

PARTICLES AND COSMOLOGY

17th Baksan School on Astroparticle Physics

Modern Statistical Methods and Tools

Lecture 2

Grigory I. Rubtsov Institute for Nuclear Research of the Russian Academy of Sciences

Terskol, Kabardino-Balkarian Republic, Russia April 4-11, 2025

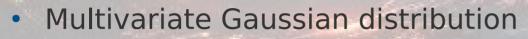
Update to lecture 1. Definition of discovery

- As you have noticed, a simplified definition of the discovery was shown yesterday
- It is possible to discover something that was not searched for and even something for which there is no model
- There are methods developed to search for unknown new physics.
 - General name for these methods is "semi-supervised anomaly detection"
 - These methods use M0 model, but no M model
- Larger statistics is required for discoveries of this type M. Kuusela et al., J.Phys.Conf.Ser. 368 (2012) 012032; V. Belis et al., Rev.Phys. 12 (2024) 100091

Update to lecture 1. the opposite side: Blinding

- When searching for anomalies, one is exposed to fluctuations of different random processes
- These fluctuations make up a large background for a search
- To avoid that, the blinding technique is used
- Blinding practically means that the scientists do not have access to the data before certain point (e.g. Higgs@LHC)
- 1) The work is performed with simulations (M₀ and M). Then M is fixed based on simulations and published
- 2) Unblinding: the data are tested against M
- The data may be required for optimization on step 1. A part of data is used, which is then excluded on step 2.

Return to randomness: Gaussian random variables



$$f(\mathbf{x}) = \frac{1}{(2\pi)^{n/2}\sqrt{\det C}} \exp\left(-\frac{1}{2}(\mathbf{x}-\mathbf{b})^T C^{-1}(\mathbf{x}-\mathbf{b})\right)$$

- **b** mean, C covariance matrix
- For random Gaussian **x** with **b**=0 and any matrix A $Tr A = \langle x^T A C^{-1} x \rangle$
- For
- For random Gaussian x with b=0 and any matrix A

Return to randomness: Gaussian random variables

- Isserlis-Wick theorem for calculating the mean of the product of Gaussian variables
 - Isserlis 1918 (mathematics)
 - Wick 1950 (particle physics)
- Mean of the product of the Gaussian variables (assume b=0) is the sum of products of means over all possible pairings
- Example:

 $\langle x_1 x_2 x_3 x_4 \rangle = \langle x_1 x_2 \rangle \langle x_3 x_4 \rangle + \langle x_1 x_3 \rangle \langle x_2 x_4 \rangle + \langle x_1 x_4 \rangle \langle x_2 x_3 \rangle$

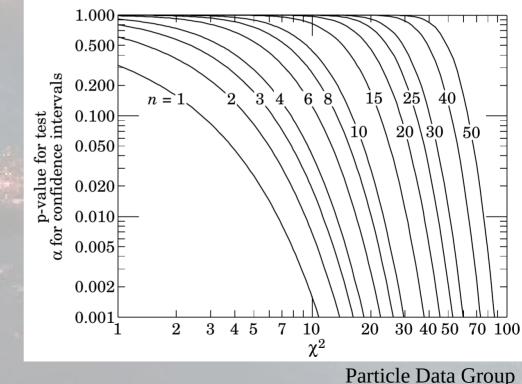
• As a direct consequence: $\langle x^4 \rangle = 3 \langle x^2 \rangle \langle x^2 \rangle = 3\sigma^4$

Return to randomness: Gaussian random variables

For n Gaussian random variables x_i with zero mean one may define
 1.000

 The χ² distribution depends on n (called d.o.f.) and is widely used

 $\chi^2 = \sum_{i=0} x_i^2$



Frequentist vs Bayesian

The future is not set.

There is no fate but what we make for ourselves.

The past, present and future are not set. The fate is a random hypothesis.



Both model (M) and event (obs) are random

 $P(M|obs) = \frac{P(obs|M)P(M)}{P(obs)}$

- P(M) prior
- P(obs) normalization constant we neglect at this step and recover later (by normalizing posterior)

- P(obs|M) is called likelihood L(M,obs)
- P(M|obs) posterior probability
- One often confuses the likelihood and the posterior probability.
- Q: What is the difference between them?

- P(obs|M) is called likelihood L(M,obs)
- P(M|obs) posterior probability
- One often confuses the likelihood and the posterior probability.
- Q: What is the difference between them?
- A: These variables have a meaning of probability in different probability spaces

- The likelihood P(obs|M) is a probability in the space of random events (it is the probability in Frequentist's approach)
- The posterior probability P(M|obs) is a probability in the space of random models

 $P(M|obs) \sim P(obs|M)P(M)$

- Lost in spaces? Luckily, there is a clear way to identify the probability and it's space.
- Normalization condition

 $\int_{obs} P(obs|M) = 1$

 $\int P(M|obs) = 1$

Bayesian approach: work with posterior probability

- Let us assume that M is parametrized by the K variables {m_k}
- Normalization condition may be written explicitly

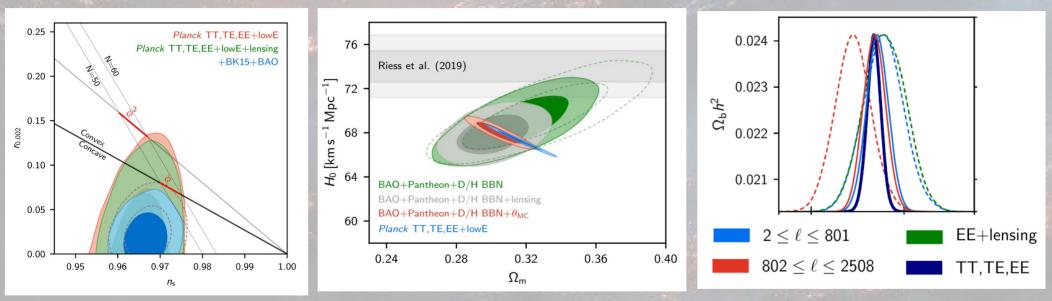
 $\iint P(M|obs) dM = 1$

 $m_1 \dots m_K$

 Suppose we are exclusively interested in one or two parameters of the model. We calculate marginal distribution

$$p(m_{l}) = \frac{\iint_{m_{1}..m_{K} \setminus m_{l}} P(M|obs) dM}{\iint_{m_{1}..m_{K}} P(M|obs) dM} \qquad p(m_{l},m_{q}) = \frac{\iint_{m_{1}..m_{K} \setminus m_{l}m_{q}} P(M|obs) dM}{\iint_{m_{1}..m_{K}} P(M|obs) dM}$$

Bayesian approach example: Planck 2018 results



Planck Collaboration, A&A 641, A6 (2020)

- These are 2D and 1D marginal distributions of posterior
- 1σ (2σ) contours lines of equal probability, which include 68%, (95%) of the integral of posterior probability

Testing hypotheses: Bayesian approach

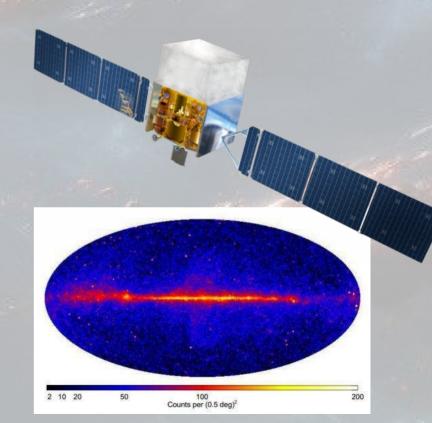
- 1) Define the space of models M
- 2) Define the likelihood function P(obs|M)
- 3) Define the prior P(M)
- 4) Calculate the posterior probability
- 5) Calculate marginal 1D or 2D distribution of the posterior
- 6) Plot the lines of equal probability, which include 68%, (95%) of the integral of posterior probability. These are the constraint we obtain

Takeout 2.1

- Gaussian random variables have unique properties and are widely used in the analysis
- Posterior probability and likelihood have a meaning of probability in different probability spaces
- The parameters of the models are studied in the Bayesian approach with the marginal distributions of the posterior probability
- The constraints on the parameters are obtained with the line of equal probability

Model example: gamma-ray sky observed by Fermi LAT

- Fermi LAT is a space gamma-ray telescope
- We will use the publicly available list of the photons and exposure to test the radiation models
- Fermi LAT observes photons starting from 100 MeV
- We'll constrain ourselves with the gamma-rays above 10 GeV for smaller data and computation volume



Fermi LAT Collaboration, E>10 GeV

Model example: Fermi LAT

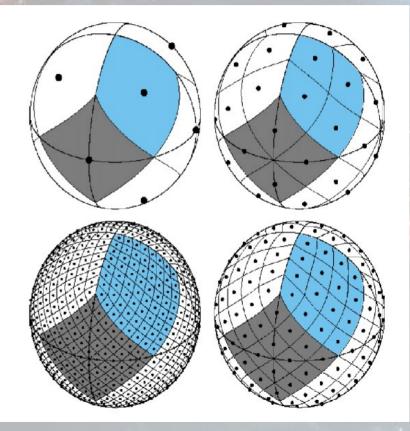
- The model of the gamma-ray emission is defined as a function on the position of the sphere $f(\Omega)$ in cm⁻² s⁻¹ sr⁻¹
- Will work in Galactic coordinates and use Ω for (I,b)
- We have an exposure $X(\Omega)$ of the experiment as a function of Ω for energy E=10 GeV in cm² s²
- The predicted probability density $\rho(\Omega) = f(\Omega)X(\Omega)$
- The next step is to construct a likelihood

HEALPix: Pixelisation of the sphere

- HEALPix Hierarchical Equal Area isoLatitude Pixelisation of a sphere
- Two types: ring or nested
- Npix = 12 nside²

from healpy.pixelfunc:

pix2ang(nside, ipix[, nest, lonlat])
ang2pix(nside, theta, phi[, nest, lonlat])



- We have pixels with area $\Delta\Omega$
- Expect $m_i = \rho(\Omega) \Delta \Omega$ events in a pixel
- Observe ni events in a pixel
- Q: What is a likelihood?

- We have pixels with area $\Delta\Omega$
- Expect $m_i = \rho(\Omega) \Delta \Omega$ events in a pixel
- Observe ni events in a pixel
- Q: What is a likelihood?
- A: Binned likelihood is a product of Poisson distributions:

$$P(obs|M) = \prod_{i} W(m_{i}, n_{i}) = \prod_{i} \frac{m_{i}^{n_{i}}}{n_{i}!} \exp(-m_{i}) = \exp(-\sum_{i} m_{i}) \prod_{i} \frac{m_{i}^{n_{i}}}{n_{i}!}$$

- Expect $m_i = \rho(\Omega_i) \Delta \Omega$, observe n_i events in a pixel
- Binned likelihood is a product of Poisson distributions: $P(obs|M) = \prod_{i} W(m_i, n_i) = \prod_{i} \frac{m_i^{n_i}}{n_i!} \exp(-m_i) = \exp(-\sum_{i} m_i) \prod_{i} \frac{m_i^{n_i}}{n_i!}$
- Consider the limit $\Delta \Omega \rightarrow 0$, then n_i is either 0 or 1
- If $n_i = 0$, the term in a product equals to 1, keep only $n_i = 1$
- Let Ω_a be a coordinate of a-th event, a=1..N
- We arrive at unbinned likelihood

$$P(obs|M) = \exp\left(-\sum_{i} \rho(\Omega_{i}) \Delta \Omega\right) \prod_{a} (\rho(\Omega_{a}) \Delta \Omega)$$

$$P(obs|M) = \exp\left(-\sum_{i} \rho(\Omega_{i}) \Delta \Omega\right) \prod_{a} \left(\rho(\Omega_{a}) \Delta \Omega\right)$$
$$P(obs|M) = \exp\left(-\int_{\Omega} \rho(\Omega) d\Omega\right) \Delta \Omega^{N} \prod_{a} \rho(\Omega_{a})$$

Removing constant normalization factor we arrive to final version of unbinned likelihood

$$P(obs|M) = \exp\left(-\int_{\Omega} \rho(\Omega) d\Omega\right) \prod_{a} \rho(\Omega_{a})$$

Likelihood ratio test

- Suppose we have two models M₀ with N parameters and M₁ with N+q parameters
- We have best fit likelihoods for M₀ and M₁

 $\lambda = -2 \left[\ln \left(L(M_0) \right) - \ln \left(L(M_1) \right) \right]$

- If the L improvement is due to random fluctuation, λ is distributed according to χ^2 distribution with q degrees of freedom
- If λ value is improbable according to χ^2 distribution, the model extension is physics (e.g. new source exists)
- Confidence level is obtained from the above probability

Takeout 2.2

- One may use Bayesian approach to study gamma-ray sky
- The sky may be split into the pixels with the HEALPix library (healpy)
- Two types of likelihood may be constructed (binned and unbinned)
- The likelihood ratio test may be used to compare models with different number of parameters

Task for self-check

• Download the list of Fermi LAT photons and exposure from data directory at Yandex disk

fermi_photons_10GeV.dat - photons, registered by Fermi LAT with energy
greater than 10 GeV

Time period:

2008-08-04T15:43:36.4941 - 2024-08-09T03:08:40.9339

File format (column description):

1. E, MeV

- 2. l, deg Galactic longitude
- 3. b, deg Galactic latitude
- 4. MET, s photon arrival time

Task for self-check

• Download the exposure of Fermi LAT at 10 GeV

fermi_expo_10GeV.dat - exposure of Fermi LAT telescope for the total time
period given below and energy equal to 10 GeV

Time period:

2008-08-04T15:43:36.4941 - 2024-08-09T03:08:40.9339

File format (column description):

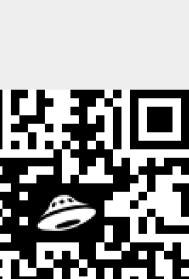
- 1. l, deg Galactic longitude
- 2. b, deg Galactic latitude
- 3. exposure, cm^2 s

	1	ΪĒ	
5		5	
	2		
	5	H	Ľ

28

Task for self-check

- Construct a model of gamma-ray radiation with two sources:
 - Isotropic flux
 - Constant flux in a circle with a radius of 1° around Crab
- Calculate likelihood and posterior probability distribution
- Estimate the parameters of the model and significance of the Crab observation
- (*) extend the model making the source coordinates parameters of the model



Hands-on session

- Download the code
- https://disk.yandex.ru/d/bPrpOq2Z-oJIOw
- Run jupyter notebook
- Go through exercises in the notebook

Thank you!

Backup slides

