\rho)e^{i\varphi_{r}} - d_{1\Lambda}^{(1)}(\theta_{k})J_{m-1}(\kappa\rho)e^{-i\varphi_{r}} \\ \sqrt{2}d_{0\Lambda}^{(1)}(\theta_{k})J_{m}(\kappa\rho) \end{pmatrix} \right).$$
(26)

Photon and electron density profiles

S-matrix for "up-up" transition

$$S_{\uparrow\uparrow}^{(1)} = \sqrt{\frac{2\pi\kappa}{3\omega LR}} ieN_iN_f(2\pi)^3 \rho_H \delta(\varepsilon_i - \varepsilon_f + \omega)\delta(p_{zi} - p_{zf} + k_z)\delta_{j_f,j_i+m} \left[2\sqrt{2}\times \left((\varepsilon_i + m_e)d_{-1\Lambda}^{(1)}(\theta_k)\mathcal{F}_{s_f,s_i}^{j_f+1/2,j_i-1/2}(\kappa\rho_H) - (\varepsilon_f + m_e)d_{1\Lambda}^{(1)}(\theta_k)\mathcal{F}_{s_f,s_i}^{j_f-1/2,j_i+1/2}(\kappa\rho_H)\right) + \rho_H d_{0\Lambda}^{(1)}(\theta_k)\left(m_e(p_{zi} + p_{zf}) + p_{zf}\varepsilon_i + p_{zi}\varepsilon_f\right)\mathcal{F}_{s_f,s_i}^{j_f-1/2,j_i-1/2}(\kappa\rho_H)\right], \quad (27)$$

$$\mathcal{F}_{s_f,s_i}^{l_f,l_i}(\kappa\rho_H) \propto \exp\left(-(\kappa/\kappa_c)^2/2\right), \quad \kappa_c = \sqrt{2}/\rho_H = m_e \sqrt{H/H_c}$$

Introduction	Calculations 000	Results 0000	Summary 000	Auxillary 000000000000000000000000000000000000

Special function \mathcal{F}

$$\mathcal{F}_{s,s'}^{\ell,\ell'}(y) = \int_0^\infty dx x^{\ell+\ell'+1} L_s^\ell(x^2) L_{s'}^{\ell'}(x^2) J_{\ell-\ell'}(yx) e^{-x^2} = \frac{(s'+\ell')!}{s!} \frac{1}{2^{2(s-s')+\ell-\ell'+1}} y^{2(s-s')+\ell-\ell'} L_{s'+\ell'}^{s-s'+\ell-\ell'}(y^2/4) L_{s'}^{s-s'}(y^2/4) e^{-y^2/4}, \quad (28)$$

(Gradshtein & Ryzhik'63)

Introduction 0000	Calculations	Results 0000	Summary 000	Auxillary 000000000000000000000000000000000000

Next values are investigated

$$\sigma_{\text{tot}} = \frac{1}{2} \sum_{\Lambda = \pm 1} \sum_{\sigma_{zf} = \pm 1/2} \int d\sigma, \qquad (29)$$
$$\sigma_{\text{spin}}^{fi} = \frac{1}{2} \sum_{\Lambda = \pm 1} \int d\sigma. \qquad (30)$$

Introduction	Calculations 000	Results 0000	Summary 000	Auxillary 000000000000000000000000000000000000

Luminosity

$$\mathcal{L} = \int d^4x \frac{d^3p}{(2\pi)^3} \frac{d^3k}{(2\pi)^3} v(\boldsymbol{p}, \boldsymbol{k}) w^{(e)}(\boldsymbol{r}, \boldsymbol{p}) w^{(\gamma)}(\boldsymbol{r}, \boldsymbol{k})$$
(31)

$$v(\boldsymbol{p}, \boldsymbol{k}) = \frac{p_{\mu}k^{\mu}}{\varepsilon(\boldsymbol{p})\omega(\boldsymbol{k})} = 1 - \frac{\boldsymbol{p} \cdot \boldsymbol{k}}{\varepsilon(\boldsymbol{p})\omega(\boldsymbol{k})}$$
(32)

Introduction	Calculations	Results	Summary	Auxillary
0000	000	0000	000	00000000000000000000

Wigner functions

$$w_{s,j}^{(e)}(\boldsymbol{r},\boldsymbol{p},t) = \frac{1}{(2\pi)^3} \int \Psi_{s,j}^{\dagger}(\boldsymbol{r}-\boldsymbol{y}/2,t) \Psi_{s,j}(\boldsymbol{r}+\boldsymbol{y}/2,t) e^{i\boldsymbol{p}\cdot\boldsymbol{r}} d^3\boldsymbol{y}, \quad (33)$$
$$w^{(\gamma)}(\boldsymbol{r},\boldsymbol{p},t) = \frac{1}{(2\pi)^3\omega} \int \boldsymbol{E}_{\kappa m k_z \Lambda}^*(\boldsymbol{r}-\boldsymbol{y}/2,t) \boldsymbol{E}_{\kappa m k_z \Lambda}(\boldsymbol{r}+\boldsymbol{y}/2,t) e^{i\boldsymbol{k}\cdot\boldsymbol{r}} d^3\boldsymbol{y} \quad (34)$$

$$\int w_{s,j}^{(e)}(\boldsymbol{r},\boldsymbol{p},t) \frac{d^3\boldsymbol{p}}{(2\pi)^3} = \Psi_{s,j}^{\dagger} \Psi_{s,j}$$
(35)

$$\int w^{(\gamma)}(\boldsymbol{r},\boldsymbol{p},t) \frac{d^3\boldsymbol{k}}{(2\pi)^3} = \frac{1}{\omega} \boldsymbol{E}^*_{\kappa m k_z \Lambda} \boldsymbol{E}_{\kappa m k_z \Lambda} = \omega \boldsymbol{A}^*_{\kappa m k_z \Lambda} \boldsymbol{A}_{\kappa m k_z \Lambda}$$
(36)

Sharp minimum of $\sigma_{\downarrow\uparrow}$ and $\sigma_{\uparrow\downarrow}$

$$\omega_{\downarrow\uparrow,\min} \approx m_e \frac{H}{H_c} \frac{\Lambda}{\Lambda - 1} \frac{2(m+1)}{(1 + \varepsilon/m_e)}, \quad \omega_{\uparrow\downarrow,\min} \approx \frac{\kappa^2}{m_e} \frac{\Lambda}{\Lambda + 1} \frac{(s_i + j_i + 1/2)}{m(1 + \varepsilon_i/m_e)}$$
(37)

$$j_{\min} \approx \frac{1}{2} \frac{H_c}{H} (m^2 - 1) - s - \frac{1}{2}$$
 (38)

Generation of vortices

Electron can emit a vortex photon being

 in an external magnetic field (Katoh+'23)

by helical undulator:

- in a helical undulator (Katoh+'23)
- in a circularly polarised laser wave (Epp+'23, Zhang+'21)

by circularly-polarised laserwave:

